forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_eager.py
200 lines (173 loc) · 6.85 KB
/
mnist_eager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MNIST model training with TensorFlow eager execution.
See:
https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html
This program demonstrates training of the convolutional neural network model
defined in mnist.py with eager execution enabled.
If you are not interested in eager execution, you should ignore this file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import time
import tensorflow as tf
import tensorflow.contrib.eager as tfe
import mnist
import dataset
FLAGS = None
def loss(logits, labels):
return tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels))
def compute_accuracy(logits, labels):
predictions = tf.argmax(logits, axis=1, output_type=tf.int64)
labels = tf.cast(labels, tf.int64)
batch_size = int(logits.shape[0])
return tf.reduce_sum(
tf.cast(tf.equal(predictions, labels), dtype=tf.float32)) / batch_size
def train(model, optimizer, dataset, log_interval=None):
"""Trains model on `dataset` using `optimizer`."""
global_step = tf.train.get_or_create_global_step()
start = time.time()
for (batch, (images, labels)) in enumerate(tfe.Iterator(dataset)):
with tf.contrib.summary.record_summaries_every_n_global_steps(10):
# Record the operations used to compute the loss given the input,
# so that the gradient of the loss with respect to the variables
# can be computed.
with tfe.GradientTape() as tape:
logits = model(images, training=True)
loss_value = loss(logits, labels)
tf.contrib.summary.scalar('loss', loss_value)
tf.contrib.summary.scalar('accuracy', compute_accuracy(logits, labels))
grads = tape.gradient(loss_value, model.variables)
optimizer.apply_gradients(
zip(grads, model.variables), global_step=global_step)
if log_interval and batch % log_interval == 0:
rate = log_interval / (time.time() - start)
print('Step #%d\tLoss: %.6f (%d steps/sec)' % (batch, loss_value, rate))
start = time.time()
def test(model, dataset):
"""Perform an evaluation of `model` on the examples from `dataset`."""
avg_loss = tfe.metrics.Mean('loss')
accuracy = tfe.metrics.Accuracy('accuracy')
for (images, labels) in tfe.Iterator(dataset):
logits = model(images, training=False)
avg_loss(loss(logits, labels))
accuracy(
tf.argmax(logits, axis=1, output_type=tf.int64),
tf.cast(labels, tf.int64))
print('Test set: Average loss: %.4f, Accuracy: %4f%%\n' %
(avg_loss.result(), 100 * accuracy.result()))
with tf.contrib.summary.always_record_summaries():
tf.contrib.summary.scalar('loss', avg_loss.result())
tf.contrib.summary.scalar('accuracy', accuracy.result())
def main(_):
tfe.enable_eager_execution()
(device, data_format) = ('/gpu:0', 'channels_first')
if FLAGS.no_gpu or tfe.num_gpus() <= 0:
(device, data_format) = ('/cpu:0', 'channels_last')
print('Using device %s, and data format %s.' % (device, data_format))
# Load the datasets
train_ds = dataset.train(FLAGS.data_dir).shuffle(60000).batch(
FLAGS.batch_size)
test_ds = dataset.test(FLAGS.data_dir).batch(FLAGS.batch_size)
# Create the model and optimizer
model = mnist.Model(data_format)
optimizer = tf.train.MomentumOptimizer(FLAGS.lr, FLAGS.momentum)
if FLAGS.output_dir:
# Create directories to which summaries will be written
# tensorboard --logdir=<output_dir>
# can then be used to see the recorded summaries.
train_dir = os.path.join(FLAGS.output_dir, 'train')
test_dir = os.path.join(FLAGS.output_dir, 'eval')
tf.gfile.MakeDirs(FLAGS.output_dir)
else:
train_dir = None
test_dir = None
summary_writer = tf.contrib.summary.create_file_writer(
train_dir, flush_millis=10000)
test_summary_writer = tf.contrib.summary.create_file_writer(
test_dir, flush_millis=10000, name='test')
checkpoint_prefix = os.path.join(FLAGS.checkpoint_dir, 'ckpt')
# Train and evaluate for 11 epochs.
with tf.device(device):
for epoch in range(1, 11):
with tfe.restore_variables_on_create(
tf.train.latest_checkpoint(FLAGS.checkpoint_dir)):
global_step = tf.train.get_or_create_global_step()
start = time.time()
with summary_writer.as_default():
train(model, optimizer, train_ds, FLAGS.log_interval)
end = time.time()
print('\nTrain time for epoch #%d (global step %d): %f' %
(epoch, global_step.numpy(), end - start))
with test_summary_writer.as_default():
test(model, test_ds)
all_variables = (model.variables + optimizer.variables() + [global_step])
tfe.Saver(all_variables).save(checkpoint_prefix, global_step=global_step)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir',
type=str,
default='/tmp/tensorflow/mnist/input_data',
help='Directory for storing input data')
parser.add_argument(
'--batch_size',
type=int,
default=100,
metavar='N',
help='input batch size for training (default: 100)')
parser.add_argument(
'--log_interval',
type=int,
default=10,
metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument(
'--output_dir',
type=str,
default=None,
metavar='N',
help='Directory to write TensorBoard summaries')
parser.add_argument(
'--checkpoint_dir',
type=str,
default='/tmp/tensorflow/mnist/checkpoints/',
metavar='N',
help='Directory to save checkpoints in (once per epoch)')
parser.add_argument(
'--lr',
type=float,
default=0.01,
metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument(
'--momentum',
type=float,
default=0.5,
metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument(
'--no_gpu',
action='store_true',
default=False,
help='disables GPU usage even if a GPU is available')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)