-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgym_install_test.py
95 lines (81 loc) · 3.12 KB
/
gym_install_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gym
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Dense, Activation, Flatten, Input, Concatenate,BatchNormalization, Add
from keras.optimizers import Adam
from rl.agents import DDPGAgent
from rl.memory import SequentialMemory
from rl.random import OrnsteinUhlenbeckProcess
import sys
import time
import random
import pickle
sys.path.insert(0, '/home/wael/Desktop/golfcart/GEME6-CARLA/Carla_Gym/envs/')
from carla_env import CarlaEnv
while True:
try:
env = CarlaEnv()
break
except Exception as e:
print(e)
nb_actions = env.action_space.shape[0]
# Next, we build a very simple model.
actor = Sequential()
actor.add(Flatten(input_shape=(1,) + env.observation_space.shape))
actor.add(Dense(16))
# actor.add(BatchNormalization())
actor.add(Activation('relu'))
actor.add(Dense(16))
actor.add(Activation('relu'))
actor.add(Dense(16))
# actor.add(BatchNormalization())
actor.add(Activation('relu'))
actor.add(Dense(nb_actions))
actor.add(Activation('linear'))
print(actor.summary())
action_input = Input(shape=(nb_actions,), name='action_input')
observation_input = Input(shape=(1,) + env.observation_space.shape, name='observation_input')
flattened_observation = Flatten()(observation_input)
a1 = Dense(32)(action_input)
a1 = Activation('relu')(a1)
# a1 = BatchNormalization()(a1)
o1 = Dense(32)(flattened_observation)
# o1 = BatchNormalization()(o1)
o1 = Activation('relu')(o1)
# flattened_observation = Flatten()(observation_input)
x = Add()([a1, o1])
x = Dense(32)(x)
# x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dense(32)(x)
x = Activation('relu')(x)
x = Dense(32)(x)
# x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dense(1)(x)
x = Activation('linear')(x)
critic = Model(inputs=[action_input, observation_input], outputs=x)
print(critic.summary())
# Finally, we configure and compile our agent. You can use every built-in Keras optimizer and
# even the metrics!
memory = SequentialMemory(limit=10000000, window_length=1)
random_process = OrnsteinUhlenbeckProcess(size=nb_actions, theta=.15, mu=0.4, sigma=0.3)
agent = DDPGAgent(nb_actions=nb_actions, actor=actor, critic=critic, critic_action_input=action_input,
memory=memory, nb_steps_warmup_critic=50, nb_steps_warmup_actor=50,
random_process=random_process, gamma=.99, target_model_update=0.1)
agent.compile(Adam(lr=.0001, clipnorm=1.), metrics=['mae'])
# Okay, now it's time to learn something! We visualize the training here for show, but this
# slows down training quite a lot. You can always safely abort the training prematurely using
# Ctrl + C.
while True:
try:
agent.fit(env, nb_steps=20000000, visualize=True, start_step_policy=10000,verbose=1, nb_max_episode_steps=900)
agent.save_weights('ddpg_{}_weights.h5f'.format("Carla"), overwrite=True)
with open("ddpg_memory2.pkl","wb") as hand:
pickle.dump(memory,hand)
break
except Exception as e:
agent.save_weights('ddpg_{}_weights.h5f'.format("Carla"), overwrite=True)
print("model saved")
print(e)
# After training is done, we save the final weights.