forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagenet_test.py
192 lines (150 loc) · 7.1 KB
/
imagenet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import tensorflow as tf
import imagenet_main
tf.logging.set_verbosity(tf.logging.ERROR)
_BATCH_SIZE = 32
_LABEL_CLASSES = 1001
class BaseTest(tf.test.TestCase):
def tensor_shapes_helper(self, resnet_size, with_gpu=False):
"""Checks the tensor shapes after each phase of the ResNet model."""
def reshape(shape):
"""Returns the expected dimensions depending on if a
GPU is being used.
"""
# If a GPU is used for the test, the shape is returned (already in NCHW
# form). When GPU is not used, the shape is converted to NHWC.
if with_gpu:
return shape
return shape[0], shape[2], shape[3], shape[1]
graph = tf.Graph()
with graph.as_default(), self.test_session(
use_gpu=with_gpu, force_gpu=with_gpu):
model = imagenet_main.ImagenetModel(
resnet_size,
data_format='channels_first' if with_gpu else 'channels_last')
inputs = tf.random_uniform([1, 224, 224, 3])
output = model(inputs, training=True)
initial_conv = graph.get_tensor_by_name('initial_conv:0')
max_pool = graph.get_tensor_by_name('initial_max_pool:0')
block_layer1 = graph.get_tensor_by_name('block_layer1:0')
block_layer2 = graph.get_tensor_by_name('block_layer2:0')
block_layer3 = graph.get_tensor_by_name('block_layer3:0')
block_layer4 = graph.get_tensor_by_name('block_layer4:0')
avg_pool = graph.get_tensor_by_name('final_avg_pool:0')
dense = graph.get_tensor_by_name('final_dense:0')
self.assertAllEqual(initial_conv.shape, reshape((1, 64, 112, 112)))
self.assertAllEqual(max_pool.shape, reshape((1, 64, 56, 56)))
# The number of channels after each block depends on whether we're
# using the building_block or the bottleneck_block.
if resnet_size < 50:
self.assertAllEqual(block_layer1.shape, reshape((1, 64, 56, 56)))
self.assertAllEqual(block_layer2.shape, reshape((1, 128, 28, 28)))
self.assertAllEqual(block_layer3.shape, reshape((1, 256, 14, 14)))
self.assertAllEqual(block_layer4.shape, reshape((1, 512, 7, 7)))
self.assertAllEqual(avg_pool.shape, reshape((1, 512, 1, 1)))
else:
self.assertAllEqual(block_layer1.shape, reshape((1, 256, 56, 56)))
self.assertAllEqual(block_layer2.shape, reshape((1, 512, 28, 28)))
self.assertAllEqual(block_layer3.shape, reshape((1, 1024, 14, 14)))
self.assertAllEqual(block_layer4.shape, reshape((1, 2048, 7, 7)))
self.assertAllEqual(avg_pool.shape, reshape((1, 2048, 1, 1)))
self.assertAllEqual(dense.shape, (1, _LABEL_CLASSES))
self.assertAllEqual(output.shape, (1, _LABEL_CLASSES))
def test_tensor_shapes_resnet_18(self):
self.tensor_shapes_helper(18)
def test_tensor_shapes_resnet_34(self):
self.tensor_shapes_helper(34)
def test_tensor_shapes_resnet_50(self):
self.tensor_shapes_helper(50)
def test_tensor_shapes_resnet_101(self):
self.tensor_shapes_helper(101)
def test_tensor_shapes_resnet_152(self):
self.tensor_shapes_helper(152)
def test_tensor_shapes_resnet_200(self):
self.tensor_shapes_helper(200)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_18_with_gpu(self):
self.tensor_shapes_helper(18, True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_34_with_gpu(self):
self.tensor_shapes_helper(34, True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_50_with_gpu(self):
self.tensor_shapes_helper(50, True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_101_with_gpu(self):
self.tensor_shapes_helper(101, True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_152_with_gpu(self):
self.tensor_shapes_helper(152, True)
@unittest.skipUnless(tf.test.is_built_with_cuda(), 'requires GPU')
def test_tensor_shapes_resnet_200_with_gpu(self):
self.tensor_shapes_helper(200, True)
def input_fn(self):
"""Provides random features and labels."""
features = tf.random_uniform([_BATCH_SIZE, 224, 224, 3])
labels = tf.one_hot(
tf.random_uniform(
[_BATCH_SIZE], maxval=_LABEL_CLASSES - 1,
dtype=tf.int32),
_LABEL_CLASSES)
return features, labels
def resnet_model_fn_helper(self, mode):
"""Tests that the EstimatorSpec is given the appropriate arguments."""
tf.train.create_global_step()
features, labels = self.input_fn()
spec = imagenet_main.imagenet_model_fn(
features, labels, mode, {
'resnet_size': 50,
'data_format': 'channels_last',
'batch_size': _BATCH_SIZE,
})
predictions = spec.predictions
self.assertAllEqual(predictions['probabilities'].shape,
(_BATCH_SIZE, _LABEL_CLASSES))
self.assertEqual(predictions['probabilities'].dtype, tf.float32)
self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
self.assertEqual(predictions['classes'].dtype, tf.int64)
if mode != tf.estimator.ModeKeys.PREDICT:
loss = spec.loss
self.assertAllEqual(loss.shape, ())
self.assertEqual(loss.dtype, tf.float32)
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = spec.eval_metric_ops
self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)
def test_resnet_model_fn_train_mode(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.TRAIN)
def test_resnet_model_fn_eval_mode(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.EVAL)
def test_resnet_model_fn_predict_mode(self):
self.resnet_model_fn_helper(tf.estimator.ModeKeys.PREDICT)
def test_imagenetmodel_shape(self):
batch_size = 135
num_classes = 246
model = imagenet_main.ImagenetModel(
50, data_format='channels_last', num_classes=num_classes)
fake_input = tf.random_uniform([batch_size, 224, 224, 3])
output = model(fake_input, training=True)
self.assertAllEqual(output.shape, (batch_size, num_classes))
if __name__ == '__main__':
tf.test.main()