-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbaseline_second_train.py
162 lines (125 loc) · 6.2 KB
/
baseline_second_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import load_model
from sklearn.metrics import f1_score
from numpy import argmax
from copy import deepcopy
from build_temp_model import build_cnn_model as cnn
from build_temp_model import build_logistic_model as log
from build_temp_model import build_resnet_model as res
import warnings
warnings.filterwarnings("ignore")
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
def load_server_test_data():
# modify here to load other test data
(_, _),(x_test, y_test) = mnist.load_data()
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_test = x_test.astype('float32')
x_test /= 255
y_true = y_test
y_test = keras.utils.to_categorical(y_test, 10)
return x_test, y_test, y_true
def load_client_data(i):
# load data from disk
all_data = np.load('users/user_'+str(i)+'/data.npz')
x_train, y_train = all_data['arr_0'], all_data['arr_1']
# operations on samples
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_train = x_train.astype('float32')
x_train = x_train / 255
y_true = y_train # record to compute F1-score
y_train = keras.utils.to_categorical(y_train, 10)
x_test, y_test = x_train, y_train # train data is also the test data
return x_train, y_train, x_test, y_test, y_true
def compute_F1_socre(model, test_samples, true_labels):
pred_labels = model.predict(test_samples, batch_size=32, verbose=0)
pred_labels = [argmax(y) for y in pred_labels]
f1 = f1_score(true_labels, pred_labels, average='micro')
return f1
def average_model(user_num, weights, t, model_class):
if model_class == "cnn":
temp_model_weight, model_len = cnn()
elif model_class == "logistic":
temp_model_weight, model_len = log()
elif model_class == "resnet":
temp_model_weight, model_len = res()
for i in range(user_num):
user_model_weight = load_model('users/user_'+str(i)+'/'+str(t+1)+'_th.h5').get_weights()
for j in range(model_len):
weighted_user_weight = [element * weights[i] for element in user_model_weight[j]]
temp_model_weight[j] = temp_model_weight[j] + weighted_user_weight
for i in range(model_len):
temp_model_weight[i] = temp_model_weight[i] / sum(weights[:user_num])
## backfill and save global models
updated_global_model = load_model('users/user_1'+'/'+str(t+1)+'_th.h5')
updated_global_model.set_weights(temp_model_weight)
updated_global_model.save('server/W_'+str(t+1)+'_th.h5')
# server tests global model
server_x_test, server_y_test, server_y_true = load_server_test_data()
loss, acc, fs = observe(local_model, server_x_test, server_y_test, server_y_true)
return loss, acc, fs
def observe(model, x_test, y_test, y_true):
loss, acc = model.evaluate(x_test, y_test, verbose=1)
fs = compute_F1_socre(model, x_test, y_true)
return loss, acc, fs
def save_csv(filedata, filepath):
temp=pd.DataFrame(filedata)
temp.to_csv(filepath, encoding='gbk', header=0, index=None)
# define parameters
user_num = 10 # the number of clients
start_iteration = 0 # the start of local training
iteration_num = 5 # the number of training rounds sustained in local training
second_batch_size = 32 # the batch size for local training
# small setting
second_learning_rate = 1e-4
second_train_epoch_num = 1
# # large setting
# second_learning_rate = 1e-2
# second_train_epoch_num = 25
# define the recorders
empty_recoder = [[] for _ in range(user_num)]
local_loss, local_acc, local_fs = deepcopy(empty_recoder), deepcopy(empty_recoder), deepcopy(empty_recoder) # local state record
global_loss, global_acc, global_fs = [], [], [] # recorded by server
# define the aggregation weight, i.e., the size of lacal data, average 600
weights = [600, 600, 600, 600, 600, 600, 600, 600, 600, 600]
for t in range(start_iteration, start_iteration+iteration_num):
print(f"Begin the {t}th training round......\n")
model_index = t
path = 'server/W_'+str(model_index)+'_th.h5'
# local training
for i in range(user_num):
# Step(1) initialize local model and load data
local_model = load_model(path)
x_train, y_train, x_test, y_test, y_true = load_client_data(i)
# Step(2) observe and record the state
loss, acc, fs = observe(local_model, x_train, y_train, y_true)
local_loss[i].append(loss)
local_acc[i].append(acc)
local_fs[i].append(fs)
# Step(3) excute local training and save updated local model
local_model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.SGD(second_learning_rate), metrics=['accuracy'])
local_model.fit(x_train, y_train, batch_size=32, epochs=second_train_epoch_num, verbose=0)
local_model.save('users/user_'+str(i)+'/'+str(t+1)+'_th.h5')
print(f"Finish second training for client {i} in the {t}th training round\n")
# Step(4) global aggregation
loss, acc, fs = average_model(user_num, weights, t, "cnn") # CNN on MNIST / Fashion-MNIST / FEMNIST
# loss, acc, fs = average_model(user_num, weights, t, "logistic") # Logistic on MNIST
# loss, acc, fs = average_model(user_num, weights, t, "resnet") # ResNet-18 on MNIST
global_loss.append(loss)
global_acc.append(acc)
global_fs.append(fs)
print(f"The performence of global model is, loss: {loss}; acc: {acc}; fs: {fs}\n")
# save training statues for each clients
for i in range(user_num):
save_csv(local_loss[i], "users/user_"+str(i)+"/local_loss.csv")
save_csv(local_acc[i], "users/user_"+str(i)+"/local_acc.csv")
save_csv(local_fs[i], "users/user_"+str(i)+"/local_fs.csv")
# save training statues for server
save_csv(global_loss, "server/global_loss.csv")
save_csv(global_acc, "server/global_acc.csv")
save_csv(global_fs, "server/global_fs.csv")