输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过 1,那么它就是一棵平衡二叉树。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true
。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false
。
限制:
1 <= 树的结点个数 <= 10000
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
def height(root):
if root is None:
return 0
return 1 + max(height(root.left), height(root.right))
if root is None:
return True
return abs(height(root.left) - height(root.right)) <= 1 and self.isBalanced(root.left) and self.isBalanced(root.right)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
return Math.abs(depth(root.left) - depth(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}
private int depth(TreeNode tree) {
if (tree == null) {
return 0;
}
return 1 + Math.max(depth(tree.left), depth(tree.right));
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
var isBalanced = function(root) {
const depth = (root) => {
if (!root) {
return 0;
}
return 1 + Math.max(depth(root.left), depth(root.right));
}
if (!root) {
return true;
}
return Math.abs(depth(root.left) - depth(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);
};
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
if (!root) {
return true;
}
return abs(depth(root->left) - depth(root->right)) <= 1 && isBalanced(root->left) && isBalanced(root->right);
}
private:
int depth(TreeNode* root) {
if (!root) {
return 0;
}
return 1 + max(depth(root->left), depth(root->right));
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isBalanced(root *TreeNode) bool {
if (root == nil) {
return true
}
return math.Abs(float64(depth(root.Left)-depth(root.Right))) <= 1 && isBalanced(root.Left) && isBalanced(root.Right)
}
func depth(root *TreeNode) int {
if (root == nil) {
return 0
}
left, right := depth(root.Left), depth(root.Right)
if (left > right) {
return 1 + left
}
return 1 + right
}