OpenMixup provides mixup benchmarks on supervised learning on various tasks. Configs, experiments results, training logs will be updated as soon as possible. More mixup variants will be supported!
Notice that * denotes open-source arxiv pre-prints reproduced by us, and 📖 denotes original results reproduced by official implementations. We modified the original AttentiveMix by using pre-trained R-18 and sampling openmixup/tools/summary/
.
Supported sample mixing policies
- Mixup [ICLR 2018]
- CutMix [ICCV 2019]
- ManifoldMix [ICML 2019]
- FMix [Arxiv 2020]
- AttentiveMix [ICASSP 2020]
- SaliencyMix [ICLR 2021]
- PuzzleMix [ICML 2020]
- Co-Mixup [ICLR 2021]
- GridMix [Pattern Recognition 2021]
- SuperMix [CVPR 2021]
- ResizeMix [Arxiv 2020]
- AutoMix [Arxiv 2021]
- SAMix [Arxiv 2021]
- AlignMix [CVPR2022]
- RecursiveMix [Arxiv 2022]
Supported label mixing policies
We provide three popular benchmarks on ImageNet-1k based on various backbones. We also provide results on TinyImageNet-200 for fast training. The median of top-1 accuracy in the last 5/10 training epochs for 100/300 epochs is reported for ResNet variants, and the best top-1 accuracy is reported for DeiT training settings.
Note
- These benchmarks follow PyTorch-style settings, training 100 and 300 epochs on ImageNet-1k.
- Please run configs in
configs/classification/imagenet/mixups/basic
, and modify epochs and mix_mode inauto_train_in_mixups.py
to generate proper configs by yourself. - Notice that 📖 denotes original results reproduced by official implementations.
Backbones | ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101 | ResNeXt-101 |
---|---|---|---|---|---|
Epochs | 100 epochs | 100 epochs | 100 epochs | 100 epochs | 100 epochs |
Vanilla | 70.04 | 73.85 | 76.83 | 78.18 | 78.71 |
MixUp | 69.98 | 73.97 | 77.12 | 78.97 | 79.98 |
CutMix | 68.95 | 73.58 | 77.17 | 78.96 | 80.42 |
ManifoldMix | 69.98 | 73.98 | 77.01 | 79.02 | 79.93 |
SaliencyMix | 69.16 | 73.56 | 77.14 | 79.32 | 80.27 |
AttentiveMix+ | 68.57 | - | 77.28 | - | - |
FMix* | 69.96 | 74.08 | 77.19 | 79.09 | 80.06 |
PuzzleMix | 70.12 | 74.26 | 77.54 | 79.43 | 80.53 |
Co-Mixup 📖 | - | - | 77.60 | - | - |
SuperMix 📖 | - | - | 77.63 | - | - |
ResizeMix* | 69.50 | 73.88 | 77.42 | 79.27 | 80.55 |
AlignMix 📖 | - | - | 78.00 | - | - |
Grafting 📖 | - | - | 77.74 | - | - |
AutoMix* | 70.50 | 74.52 | 77.91 | 79.87 | 80.89 |
SAMix* | 70.83 | 74.95 | 78.06 | 80.05 | 80.98 |
Backbones | ResNet-18 | ResNet-34 | ResNet-50 | ResNet-101 |
---|---|---|---|---|
Epochs | 300 epochs | 300 epochs | 300 epochs | 300 epochs |
Vanilla | 71.83 | 75.29 | 77.35 | 78.91 |
MixUp | 71.72 | 75.73 | 78.44 | 80.60 |
CutMix | 71.01 | 75.16 | 78.69 | 80.59 |
ManifoldMix | 71.73 | 75.44 | 78.21 | 80.64 |
SaliencyMix | 70.21 | 75.01 | 78.46 | 80.45 |
FMix* | 70.30 | 75.12 | 78.51 | 80.20 |
PuzzleMix | 71.64 | 75.84 | 78.86 | 80.67 |
ResizeMix* | 71.32 | 75.64 | 78.91 | 80.52 |
AlignMix 📖 | - | - | 79.32 | - |
AutoMix* | 72.05 | 76.10 | 79.25 | 80.98 |
SAMix* | 72.27 | 76.28 | 79.39 | 81.10 |
Note
- This benchmark follows timm RSB A2/A3 settings, training 300/100 epochs with the BCE loss on ImageNet-1k. RSB A3 is a fast
- Please run configs in
configs/classification/imagenet/mixups/rsb_a2
andconfigs/classification/imagenet/mixups/rsb_a3
.
