-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathutil.py
163 lines (132 loc) · 4.66 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from scipy.spatial.transform import Rotation
def euler2mat(angle):
"""
convert euler angles [B, 3] to rotation matrix, reference: https://github.com/ClementPinard/SfmLearner-Pytorch/blob/master/inverse_warp.py
:param angle: rx, ry, rz [B, 3]
:return: rotation matrix [B, 3, 3]
"""
B = angle.size(0)
x, y, z = angle[:,0], angle[:,1], angle[:,2]
cosz = torch.cos(z)
sinz = torch.sin(z)
zeros = z.detach()*0
ones = zeros.detach()+1
zmat = torch.stack([cosz, -sinz, zeros,
sinz, cosz, zeros,
zeros, zeros, ones], dim=1).reshape(B, 3, 3)
cosy = torch.cos(y)
siny = torch.sin(y)
ymat = torch.stack([cosy, zeros, siny,
zeros, ones, zeros,
-siny, zeros, cosy], dim=1).reshape(B, 3, 3)
cosx = torch.cos(x)
sinx = torch.sin(x)
xmat = torch.stack([ones, zeros, zeros,
zeros, cosx, -sinx,
zeros, sinx, cosx], dim=1).reshape(B, 3, 3)
rotMat = xmat @ ymat @ zmat
return rotMat
def quat2mat(quat):
"""
convert quaternion to rotation matrix ([x, y, z, w] to follow scipy
:param quat: four quaternion of rotation
:return: rotation matrix [B, 3, 3]
"""
# norm_quat = torch.cat([quat[:, :1].detach()*0 + 1, quat], dim=1)
# norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
# w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
x, y, z, w = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).reshape(B, 3, 3)
return rotMat
def pose_vec2mat(vec, rotation_mode='euler'):
"""
:param vec: tx, ty, tz, rx, ry, rz [B, 6]
:param rotation_mode: 'euler' or 'quat'
:return: rotation matrix [B, 3, 3] and translation matrix [B, 3, 1]
"""
translation_mat = vec[:, :3].unsqueeze(-1) # [B, 3, 1]
rot = vec[:, 3:]
if rotation_mode == 'euler':
rot_mat = euler2mat(rot) # [B, 3, 3]
elif rotation_mode == 'quat':
rot_mat = quat2mat(rot) # [B, 3, 3]
return rot_mat, translation_mat
def mat2euler(rot_mat, seq='xyz'):
"""
convert rotation matrix to euler angle
:param rot_mat: rotation matrix rx*ry*rz [B, 3, 3]
:param seq: seq is xyz(rotate along z first) or zyx
:return: three angles, x, y, z
"""
r11 = rot_mat[:, 0, 0]
r12 = rot_mat[:, 0, 1]
r13 = rot_mat[:, 0, 2]
r21 = rot_mat[:, 1, 0]
r22 = rot_mat[:, 1, 1]
r23 = rot_mat[:, 1, 2]
r31 = rot_mat[:, 2, 0]
r32 = rot_mat[:, 2, 1]
r33 = rot_mat[:, 2, 2]
if seq == 'xyz':
z = torch.atan2(-r12, r11)
y = torch.asin(r13)
x = torch.atan2(-r23, r33)
else:
y = torch.asin(-r31)
x = torch.atan2(r32, r33)
z = torch.atan2(r21, r11)
return torch.stack((x, y, z), dim=1)
def mat2quat(rot_mat, seq='xyz'):
"""
covert rotation matrix to quaternion
:param rot_mat: rotation matrix [B, 3, 3]
:param seq: 'xyz'(rotate along z first) or 'zyx'
:return: quaternion of the first three entries
"""
pass
def mat2pose_vec(rot_mat, translation_mat, rotation_mode='euler', seq='xyz'):
"""
Convert rotation matrix and translation matrix to 6DoF
:param rot_mat: [B, 3, 3]
:param translation_mat: [B, 3, 1]
:param rotation_mode: 'euler' or quat'
:param seq: 'xyz'(rotate along z first) or 'zyx'
:return: pose_vec - tx, ty, tz, rx, ry, rz [B, 6]
"""
pass
def transform_point_cloud(point_cloud, rotation, translation):
"""
:param point_cloud: [B, 3, N]
:param rotation: Euler angel [B, 3]
:param translation: Translation [B, 3]
:return:
"""
if len(rotation.size()) == 2:
rot_mat = quat2mat(rotation)
else:
rot_mat = rotation
return torch.matmul(rot_mat, point_cloud) + translation.unsqueeze(2)
def npmat2euler(mats, seq='zyx'):
eulers = []
for i in range(mats.shape[0]):
r = Rotation.from_dcm(mats[i])
eulers.append(r.as_euler(seq, degrees=True))
return np.asarray(eulers, dtype='float32')
if __name__ == '__main__':
print('hello world')