diff --git a/test/RunTests b/test/RunTests index a66514db83b..cb1e28c8413 100755 --- a/test/RunTests +++ b/test/RunTests @@ -1052,7 +1052,7 @@ __DATA__ train-sets/ref/search_er.stderr # Test 66: Train a depenency parser with search (dagger) on wsj_small.dparser.vw.gz for 2 passes -{VW} -k -c -d train-sets/wsj_small.dparser.vw.gz --passes 2 --search_task dep_parser --search 3 --search_alpha 1e-4 --search_rollout oracle --holdout_off +{VW} -k -c -d train-sets/wsj_small.dparser.vw.gz --passes 6 --search_task dep_parser --search 12 --search_alpha 1e-4 --search_rollout oracle --holdout_off train-sets/ref/search_dep_parser.stderr # Test 67: classification with data from dictionaries (eg embeddings or gazetteers) -- note that this is impossible without dictionaries because --ignore w diff --git a/test/train-sets/ref/search_dep_parser.stderr b/test/train-sets/ref/search_dep_parser.stderr index 9bb34df607d..7e68d31c44d 100644 --- a/test/train-sets/ref/search_dep_parser.stderr +++ b/test/train-sets/ref/search_dep_parser.stderr @@ -9,14 +9,15 @@ num sources = 1 average since instance current true current predicted cur cur predic cache examples loss last counter output prefix output prefix pass pol made hits gener beta 88.000000 88.000000 1 [43:1 5:2 5:2 5:2 1..] [0:8 1:1 2:1 3:1 4:..] 0 0 144 0 144 0.014199 -47.500000 7.000000 2 [2:2 3:5 0:8 3:7 3:4 ] [2:2 0:8 2:5 2:3 2:4 ] 0 0 157 0 156 0.015381 +47.500000 7.000000 2 [2:2 3:5 0:8 3:7 3:4 ] [2:2 5:2 2:4 2:4 0:8 ] 0 0 157 0 156 0.015381 38.250000 29.000000 4 [4:2 4:2 4:2 7:5 6:..] [2:2 0:8 2:4 2:1 4:..] 0 0 248 0 246 0.024204 -28.125000 18.000000 8 [4:2 4:2 4:2 5:5 0:..] [3:2 3:2 4:2 5:5 0:..] 1 0 551 0 543 0.052760 +29.375000 20.500000 8 [4:2 4:2 4:2 5:5 0:..] [4:2 3:2 4:2 5:5 0:..] 1 0 551 0 543 0.052760 +19.812500 10.250000 16 [43:1 5:2 5:2 5:2 1..] [30:1 5:2 5:2 5:2 1..] 3 0 1187 0 1134 0.107122 finished run number of examples per pass = 5 -passes used = 2 -weighted example sum = 10 +passes used = 6 +weighted example sum = 30 weighted label sum = 0 -average loss = 23.9 -total feature number = 275880 +average loss = 10.5667 +total feature number = 827640