Backbones | ResNet-50 | ResNet-50 | Eff-B0 | Eff-B0 | Mob.V2 1x | Mob.V2 1x |
---|---|---|---|---|---|---|
Settings | A2 | A3 | A2 | A3 | A2 | A3 |
RSB | 79.80 | 78.08 | 77.26 | 74.02 | 72.87 | 69.86 |
MixUp | 77.66 | 77.19 | 73.87 | 72.78 | 70.17 | |
CutMix | 79.38 | 77.62 | 77.24 | 73.46 | 72.23 | 69.62 |
ManifoldMix | 79.47 | 77.78 | 77.22 | 73.83 | 72.34 | 70.05 |
SaliencyMix | 79.42 | 77.93 | 77.67 | 73.42 | 72.07 | 69.69 |
FMix* | 79.05 | 77.76 | 77.33 | 73.71 | 72.79 | 70.10 |
PuzzleMix | 79.78 | 78.02 | 77.35 | 74.10 | 72.85 | 70.04 |
ResizeMix* | 79.74 | 77.85 | 77.27 | 73.67 | 72.50 | 69.94 |
AutoMix* | 78.44 | 77.58 | 74.61 | 73.19 | 71.16 | |
SAMix | 78.64 | 77.69 | 75.28 | 73.42 | 71.24 |
Note
- Since recently proposed transformer-based archetectures adopt mixups as parts of enssential augmentations, we report the mean of the best performance in trivals as their original paper. Notice that the performances of transformer-based archetectures are more difficult to reproduce than ResNet variants.
- Please run configs in
configs/classification/imagenet/deit/
,configs/classification/imagenet/swin/
, andconfigs/classification/imagenet/convnext/
. - Notice that 📖 denotes original results reproduced by official implementations.
Methods | DeiT-Small | Swin-Tiny | ConvNeXt-Tiny |
---|---|---|---|
Vanilla | 73.57 | ||
DeiT | 79.80 | 81.28 | 82.10 |
MixUp | 77.72 | 80.88 | |
CutMix | 79.54 | 81.57 | |
ManifoldMix | - | - | 80.57 |
AttentiveMix+ | 77.63 | 81.14 | |
SaliencyMix | 78.70 | 81.33 | |
PuzzleMix | 79.73 | 81.48 | |
FMix | 77.37 | 81.04 | |
ResizeMix | 76.79 | 81.64 | |
TransMix 📖 | 80.70 | 81.80 | - |
AutoMix | 80.78 | 82.28 | |
SAMix | 80.94 | 82.35 |
Note
- This benchmark largely based on CIFAR settings, training 400 epochs on TinyImageNet-200.
- Please run configs in
configs/classification/tiny_imagenet/mixups/
. - Notice that 📖 denotes original results reproduced by official implementations.
Backbones | ResNet-18 | ResNeXt-50 |
---|---|---|
Vanilla | 61.68 | 65.04 |
MixUp | 63.86 | 66.36 |
CutMix | 65.53 | 66.47 |
ManifoldMix | 64.15 | 67.30 |
SaliencyMix | 64.60 | 66.55 |
AttentiveMix+ | 64.85 | 67.42 |
FMix* | 63.47 | 65.08 |
GridMix 📖 | - | 69.12 |
PuzzleMix | 65.81 | 67.83 |
Co-Mixup 📖 | 65.92 | 68.02 |
ResizeMix* | 63.74 | 65.87 |
Grafting 📖 | 64.84 | - |
AlignMix 📖 | 66.87 | - |
AutoMix* | 67.33 | 70.72 |
SAMix* | 68.89 | 72.18 |
CIFAR benchmarks based on ResNet variants. We report the median of top-1 accuracy in the last 10 training epochs.
Note
- This benchmark follows CutMix settings, training 200/400/800/1200 epochs on CIFAR-10.
- Please run configs in
configs/classification/cifar10/mixups/
. - Notice that 📖 denotes original results reproduced by official implementations.
