-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun.py
110 lines (100 loc) · 3.99 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from config import gen_config
from dataops.metas import gen_meta
class pipeline_run():
def __init__(self,
cfg,
rgb_ftype,
dpt_ftype,
weight=[1,1,1,1,1,1,1,1],
processor_type='se3',
update_zoe = False,
update_df = False,
update_gf = True,
update_pca = False) -> None:
self.cfg = cfg
self.metas = gen_meta(self.cfg).run()
self.rgb_ftype = rgb_ftype
self.dpt_ftype = dpt_ftype
self.weight = weight
self.processor_type = processor_type
# for result-saving
self.basic = [rgb_ftype, dpt_ftype, weight[:len(rgb_ftype)], processor_type]
# for fast evaluation
self.update_zoe = update_zoe
self.update_df = update_df
self.update_gf = update_gf
self.update_pca = update_pca
def zoe(self):
from pipeline.gen_zoe import pipeline_zoe
pipeline_zoe(self.cfg,
update_dpt=self.update_zoe
).run(self.metas)
def feat(self):
from pipeline.gen_feat import pipeline_feat
pipeline_feat(self.cfg,
update_df_feat=self.update_df,
update_gf_feat=self.update_gf
).run(self.metas)
def match(self):
from pipeline.gen_match import pipeline_match
pipeline_match(self.cfg,
self.rgb_ftype,
self.dpt_ftype,
self.processor_type,
self.weight,
update_pca_feat=self.update_pca
).run(self.metas)
def eval(self):
from pipeline.gen_eval import pipeline_eval
pipeline_eval(self.cfg,
self.basic
).run(self.metas)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset',default='3dmatch',type=str,help='3dmatch/scannet/kitti')
parser.add_argument('--type',default='dg',type=str,help='d/g/dg')
parser.add_argument('--nkpts',default=-1,type=int,help='number of keypoints per frame, -1 means *16 downsample kpts')
parser.add_argument('--update_zoe',action='store_true')
parser.add_argument('--update_df',action='store_true')
parser.add_argument('--update_gf',action='store_true')
parser.add_argument('--update_pca',action='store_true')
args = parser.parse_args()
name2dataset={
'3dmatch':f'config/3dmatch.yaml',
'scannet':f'config/scannet.yaml',
'kitti':f'config/kitti.yaml'
}
if args.type in ['dg']:
rgb_ftype = ['rgb_df','rgb_gf']
dpt_ftype = ['dpt_df','dpt_gf']
processor_type = 'se3'
elif args.type in ['d']:
rgb_ftype = ['rgb_df']
dpt_ftype = ['dpt_df']
processor_type = 'pnp'
elif args.type in ['g']:
rgb_ftype = ['rgb_gf']
dpt_ftype = ['dpt_gf']
processor_type = 'se3'
else:
raise TypeError('wrong type! use d/g/dg, or you can modify run.py to diy your registration type.')
# for fast evaluation
update_zoe = True if args.update_zoe else False
update_df = True if args.update_df else False
update_gf = True if args.update_gf else False # change only when use different kpts number
update_pca = True if args.update_pca else False # change only when use different pca dimension
cfg = gen_config(name2dataset[args.dataset])
cfg.feat.merge.nkpts = args.nkpts
runner = pipeline_run(cfg=cfg,
rgb_ftype=rgb_ftype,
dpt_ftype=dpt_ftype,
processor_type=processor_type,
update_zoe = update_zoe,
update_df = update_df,
update_gf = update_gf,
update_pca = update_pca)
runner.zoe()
runner.feat()
runner.match()
runner.eval()