-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet.py
347 lines (280 loc) · 12.6 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import logging
import math
import torch
import torch.nn as nn
from fds import FDS
from prm import PRM
from evidential_deep_learning import *
print = logging.info
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class Calibration_model(nn.Module):
def __init__(self):
super(Calibration_model, self).__init__()
self.layer1 = nn.Linear(1, 1)
self.layer2 = nn.Linear(1, 1)
self.layer3 = nn.Linear(1, 1)
def forward(self, x):
mu, nu, al, be = torch.tensor_split(x, 4, dim=1)
nu_new = self.layer1(nu)
al_new = self.layer2(al) + 1.0
be_new = self.layer3(be)
return torch.cat([mu, nu_new, al_new, be_new], dim=1)
def decouple(self, w):
return w.data.cpu().numpy()
def get_weights(self):
return self.decouple(self.layer1.weight), self.decouple(self.layer2.weight), self.decouple(self.layer3.weight)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, is_last=False):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.is_last = is_last
if is_last:
self.edl = Conv2DNormal(planes, planes * 4, 1, bias=False)
self.edl_bn3 = nn.BatchNorm2d(planes * 4)
else:
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
if self.is_last:
out = self.edl(out)
d = int(out.size(1) / 2)
out[:, :d, :, :] = self.edl_bn3(out[:, :d, :, :])
else:
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
if self.is_last:
out[:, :d, :, :] += residual
else:
out += residual
out = self.relu(out)
return out
class ReverseBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(ReverseBottleneck, self).__init__()
self.inplanes = inplanes
self.planes = planes
self.reverse_conv1 = nn.ConvTranspose2d(planes, inplanes, kernel_size=1, bias=False)
self.reverse_bn1 = nn.BatchNorm2d(planes)
if stride == 1:
self.reverse_conv2 = nn.ConvTranspose2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
else:
self.reverse_conv2 = nn.ConvTranspose2d(planes, planes, kernel_size=2, stride=stride, padding=0, bias=False)
self.reverse_bn2 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.reverse_conv3 = nn.ConvTranspose2d(planes * 4, planes, kernel_size=1, bias=False)
self.reverse_bn3 = nn.BatchNorm2d(planes * 4)
def forward(self, x):
out = self.relu(x)
out = self.reverse_bn3(out)
out = self.reverse_conv3(out)
out = self.relu(out)
out = self.reverse_bn2(out)
out = self.reverse_conv2(out)
out = self.relu(out)
out = self.reverse_bn1(out)
out = self.reverse_conv1(out)
return out
class ResNet(nn.Module):
def __init__(self, block, reverse_block, layers, fds, bucket_num, bucket_start, start_update, start_smooth,
kernel, ks, sigma, momentum, dropout=None, use_edl=False, use_cdm=False, use_prm=False,
use_recons=False, bins=1, device=None):
self.inplanes = 64
self.split_size = 512 * block.expansion
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, is_last=use_prm)
if use_recons:
self.reverse_layer1 = self._make_layer(reverse_block, 64, layers[0], is_reverse=True, is_first=True)
self.reverse_layer2 = self._make_layer(reverse_block, 128, layers[1], stride=2, is_reverse=True)
self.reverse_layer3 = self._make_layer(reverse_block, 256, layers[2], stride=2, is_reverse=True)
self.reverse_layer4 = self._make_layer(reverse_block, 512, layers[3], stride=2, is_reverse=True)
self.reverse_initial = nn.Sequential(
nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2, padding=0, bias=False),
nn.ReLU(inplace=True),
nn.BatchNorm2d(64),
nn.ConvTranspose2d(64, 3, kernel_size=6, stride=2, padding=2, bias=False))
self.reverse_avgpool = nn.ConvTranspose2d(2048, 2048, kernel_size=7, stride=7, padding=0, bias=False)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.linear = nn.Linear(self.split_size, 1)
