-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred.py
executable file
·100 lines (83 loc) · 3.44 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import argparse
import yaml
import numpy as np
from environments import CPS_env
from utilities import process_hyperparams, split_hyperparams, StoreDict
from utilities import create_callback, create_logger, create_envs
from utilities import create_model, create_action_noise,load_pretrained_agent, save_agent
import matplotlib.pyplot as plt
import joblib
import warnings
warnings.filterwarnings("ignore")
def get_args():
parser = argparse.ArgumentParser()
root_dir='./'
# cps-env
parser.add_argument('--stage', type=int, default=5) #
parser.add_argument('--difficulty', type=str, default='hard', choices=['easy','medium','hard','custom']) # 0.1
parser.add_argument('--frame_stack', type=int, default=None)
parser.add_argument("--vec-env", help="VecEnv type", type=str, default="spgd", choices=["dummy", "subproc", 'spgd'])
# model
parser.add_argument('--algo', type=str, default='td3',choices=['td3','ddpg','sac','ppo','a2c'])
# misc
parser.add_argument('--default_hp_path', type=str, default=root_dir+'utilities/default_config.yml')
parser.add_argument('--out_dir', type=str, default=root_dir+'results')
parser.add_argument('--agent_dir', type=str, default='results/CPS_env_2/td3/3')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str, default='cuda:1')
args = parser.parse_args()
return args
def evaluate(args):
env_diff = args.difficulty
stage = args.stage
print('\n Environment: stage=',stage,', difficulty=',env_diff)
args.env_id = CPS_env
hyperparams = process_hyperparams(args)
hyperparams = create_action_noise(hyperparams)
algo_hps, env_hps, exp_hps, spgd_hps = split_hyperparams(hyperparams,is_save=False)
trained_dir = args.agent_dir
trained_hp_path = os.path.join(trained_dir,'hyperparams.yml')
with open(trained_hp_path, "r") as f:
loaded_hp = yaml.load(f,Loader=yaml.Loader)
algo_hps.update(loaded_hp['algo'])
env_hps.update(loaded_hp['env'])
exp_hps.update(loaded_hp['exp'])
spgd_hps.update(loaded_hp['spgd'])
exp_hps['trained_agent'] = os.path.join(trained_dir,'ckpt/trained_agent.zip')
env_hps['difficulty']=env_diff
env_hps['stage']=stage
env = create_envs(exp_hps,env_hps, eval_env=True)
model = load_pretrained_agent(exp_hps,env,algo_hps)
obs = env.reset()
reward_list=[]
save_fig_dir=os.path.join(exp_hps['log_folder'],'test_results')
os.makedirs(save_fig_dir, exist_ok=True)
pulse_list=[]
for ii in range(200):
action, _states = model.predict(obs, deterministic=exp_hps['deterministic_eval'])
obs, rewards, dones, info = env.step(action)
#env.envs[0].plot_output(os.path.join(save_fig_dir,str(ii)+'.png'))
reward_list.append(rewards)
pulse_list.append(info[0]['pulse'])
if dones:
break
reward_list=np.array(reward_list)
print(f'Max Reward:{reward_list.max()}, Avg Reward:{reward_list.mean()}')
joblib.dump(pulse_list,save_fig_dir+'/pulse_list.pkl')
joblib.dump(reward_list, save_fig_dir + f'/spgd_st{stage}_diff{env_diff}_reward_list.pkl')
env.close()
plt.figure()
y = reward_list
plt.plot(np.arange(len(y)), y)
plt.xlabel('Step')
plt.ylabel('Reward')
plt.grid()
plt.title('Evaluation Rewards')
plt.savefig(save_fig_dir+'/final_test.png')
plt.show()
def main():
args = get_args()
evaluate(args)
if __name__=='__main__':
main()