forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10_test.py
123 lines (95 loc) · 4.08 KB
/
cifar10_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tempfile import mkstemp
import numpy as np
import tensorflow as tf
import cifar10_main
tf.logging.set_verbosity(tf.logging.ERROR)
_BATCH_SIZE = 128
_HEIGHT = 32
_WIDTH = 32
_NUM_CHANNELS = 3
class BaseTest(tf.test.TestCase):
def test_dataset_input_fn(self):
fake_data = bytearray()
fake_data.append(7)
for i in range(_NUM_CHANNELS):
for _ in range(_HEIGHT * _WIDTH):
fake_data.append(i)
_, filename = mkstemp(dir=self.get_temp_dir())
data_file = open(filename, 'wb')
data_file.write(fake_data)
data_file.close()
fake_dataset = tf.data.FixedLengthRecordDataset(
filename, cifar10_main._RECORD_BYTES)
fake_dataset = fake_dataset.map(
lambda val: cifar10_main.parse_record(val, False))
image, label = fake_dataset.make_one_shot_iterator().get_next()
self.assertAllEqual(label.shape, (10,))
self.assertAllEqual(image.shape, (_HEIGHT, _WIDTH, _NUM_CHANNELS))
with self.test_session() as sess:
image, label = sess.run([image, label])
self.assertAllEqual(label, np.array([int(i == 7) for i in range(10)]))
for row in image:
for pixel in row:
self.assertAllClose(pixel, np.array([-1.225, 0., 1.225]), rtol=1e-3)
def input_fn(self):
features = tf.random_uniform([_BATCH_SIZE, _HEIGHT, _WIDTH, _NUM_CHANNELS])
labels = tf.random_uniform(
[_BATCH_SIZE], maxval=9, dtype=tf.int32)
return features, tf.one_hot(labels, 10)
def cifar10_model_fn_helper(self, mode):
features, labels = self.input_fn()
spec = cifar10_main.cifar10_model_fn(
features, labels, mode, {
'resnet_size': 32,
'data_format': 'channels_last',
'batch_size': _BATCH_SIZE,
})
predictions = spec.predictions
self.assertAllEqual(predictions['probabilities'].shape,
(_BATCH_SIZE, 10))
self.assertEqual(predictions['probabilities'].dtype, tf.float32)
self.assertAllEqual(predictions['classes'].shape, (_BATCH_SIZE,))
self.assertEqual(predictions['classes'].dtype, tf.int64)
if mode != tf.estimator.ModeKeys.PREDICT:
loss = spec.loss
self.assertAllEqual(loss.shape, ())
self.assertEqual(loss.dtype, tf.float32)
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = spec.eval_metric_ops
self.assertAllEqual(eval_metric_ops['accuracy'][0].shape, ())
self.assertAllEqual(eval_metric_ops['accuracy'][1].shape, ())
self.assertEqual(eval_metric_ops['accuracy'][0].dtype, tf.float32)
self.assertEqual(eval_metric_ops['accuracy'][1].dtype, tf.float32)
def test_cifar10_model_fn_train_mode(self):
self.cifar10_model_fn_helper(tf.estimator.ModeKeys.TRAIN)
def test_cifar10_model_fn_eval_mode(self):
self.cifar10_model_fn_helper(tf.estimator.ModeKeys.EVAL)
def test_cifar10_model_fn_predict_mode(self):
self.cifar10_model_fn_helper(tf.estimator.ModeKeys.PREDICT)
def test_cifar10model_shape(self):
batch_size = 135
num_classes = 246
model = cifar10_main.Cifar10Model(
32, data_format='channels_last', num_classes=num_classes)
fake_input = tf.random_uniform([batch_size, _HEIGHT, _WIDTH, _NUM_CHANNELS])
output = model(fake_input, training=True)
self.assertAllEqual(output.shape, (batch_size, num_classes))
if __name__ == '__main__':
tf.test.main()