-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpooling_utils.py
78 lines (66 loc) · 2.56 KB
/
pooling_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
# Copyright (C) 2020 Unbabel
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def average_pooling(
tokens: torch.Tensor,
embeddings: torch.Tensor,
mask: torch.Tensor,
padding_index: int,
) -> torch.Tensor:
"""Average pooling method.
Args:
tokens (torch.Tensor): Word ids [batch_size x seq_length]
embeddings (torch.Tensor): Word embeddings [batch_size x seq_length x
hidden_size]
mask (torch.Tensor): Padding mask [batch_size x seq_length]
padding_index (torch.Tensor): Padding value.
Return:
torch.Tensor: Sentence embedding
"""
wordemb = mask_fill(0.0, tokens, embeddings, padding_index)
sentemb = torch.sum(wordemb, 1)
sum_mask = mask.unsqueeze(-1).expand(embeddings.size()).float().sum(1)
return sentemb / sum_mask
def max_pooling(
tokens: torch.Tensor, embeddings: torch.Tensor, padding_index: int
) -> torch.Tensor:
"""Max pooling method.
Args:
tokens (torch.Tensor): Word ids [batch_size x seq_length]
embeddings (torch.Tensor): Word embeddings [batch_size x seq_length x
hidden_size]
padding_index (int):Padding value.
Return:
torch.Tensor: Sentence embedding
"""
return mask_fill(float("-inf"), tokens, embeddings, padding_index).max(dim=1)[0]
def mask_fill(
fill_value: float,
tokens: torch.Tensor,
embeddings: torch.Tensor,
padding_index: int,
) -> torch.Tensor:
"""Method that masks embeddings representing padded elements.
Args:
fill_value (float): the value to fill the embeddings belonging to padded tokens
tokens (torch.Tensor): Word ids [batch_size x seq_length]
embeddings (torch.Tensor): Word embeddings [batch_size x seq_length x
hidden_size]
padding_index (int):Padding value.
Return:
torch.Tensor: Word embeddings [batch_size x seq_length x hidden_size]
"""
padding_mask = tokens.eq(padding_index).unsqueeze(-1)
return embeddings.float().masked_fill_(padding_mask, fill_value).type_as(embeddings)