-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdemo.py
156 lines (141 loc) · 6.09 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
##############################
# introduction:
# processes: projection, densify, feature extraction, match, registration
##############################
import os
import numpy as np
import open3d as o3d
from PIL import Image
from config import gen_config
from tools.dense import name2densefunc
from pipeline.gen_zoe import pipeline_zoe
from pipeline.gen_feat import pipeline_feat
from pipeline.gen_match import pipeline_match
from pipeline.gen_eval import pipeline_eval
from utils.utils import dpt_3d_convert, save_depth
class rgb2dpt:
def __init__(self,
cfg,
rgb_ftype = ['rgb_df','rgb_gf'],
dpt_ftype = ['dpt_df','dpt_gf'],
processor_type = 'se3',
):
self.cfg = cfg
self.zoe = pipeline_zoe(self.cfg,
update_dpt=False)
self.extractor = pipeline_feat(self.cfg,
update_df_feat=True,
update_gf_feat=True)
self.regor = pipeline_match(self.cfg,
rgb_ftype=rgb_ftype,
dpt_ftype=dpt_ftype,
processor_type=processor_type,
update_pca_feat=True,)
self.basic = [rgb_ftype, dpt_ftype, np.ones(10)[:len(rgb_ftype)], processor_type]
self.evalor = pipeline_eval(self.cfg, self.basic)
def load_data(self):
# rgb, dpt
# for eval:
# rgb_gtd, dpt_gtd, pose
self.meta = {}
self.meta['frames'] = {}
self.meta['pairs'] = []
# load source data (rgb only)
frame_rgb = {
'rgb_fn':f'{self.cfg.meta.base}/source_rgb.png',
# here zoe is just a name, we will generate a zoe to save to this file
'zoe_fn':f'{self.cfg.meta.base}/source_rgb.zoe.npy',
'to_fn': f'{self.cfg.meta.feat_base}/demo/feat/0.feat.pth',
# for eval, not need if no eval is needed
'rgb_gtd':np.array(Image.open(f'{self.cfg.meta.base}/just_for_eval/source_rgb.gtd.png'))/self.cfg.meta.dpt_scale
}
# load target pc
pc = o3d.io.read_point_cloud(f'{self.cfg.meta.base}/target_pc.ply')
# project and densify
# project pc to dpt camera center and save it to sparse depth
projector = dpt_3d_convert()
dpt = projector.proj_pc2dpt(pc,
extrinsic=np.eye(4), # sensor center of the point cloud
intrinsic=np.array(self.cfg.meta.dpt_intrinsic),
h=self.cfg.meta.dpt_size[1],
w=self.cfg.meta.dpt_size[0])
proj_dpt_fn = f'{self.cfg.meta.base}/target_dpt.proj.png'
save_depth(proj_dpt_fn,dpt,scale=self.cfg.meta.dpt_scale)
# then we densify it for network processing and save densified dpt
dpt = name2densefunc[self.cfg.meta.densefunc](dpt.astype(np.float32))
dpt_fn = f'{self.cfg.meta.base}/target_dpt.densify.png'
save_depth(dpt_fn,dpt,self.cfg.meta.dpt_scale)
# target meta
frame_dpt = {
'dpt_fn': dpt_fn,
'proj_dpt_fn': proj_dpt_fn,
'to_fn': f'{self.cfg.meta.feat_base}/demo/feat/1.feat.pth',
# for eval, not need if no eval is needed
'dpt_gtd':np.array(Image.open(f'{self.cfg.meta.base}/just_for_eval/target_dpt.gtd.png'))/self.cfg.meta.dpt_scale
}
self.meta['frames']['0'] = frame_rgb
self.meta['frames']['1'] = frame_dpt
# pair for registration evaluation
pair = {
'q_id': '0',
'd_id': '1',
'overlap': 0.5, # no use
'to_fn': f'{self.cfg.meta.feat_base}/demo/match/0-1.trans.npz',
# for eval, set to random if no eval is needed
'gt': np.loadtxt(f'{self.cfg.meta.base}/just_for_eval/rgb2pc.gt.pose.txt')
}
self.meta['pairs'].append(pair)
# create fn for feat and match saving
if not os.path.exists(f'{self.cfg.meta.feat_base}/demo/feat'): os.makedirs(f'{self.cfg.meta.feat_base}/demo/feat')
if not os.path.exists(f'{self.cfg.meta.feat_base}/demo/match'): os.makedirs(f'{self.cfg.meta.feat_base}/demo/match')
def preprocess(self):
# only frames with rgb_fn(zoe_fn) will be processed.
self.zoe.run({'demo':self.meta})
def extraction(self):
# extract features on rgb_fn/zoe_fn and dpt_fn once given
self.extractor.process_meta(self.meta)
def match(self):
self.regor.process_meta(self.meta)
def eval(self):
self.evalor.run({'demo':self.meta})
def run(self):
# load feature
self.load_data()
# densify and zoe
self.preprocess()
# extract features
self.extraction()
# registration
self.match()
# evaluation
self.eval()
if __name__=='__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--cfg',default='config/demo.yaml',type=str,help='config file name')
parser.add_argument('--type',default='cz',type=str,help='c/z/cz')
args = parser.parse_args()
if args.type in ['cz']:
rgb_ftype = ['rgb_df','rgb_gf']
dpt_ftype = ['dpt_df','dpt_gf']
processor_type = 'se3'
elif args.type in ['c']:
rgb_ftype = ['rgb_df']
dpt_ftype = ['dpt_df']
processor_type = 'pnp'
elif args.type in ['z']:
rgb_ftype = ['rgb_gf']
dpt_ftype = ['dpt_gf']
processor_type = 'se3'
else:
raise TypeError('wrong type! use c/z/cz, or you can modify demo.py to diy your registration type.')
cfg = gen_config(args.cfg)
mm_reg = rgb2dpt(cfg=cfg,
rgb_ftype=rgb_ftype,
dpt_ftype=dpt_ftype,
processor_type=processor_type)
mm_reg.run()
from utils.drawer import visualizor
visor = visualizor(mm_reg.cfg)
pair = mm_reg.meta['pairs'][0]
visor.draw_demo(pair, save_pth = './demo.png')