self.linear_normal_edl = LinearNormalGamma(self.split_size, 1).to(device=device)
self.conjugate_prior = ConjugatePrior(self.split_size, 1).to(device=device)
self.infer_pos = -1
if fds:
if use_prm:
print('use PRM')
self.FDS = PRM(
feature_dim=self.split_size, bucket_num=bucket_num, bucket_start=bucket_start,
start_update=start_update, start_smooth=start_smooth, kernel=kernel, ks=ks, sigma=sigma,
momentum=momentum, bins=bins, device=device
).to(device=device)
else:
print('use FDS')
self.FDS = FDS(
feature_dim=self.split_size, bucket_num=bucket_num, bucket_start=bucket_start,
start_update=start_update, start_smooth=start_smooth, kernel=kernel, ks=ks, sigma=sigma,
momentum=momentum, bins=bins, device=device
).to(device=device)
self.fds = fds
self.start_smooth = start_smooth
self.use_dropout = True if dropout else False
self.use_edl = use_edl
self.use_cdm = use_cdm
self.use_prm = use_prm
self.use_recons = use_recons
if self.use_dropout:
print(f'Using dropout: {dropout}')
self.dropout = nn.Dropout(p=dropout)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, is_reverse=False, is_last=False, is_first=False):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
if not is_reverse:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
if is_reverse:
layers.append(block(planes * 4, planes))
for i in range(1, blocks):
if i == blocks - 1:
if is_first:
layers.append(block(planes, planes))
else:
layers.append(block(planes * 2, planes, stride=stride))
else:
layers.append(block(planes * 4, planes))
else:
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
if i == blocks - 1:
layers.append(block(self.inplanes, planes, is_last=is_last))
else:
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def set_infernoise(self, pos):
self.infer_pos = pos
def forward(self, x, targets=None, epoch=None):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
if not self.training and self.infer_pos == 1:
x += torch.empty_like(x).normal_(0, 50.0)
x = self.layer2(x)
if not self.training and self.infer_pos == 2:
x += torch.empty_like(x).normal_(0, 50.0)
x = self.layer3(x)
if not self.training and self.infer_pos == 3:
x += torch.empty_like(x).normal_(0, 50.0)
x = self.layer4(x)
if not self.training and self.infer_pos == 4:
x += torch.empty_like(x).normal_(0, 50.0)
x = self.avgpool(x)
if x.size(1) == 2 * self.split_size:
x[:, self.split_size:, :, :] /= float(self.avgpool.kernel_size ** 2)
encoding = x.view(x.size(0), -1)
encoding_s = encoding
if self.training and self.fds:
encoding_s = self.FDS.smooth(encoding_s, targets, epoch)
mu, log_var = None, None
x_recons = None
if self.use_prm:
mu, var = torch.tensor_split(encoding_s, 2, dim=1)
log_var = var.log()
if self.training:
sigma = torch.exp(log_var / 2.0)
encoding_s = mu + torch.empty_like(sigma).normal_(0, 1.0) * sigma
else:
encoding_s = mu
if self.use_dropout:
encoding_s = self.dropout(encoding_s)
if self.use_recons:
encoding_r = encoding_s.view(encoding_s.size(0), encoding_s.size(1), 1, 1)
encoding_r = self.reverse_avgpool(encoding_r)
encoding_r = self.reverse_layer4(encoding_r)
encoding_r = self.reverse_layer3(encoding_r)
encoding_r = self.reverse_layer2(encoding_r)
encoding_r = self.reverse_layer1(encoding_r)
x_recons = self.reverse_initial(encoding_r)
if self.use_edl:
if self.use_cdm:
x = self.conjugate_prior(encoding_s)
else:
x = self.linear_normal_edl(encoding_s)
else:
x = self.linear(encoding_s)
if self.training:
if self.fds:
if self.use_recons:
return x, mu, log_var, encoding, x_recons
else:
return x, mu, log_var, encoding
else:
if self.use_recons:
return x, None, None, x_recons
else:
return x, None, None
else:
return x
def resnet50(**kwargs):
return ResNet(Bottleneck, ReverseBottleneck, [3, 4, 6, 3], **kwargs)