-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathMetrics.jl
141 lines (119 loc) · 4.41 KB
/
Metrics.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
using StaticArrays
# utilities
Base.@propagate_inbounds @inline fSV(f,n) = SA[ntuple(f,n)...]
Base.@propagate_inbounds @inline @fastmath fsum(f,n) = sum(ntuple(f,n))
norm2(x) = √(x'*x)
Base.@propagate_inbounds @fastmath function permute(f,i)
j,k = i%3+1,(i+1)%3+1
f(j,k)-f(k,j)
end
×(a,b) = fSV(i->permute((j,k)->a[j]*b[k],i),3)
"""
ke(I::CartesianIndex,u,U=0)
Compute ``½∥𝐮-𝐔∥²`` at center of cell `I` where `U` can be used
to subtract a background flow (by default, `U=0`).
"""
ke(I::CartesianIndex{m},u,U=fSV(zero,m)) where m = 0.125fsum(m) do i
abs2(@inbounds(u[I,i]+u[I+δ(i,I),i]-2U[i]))
end
"""
∂(i,j,I,u)
Compute ``∂uᵢ/∂xⱼ`` at center of cell `I`. Cross terms are computed
less accurately than inline terms because of the staggered grid.
"""
@fastmath @inline ∂(i,j,I,u) = (i==j ? ∂(i,I,u) :
@inbounds(u[I+δ(j,I),i]+u[I+δ(j,I)+δ(i,I),i]
-u[I-δ(j,I),i]-u[I-δ(j,I)+δ(i,I),i])/4)
using LinearAlgebra: eigvals, Hermitian
"""
λ₂(I::CartesianIndex{3},u)
λ₂ is a deformation tensor metric to identify vortex cores.
See [https://en.wikipedia.org/wiki/Lambda2_method](https://en.wikipedia.org/wiki/Lambda2_method) and
Jeong, J., & Hussain, F., doi:[10.1017/S0022112095000462](https://doi.org/10.1017/S0022112095000462)
"""
function λ₂(I::CartesianIndex{3},u)
J = @SMatrix [∂(i,j,I,u) for i ∈ 1:3, j ∈ 1:3]
S,Ω = (J+J')/2,(J-J')/2
eigvals(Hermitian(S^2+Ω^2))[2]
end
"""
curl(i,I,u)
Compute component `i` of ``𝛁×𝐮`` at the __edge__ of cell `I`.
For example `curl(3,CartesianIndex(2,2,2),u)` will compute
`ω₃(x=1.5,y=1.5,z=2)` as this edge produces the highest
accuracy for this mix of cross derivatives on a staggered grid.
"""
curl(i,I,u) = permute((j,k)->∂(j,CI(I,k),u), i)
"""
ω(I::CartesianIndex{3},u)
Compute 3-vector ``𝛚=𝛁×𝐮`` at the center of cell `I`.
"""
ω(I::CartesianIndex{3},u) = fSV(i->permute((j,k)->∂(k,j,I,u),i),3)
"""
ω_mag(I::CartesianIndex{3},u)
Compute ``∥𝛚∥`` at the center of cell `I`.
"""
ω_mag(I::CartesianIndex{3},u) = norm2(ω(I,u))
"""
ω_θ(I::CartesianIndex{3},z,center,u)
Compute ``𝛚⋅𝛉`` at the center of cell `I` where ``𝛉`` is the azimuth
direction around vector `z` passing through `center`.
"""
function ω_θ(I::CartesianIndex{3},z,center,u)
θ = z × (loc(0,I,eltype(u))-SVector{3}(center))
n = norm2(θ)
n<=eps(n) ? 0. : θ'*ω(I,u) / n
end
"""
nds(body,x,t)
BDIM-masked surface normal.
"""
@inline function nds(body,x,t)
d,n,_ = measure(body,x,t,fastd²=1)
n*WaterLily.kern(clamp(d,-1,1))
end
"""
pressure_force(sim::Simulation)
Compute the pressure force on an immersed body.
"""
pressure_force(sim) = pressure_force(sim.flow,sim.body)
pressure_force(flow,body) = pressure_force(flow.p,flow.f,body,time(flow))
function pressure_force(p,df,body,t=0,T=promote_type(Float64,eltype(p)))
df .= zero(eltype(p))
@loop df[I,:] .= p[I]*nds(body,loc(0,I,T),t) over I ∈ inside(p)
sum(T,df,dims=ntuple(i->i,ndims(p)))[:] |> Array
end
"""
∇²u(I::CartesianIndex,u)
Rate-of-strain tensor.
"""
∇²u(I::CartesianIndex{2},u) = @SMatrix [∂(i,j,I,u)+∂(j,i,I,u) for i ∈ 1:2, j ∈ 1:2]
∇²u(I::CartesianIndex{3},u) = @SMatrix [∂(i,j,I,u)+∂(j,i,I,u) for i ∈ 1:3, j ∈ 1:3]
"""
viscous_force(sim::Simulation)
Compute the viscous force on an immersed body.
"""
viscous_force(sim) = viscous_force(sim.flow,sim.body)
viscous_force(flow,body) = viscous_force(flow.u,flow.ν,flow.f,body,time(flow))
function viscous_force(u,ν,df,body,t=0,T=promote_type(Float64,eltype(u)))
df .= zero(eltype(u))
@loop df[I,:] .= -ν*∇²u(I,u)*nds(body,loc(0,I,T),t) over I ∈ inside_u(u)
sum(T,df,dims=ntuple(i->i,ndims(u)-1))[:] |> Array
end
"""
total_force(sim::Simulation)
Compute the total force on an immersed body.
"""
total_force(sim) = pressure_force(sim) .+ viscous_force(sim)
using LinearAlgebra: cross
"""
pressure_moment(x₀,sim::Simulation)
Computes the pressure moment on an immersed body relative to point x₀.
"""
pressure_moment(x₀,sim) = pressure_moment(x₀,sim.flow,sim.body)
pressure_moment(x₀,flow,body) = pressure_moment(x₀,flow.p,flow.f,body,time(flow))
function pressure_moment(x₀,p,df,body,t=0,T=promote_type(Float64,eltype(p)))
df .= zero(eltype(p))
@loop df[I,:] .= p[I]*cross(loc(0,I,T)-x₀,nds(body,loc(0,I,T),t)) over I ∈ inside(p)
sum(T,df,dims=ntuple(i->i,ndims(p)))[:] |> Array
end