Backbones | ResNet-18 | ResNet-18 | ResNet-18 | ResNet-18 |
---|---|---|---|---|
Epochs | 200 epochs | 400 epochs | 800 epochs | 1200 epochs |
Vanilla | 94.87 | 95.10 | 95.50 | 95.59 |
MixUp | 95.70 | 96.55 | 96.62 | 96.84 |
CutMix | 96.11 | 96.13 | 96.68 | 96.56 |
ManifoldMix | 96.04 | 96.57 | 96.71 | 97.02 |
SaliencyMix | 96.05 | 96.42 | 96.20 | 96.18 |
AttentiveMix+ | 96.21 | 96.45 | 96.63 | 96.49 |
FMix* | 96.17 | 96.53 | 96.18 | 96.01 |
PuzzleMix | 96.42 | 96.87 | 97.10 | 97.13 |
ResizeMix* | 96.16 | 96.91 | 96.76 | 97.04 |
AlignMix 📖 | 97.05 | |||
AutoMix* | 96.59 | 97.08 | 97.34 | 97.30 |
SAMix* | 96.67 | 97.16 | 97.50 | 97.41 |
Backbones | ResNeXt-50 | ResNeXt-50 | ResNeXt-50 | ResNeXt-50 |
---|---|---|---|---|
Epochs | 200 epochs | 400 epochs | 800 epochs | 1200 epochs |
Vanilla | 95.92 | 95.81 | 96.23 | 96.26 |
MixUp | 96.88 | 97.19 | 97.30 | 97.33 |
CutMix | 96.78 | 96.54 | 96.60 | 96.35 |
ManifoldMix | 96.97 | 97.39 | 97.33 | 97.36 |
SaliencyMix | 96.65 | 96.89 | 96.70 | 96.60 |
AttentiveMix+ | 96.84 | 96.91 | 96.87 | 96.62 |
FMix* | 96.72 | 96.76 | 96.76 | 96.10 |
PuzzleMix | 97.05 | 97.24 | 97.37 | 97.34 |
ResizeMix* | 97.02 | 97.38 | 97.21 | 97.36 |
AlignMix 📖 | ||||
AutoMix* | 97.19 | 97.42 | 97.65 | 97.51 |
SAMix* | 97.23 | 97.51 | 97.93 | 97.74 |
Note
- This benchmark follows CutMix settings, training 200/400/800/1200 epochs on CIFAR-100. Please use wd=5e-4 for cutting-based methods (CutMix, AttributeMix+, SaliencyMix, FMix, ResizeMix) based on ResNeXt-50 for better performances.
- Please run configs in
configs/classification/cifar100/mixups/
. - Notice that 📖 denotes original results reproduced by official implementations.
Backbones | ResNet-18 | ResNet-18 | ResNet-18 | ResNet-18 |
---|---|---|---|---|
Epoch | 200 epochs | 400 epochs | 800 epochs | 1200 epochs |
Vanilla | 76.42 | 77.73 | 78.04 | 78.55 |
MixUp | 78.52 | 79.34 | 79.12 | 79.24 |
CutMix | 79.45 | 79.58 | 78.17 | 78.29 |
ManifoldMix | 79.18 | 80.18 | 80.35 | 80.21 |
SaliencyMix | 79.75 | 79.64 | 79.12 | 77.66 |
AttentiveMix+ | 79.62 | 80.14 | 78.91 | 78.41 |
FMix* | 78.91 | 79.91 | 79.69 | 79.50 |
PuzzleMix | 79.96 | 80.82 | 81.13 | 81.10 |
Co-Mixup 📖 | 80.01 | 80.87 | 81.17 | 81.18 |
ResizeMix* | 79.56 | 79.19 | 80.01 | 79.23 |
AlignMix 📖 | 81.71 | |||
AutoMix* | 80.12 | 81.78 | 82.04 | 81.95 |
SAMix* | 81.21 | 81.97 | 82.30 | 82.41 |
Backbones | ResNeXt-50 | ResNeXt-50 | ResNeXt-50 | ResNeXt-50 | WRN-28-8 |
---|---|---|---|---|---|
Epoch | 200 epochs | 400 epochs | 800 epochs | 1200 epochs | 400 epochs |
Vanilla | 79.37 | 80.24 | 81.09 | 81.32 | 81.63 |
MixUp | 81.18 | 82.54 | 82.10 | 81.77 | 82.82 |
CutMix | 81.52 | 78.52 | 78.32 | 77.17 | 84.45 |
ManifoldMix | 81.59 | 82.56 | 82.88 | 83.28 | 83.24 |
SaliencyMix | 80.72 | 78.63 | 78.77 | 77.51 | 84.35 |
AttentiveMix+ | 81.69 | 81.53 | 80.54 | 79.60 | 84.34 |
FMix* | 79.87 | 78.99 | 79.02 | 78.24 | 84.21 |
PuzzleMix | 81.69 | 82.84 | 82.85 | 82.93 | 85.02 |
Co-Mixup 📖 | 81.73 | 82.88 | 82.91 | 82.97 | 85.05 |
ResizeMix* | 79.56 | 79.78 | 80.35 | 79.73 | 84.87 |
AlignMix 📖 | |||||
AutoMix* | 82.84 | 83.32 | 83.64 | 83.80 | 85.18 |
SAMix* | 83.81 | 84.27 | 84.42 | 84.31 | 85.50 |
We further provide benchmarks on downstream classification scenarios. We report the median of top-1 accuracy in the last 5/10 training epochs for 100/200 epochs.
