-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_LPRNet.py
176 lines (154 loc) · 6.15 KB
/
test_LPRNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
# /usr/bin/env/python3
'''
test pretrained model.
Author: [email protected] .
'''
from data.load_data import CHARS, CHARS_DICT, LPRDataLoader
from PIL import Image, ImageDraw, ImageFont
from model.LPRNet import build_lprnet
# import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torch.nn.functional as F
from torch.utils.data import *
from torch import optim
import torch.nn as nn
import numpy as np
import argparse
import torch
import time
import cv2
import os
def get_parser():
parser = argparse.ArgumentParser(description='parameters to train net')
parser.add_argument('--img_size', default=[94, 24], help='the image size')
parser.add_argument('--test_img_dirs', default='./data/test', help='the test images path')
parser.add_argument('--dropout_rate', default=0, help='dropout rate.')
parser.add_argument('--lpr_max_len', default=8, help='license plate number max length.')
parser.add_argument('--test_batch_size', default=100, help='testing batch size.')
parser.add_argument('--phase_train', default=False, type=bool, help='train or test phase flag.')
parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model')
parser.add_argument('--show', default=False, type=bool, help='show test image and its predict result or not.')
parser.add_argument('--pretrained_model', default='./weights/Final_LPRNet_model.pth', help='pretrained base model')
args = parser.parse_args()
return args
def collate_fn(batch):
imgs = []
labels = []
lengths = []
for _, sample in enumerate(batch):
img, label, length = sample
imgs.append(torch.from_numpy(img))
labels.extend(label)
lengths.append(length)
labels = np.asarray(labels).flatten().astype(np.float32)
return (torch.stack(imgs, 0), torch.from_numpy(labels), lengths)
def test():
args = get_parser()
lprnet = build_lprnet(lpr_max_len=args.lpr_max_len, phase=args.phase_train, class_num=len(CHARS), dropout_rate=args.dropout_rate)
device = torch.device("cuda:0" if args.cuda else "cpu")
lprnet.to(device)
print("Successful to build network!")
# load pretrained model
if args.pretrained_model:
lprnet.load_state_dict(torch.load(args.pretrained_model))
print("load pretrained model successful!")
else:
print("[Error] Can't found pretrained mode, please check!")
return False
test_img_dirs = os.path.expanduser(args.test_img_dirs)
test_dataset = LPRDataLoader(test_img_dirs.split(','), args.img_size, args.lpr_max_len)
try:
Greedy_Decode_Eval(lprnet, test_dataset, args)
finally:
cv2.destroyAllWindows()
def Greedy_Decode_Eval(Net, datasets, args):
# TestNet = Net.eval()
epoch_size = len(datasets) // args.test_batch_size
batch_iterator = iter(DataLoader(datasets, args.test_batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collate_fn))
Tp = 0
Tn_1 = 0
Tn_2 = 0
t1 = time.time()
for i in range(epoch_size):
# load train data
images, labels, lengths = next(batch_iterator)
start = 0
targets = []
for length in lengths:
label = labels[start:start+length]
targets.append(label)
start += length
targets = np.array([el.numpy() for el in targets])
imgs = images.numpy().copy()
if args.cuda:
images = Variable(images.cuda())
else:
images = Variable(images)
# forward
prebs = Net(images)
# greedy decode
prebs = prebs.cpu().detach().numpy()
preb_labels = list()
for i in range(prebs.shape[0]):
preb = prebs[i, :, :]
preb_label = list()
for j in range(preb.shape[1]):
preb_label.append(np.argmax(preb[:, j], axis=0))
no_repeat_blank_label = list()
pre_c = preb_label[0]
if pre_c != len(CHARS) - 1:
no_repeat_blank_label.append(pre_c)
for c in preb_label: # dropout repeate label and blank label
if (pre_c == c) or (c == len(CHARS) - 1):
if c == len(CHARS) - 1:
pre_c = c
continue
no_repeat_blank_label.append(c)
pre_c = c
preb_labels.append(no_repeat_blank_label)
for i, label in enumerate(preb_labels):
# show image and its predict label
if args.show:
show(imgs[i], label, targets[i])
if len(label) != len(targets[i]):
Tn_1 += 1
continue
if (np.asarray(targets[i]) == np.asarray(label)).all():
Tp += 1
else:
Tn_2 += 1
Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2)
print("[Info] Test Accuracy: {} [{}:{}:{}:{}]".format(Acc, Tp, Tn_1, Tn_2, (Tp+Tn_1+Tn_2)))
t2 = time.time()
print("[Info] Test Speed: {}s 1/{}]".format((t2 - t1) / len(datasets), len(datasets)))
def show(img, label, target):
img = np.transpose(img, (1, 2, 0))
img *= 128.
img += 127.5
img = img.astype(np.uint8)
lb = ""
for i in label:
lb += CHARS[i]
tg = ""
for j in target.tolist():
tg += CHARS[int(j)]
flag = "F"
if lb == tg:
flag = "T"
# img = cv2.putText(img, lb, (0,16), cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.6, (0, 0, 255), 1)
img = cv2ImgAddText(img, lb, (0, 0))
cv2.imshow("test", img)
print("target: ", tg, " ### {} ### ".format(flag), "predict: ", lb)
cv2.waitKey()
cv2.destroyAllWindows()
def cv2ImgAddText(img, text, pos, textColor=(255, 0, 0), textSize=12):
if (isinstance(img, np.ndarray)): # detect opencv format or not
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontText = ImageFont.truetype("data/NotoSansCJK-Regular.ttc", textSize, encoding="utf-8")
draw.text(pos, text, textColor, font=fontText)
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
if __name__ == "__main__":
test()