-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdata_processing.py
249 lines (205 loc) · 8 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# data_processing.py
"""Tools for lifting and scaling data.
* lift(): transform GEMS variables to learning variables.
* unlift(): transform learning variables to GEMS variables.
* scale(): scale lifted data to the bounds set by config.SCALE_TO.
* unscale(): unscale scaled data to their original bounds.
"""
import logging
import numpy as np
import config
import chemistry_conversions as chem
# Lifting Transformation =====================================================
def lift(data):
"""Transform GEMS data to the lifted variables,
[p, v_x, v_y, T, Y_CH4, Y_O2, Y_H2O, Y_CO2]
-->
[p, v_x, v_y, T, xi, c_CH4, c_O2, c_H2O, c_CO2].
Parameters
----------
data : (NUM_GEMSVARS*dof, num_snapshots) ndarray
Unscaled, untransformed GEMS data.
Returns
-------
lifted_data : (NUM_ROMVARS*dof, num_snapshots) ndarray
Nonscaled, lifted data.
"""
# Unpack the GEMS data.
p, vx, vy, T, Y_CH4, Y_O2, Y_H2O, Y_CO2 = np.split(data,
config.NUM_GEMSVARS)
masses = [Y_CH4, Y_O2, Y_H2O, Y_CO2]
# Compute specific volume.
xi = chem.specific_volume(p, T, masses)
# Compute molar concentrations.
molars = chem.mass2molar(masses, xi)
# Put the lifted data together.
return np.concatenate([p, vx, vy, T, xi] + molars)
def unlift(data):
"""Transform the learning variables back to the GEMS variables,
[p, v_x, v_y, T, xi, c_CH4, c_O2, c_H2O, c_CO2]
-->
[p, v_x, v_y, T, Y_CH4, Y_O2, Y_H2O, Y_CO2]
Parameters
----------
data : (NUM_ROMVARS*dof, num_snapshots) ndarray
Nonscaled, lifted data.
Returns
-------
unlifed_data : (NUM_GEMSVARS*dof, num_snapshots) ndarray
Unscaled, untransformed GEMS data.
"""
# Unpack the lifted data.
p, vx, vy, T, xi, c_CH4, c_O2, c_H2O, c_CO2 = np.split(data,
config.NUM_ROMVARS)
molars = [c_CH4, c_O2, c_H2O, c_CO2]
# Compute mass fractions.
masses = chem.molar2mass(molars, xi)
# Put the unlifted data together.
return np.concatenate([p, vx, vy, T] + masses)
# Variable getting / setting ==================================================
def _varslice(varname, datasize):
"""Get the slice where a specified variable is found in the given data.
Parameters
----------
datasize : int
Number of rows (2D) or entries (1D) of data, e.g., data.shape[0].
Must be a multiple of config.NUM_ROMVARS.
varname : str
An entry of config.ROM_VARIABLES indicating the variable to get/set.
Returns
-------
s : slice
A slice object for accessing the specified variable
"""
varindex = config.ROM_VARIABLES.index(varname)
chunksize, remainder = divmod(datasize, config.NUM_ROMVARS)
if remainder != 0:
raise ValueError("data cannot be split evenly"
f" into {config.NUM_ROMVARS} chunks")
return slice(varindex*chunksize, (varindex+1)*chunksize)
def getvar(varname, data):
"""Extract the specified variable from the given data."""
return data[_varslice(varname, data.shape[0])]
# MaxAbs scaling / unscaling ==================================================
def scale(data, scales=None, variables=None):
"""Scale data *IN-PLACE* by variable, meaning every chunk of DOF
consecutive rows is scaled separately. Thus, DOF / data.shape[0] must be
an integer.
If `scales` is provided, variable i is scaled as
new_variable[i] = raw_variable[i] / scales[i].
Otherwise, the scaling is learned from the data.