Note
- These benchmarks follow transfer learning settings on fine-grained datasets. use PyTorch pre-trained models as initialization and train 200 epochs on CUB-200 and FGVC-Aircraft.
- Please run configs in
configs/classification/aircrafts/
andconfigs/classification/cub200/
.
Datasets | CUB-200 | CUB-200 | Aircraft | Aircraft |
---|---|---|---|---|
Backbones | ResNet-18 | ResNeXt-50 | ResNet-18 | ResNeXt-50 |
Vanilla | 77.68 | 83.01 | 80.23 | 85.10 |
MixUp | 78.39 | 84.58 | 79.52 | 85.18 |
CutMix | 78.40 | 85.68 | 78.84 | 84.55 |
ManifoldMix | 79.76 | 86.38 | 80.68 | 86.60 |
SaliencyMix | 77.95 | 83.29 | 80.02 | 84.31 |
FMix* | 77.28 | 84.06 | 79.36 | 86.23 |
PuzzleMix | 78.63 | 84.51 | 80.76 | 86.23 |
ResizeMix* | 78.50 | 84.77 | 78.10 | 84.08 |
AutoMix* | 79.87 | 86.56 | 81.37 | 86.72 |
SAMix* | 81.11 | 86.83 | 82.15 | 86.80 |
Note
- These benchmarks largely based on PyTorch-style ImageNet-1k training settings, training 100 epochs from stretch on iNat2017/2018 and Place205.
- Please run configs in
configs/classification/inaturalist2017/
,configs/classification/inaturalist2018/
, andconfigs/classification/place205/
.
Datasets | iNat2017 | iNat2017 | iNat2018 | iNat2018 |
---|---|---|---|---|
Backbones | ResNet-50 | ResNeXt-101 | ResNet-50 | ResNeXt-101 |
Vanilla | 60.23 | 63.70 | 62.53 | 66.94 |
MixUp | 61.22 | 66.27 | 62.69 | 67.56 |
CutMix | 62.34 | 67.59 | 63.91 | 69.75 |
ManifoldMix | 61.47 | 66.08 | 63.46 | 69.30 |
SaliencyMix | 62.51 | 67.20 | 64.27 | 70.01 |
FMix* | 61.90 | 66.64 | 63.71 | 69.46 |
PuzzleMix | 62.66 | 67.72 | 64.36 | 70.12 |
ResizeMix* | 62.29 | 66.82 | 64.12 | 69.30 |
AutoMix* | 63.08 | 68.03 | 64.73 | 70.49 |
SAMix* | 63.32 | 68.26 | 64.84 | 70.54 |
Datasets | Place205 | Place205 |
---|---|---|
Backbones | ResNet-18 | ResNet-50 |
Vanilla | 59.63 | 63.10 |
MixUp | 59.33 | 63.01 |
CutMix | 59.21 | 63.75 |
ManifoldMix | 59.46 | 63.23 |
SaliencyMix | 59.50 | 63.33 |
FMix* | 59.51 | 63.63 |
PuzzleMix | 59.62 | 63.91 |
ResizeMix* | 59.66 | 63.88 |
AutoMix* | 59.74 | 64.06 |
SAMix* | 59.86 | 64.27 |