Parameters
----------
data : (num_variables*DOF, num_snapshots) ndarray
Dataset to be scaled.
scales : (NUM_ROMVARS,) ndarray or None
Scaling factors. If None, learn the factors from the data:
scales[i] = max(abs(raw_variable[i])).
variables : list(str)
List of variables to scale, a subset of config.ROM_VARIABLES.
This argument can only be given when `scales` is provided as well.
This also requires `data.shape[0]` to be divisible by `len(variables)`.
Returns
-------
scaled_data : (num_variables*DOF, num_snapshots)
Scaled data.
scales : (NUM_ROMVARS,) ndarray
Dilation factors used to scale the data.
"""
# Determine whether learning the scaling transformation is needed.
learning = (scales is None)
if learning:
if variables is not None:
raise ValueError("scale=None only valid for variables=None")
scales = np.zeros(config.NUM_ROMVARS, dtype=np.float)
else:
# Validate the scales.
_shape = (config.NUM_ROMVARS,)
if scales.shape != _shape:
raise ValueError(f"`scales` must have shape {_shape}")
# Parse the variables.
if variables is None:
variables = config.ROM_VARIABLES
elif isinstance(variables, str):
variables = [variables]
varindices = [config.ROM_VARIABLES.index(v) for v in variables]
# Make sure the data can be split correctly by variable.
nchunks = len(variables)
chunksize, remainder = divmod(data.shape[0], nchunks)
if remainder != 0:
raise ValueError("data to scale cannot be split"
f" evenly into {nchunks} chunks")
# Do the scaling by variable.
for i,vidx in enumerate(varindices):
s = slice(i*chunksize,(i+1)*chunksize)
if learning:
assert i == vidx
scales[vidx] = np.abs(data[s]).max()
data[s] /= scales[vidx]
# Report info on the learned scaling.
if learning:
sep = '|'.join(['-'*12]*2)
report = f"""Learned new scaling
MaxAbs
{sep}
Pressure {scales[0]:<12.3e}
{sep}
x-velocity {scales[1]:<12.3f}
{sep}
y-velocity {scales[2]:<12.3f}
{sep}
Temperature {scales[3]:<12.3e}
{sep}
Specific Volume {scales[4]:<12.3f}
{sep}
CH4 molar {scales[5]:<12.3f}
{sep}
O2 molar {scales[6]:<12.3f}
{sep}
H2O molar {scales[8]:<12.3f}
{sep}
CO2 molar {scales[7]:<12.3f}
{sep}"""
logging.info(report)
return data, scales
def unscale(data, scales, variables=None):
"""Unscale data *IN-PLACE* by variable, meaning every chunk of DOF
consecutive rows is unscaled separately. Thus, DOF / data.shape[0] must be
an integer. Variable i is assumed to have been previously scaled by
variable[i] = old_variable[i] / scales[i].
Parameters
----------
data : (num_variables*dof, num_snapshots) ndarray
Dataset to be unscaled.
scales : (NUM_ROMVARS,) ndarray
Shifting and scaling factors. UNscaling is given by
new_variable[i] = variable[i] * scales[i].
variables : list(str)
List of variables to scale, a subset of config.ROM_VARIABLES.
This requires `data.shape[0]` to be divisible by `len(variables)`.
Returns
-------
unscaled_data : (num_variables*dof, num_snapshots)
Unscaled data.
"""
# Validate the scales.
_shape = (config.NUM_ROMVARS,)
if scales.shape != _shape:
raise ValueError(f"`scales` must have shape {_shape}")
# Parse the variables.
if variables is None:
variables = config.ROM_VARIABLES
elif isinstance(variables, str):
variables = [variables]
varindices = [config.ROM_VARIABLES.index(v) for v in variables]
# Make sure the data can be split correctly by variable.
nchunks = len(variables)
chunksize, remainder = divmod(data.shape[0], nchunks)
if remainder != 0:
raise ValueError("data to unscale cannot be split"
f" evenly into {nchunks} chunks")
# Do the unscaling by variable.
for i,vidx in enumerate(varindices):
s = slice(i*chunksize,(i+1)*chunksize)
data[s] *= scales[vidx]
return data