-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathrun_ddgan.sh
92 lines (75 loc) · 4.59 KB
/
run_ddgan.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/bin/sh
export MASTER_PORT=6036
echo MASTER_PORT=${MASTER_PORT}
export PYTHONPATH=$(pwd):$PYTHONPATH
CURDIR=$(cd $(dirname $0); pwd)
echo 'The work dir is: ' $CURDIR
DATASET=$1
MODE=$2
GPUS=$3
if [ -z "$1" ]; then
GPUS=1
fi
echo $DATASET $MODE $GPUS
# ----------------- VANILLA -----------
if [[ $MODE == train ]]; then
echo "==> Training DDGAN"
if [[ $DATASET == cifar10 ]]; then
python train_ddgan.py --dataset cifar10 --exp ddgan_cifar10_exp1 --num_channels 3 --num_channels_dae 128 --num_timesteps 4 \
--num_res_blocks 2 --batch_size 256 --num_epoch 1800 --ngf 64 --nz 100 --z_emb_dim 256 --n_mlp 4 --embedding_type positional \
--use_ema --ema_decay 0.9999 --r1_gamma 0.02 --lr_d 1.25e-4 --lr_g 1.6e-4 --lazy_reg 15 \
--ch_mult 1 2 2 2 --save_content --datadir data/cifar-10 \
--master_port $MASTER_PORT --num_process_per_node $GPUS \
elif [[ $DATASET == stl10 ]]; then
python train_ddgan.py --dataset stl10 --exp ddgan_stl10_exp1 --num_channels 3 --num_channels_dae 128 --num_timesteps 4 \
--num_res_blocks 2 --batch_size 128 --num_epoch 1800 --ngf 64 --nz 100 --z_emb_dim 256 --n_mlp 4 --embedding_type positional \
--use_ema --ema_decay 0.9999 --r1_gamma 0.02 --lr_d 1.25e-4 --lr_g 1.6e-4 --lazy_reg 15 \
--ch_mult 1 2 2 2 --save_content --datadir data/STL-10 \
--master_port $MASTER_PORT --num_process_per_node $GPUS \
elif [[ $DATASET == celeba_256 ]]; then
python train_ddgan.py --dataset celeba_256 --image_size 256 --exp ddgan_celebahq_256_exp1 --num_channels 3 --num_channels_dae 64 --ch_mult 1 1 2 2 4 4 --num_timesteps 2 \
--num_res_blocks 2 --batch_size 32 --num_epoch 500 --ngf 64 --embedding_type positional --use_ema --r1_gamma 2. \
--z_emb_dim 256 --lr_d 1e-4 --lr_g 2e-4 --lazy_reg 10 --save_content --datadir data/celeba/celeba-lmdb/ \
--master_port $MASTER_PORT --num_process_per_node $GPUS \
elif [[ $DATASET == celeba_512 ]]; then
python train_ddgan.py --dataset celeba_512 --image_size 512 --exp ddgan_celebahq_512_exp1 --num_channels 3 --num_channels_dae 64 --ch_mult 1 1 2 2 4 4 --num_timesteps 2 \
--num_res_blocks 2 --batch_size 2 --num_epoch 400 --ngf 64 --embedding_type positional --use_ema --r1_gamma 2. \
--z_emb_dim 256 --lr_d 1e-4 --lr_g 2e-4 --lazy_reg 10 --save_content --datadir data/celeba_512/celeba-lmdb-512/ \
--master_port $MASTER_PORT --num_process_per_node $GPUS \
--save_content_every 25 \
elif [[ $DATASET == lsun ]]; then
python train_ddgan.py --dataset lsun --image_size 256 --exp ddgan_lsun_exp1 --num_channels 3 --num_channels_dae 64 --ch_mult 1 1 2 2 4 4 --num_timesteps 4 \
--num_res_blocks 2 --batch_size 8 --num_epoch 500 --ngf 64 --embedding_type positional --use_ema --ema_decay 0.999 --r1_gamma 1. \
--z_emb_dim 256 --lr_d 1e-4 --lr_g 1.6e-4 --lazy_reg 10 --save_content --datadir data/lsun/ \
--master_port $MASTER_PORT --num_process_per_node $GPUS \
fi
else
echo "==> Test DDGAN"
if [[ $DATASET == cifar10 ]]; then \
python test_ddgan.py --dataset cifar10 --exp ddgan_cifar10_exp1 --num_channels 3 --num_channels_dae 128 --num_timesteps 4 \
--num_res_blocks 2 --nz 100 --z_emb_dim 256 --n_mlp 4 --ch_mult 1 2 2 2 --epoch_id 1200 \
--compute_fid --real_img_dir pytorch_fid/cifar10_train_stat.npy \
# --measure_time \
elif [[ $DATASET == stl10 ]]; then
python test_ddgan.py --dataset stl10 --image_size 64 --exp ddgan_stl10_exp1 --num_channels 3 --num_channels_dae 128 --num_timesteps 4 \
--num_res_blocks 2 --nz 100 --z_emb_dim 256 --n_mlp 4 --ch_mult 1 2 2 2 --epoch_id 900 \
# --compute_fid --real_img_dir pytorch_fid/stl10_stat.npy \
# --measure_time \
elif [[ $DATASET == celeba_256 ]]; then
python test_ddgan.py --dataset celeba_256 --image_size 256 --exp ddgan_celebahq_exp1 --num_channels 3 --num_channels_dae 64 \
--ch_mult 1 1 2 2 4 4 --num_timesteps 2 --num_res_blocks 2 --epoch_id 550 \
# --compute_fid --real_img_dir pytorch_fid/celebahq_stat.npy
# --measure_time \
elif [[ $DATASET == celeba_512 ]]; then
python test_ddgan.py --dataset celeba_512 --image_size 512 --exp ddgan_celebahq_512_exp1 --num_channels 3 --num_channels_dae 64 \
--ch_mult 1 1 2 2 4 4 --num_timesteps 2 --num_res_blocks 2 --epoch_id 325 \
--batch_size 100 \
# --compute_fid --real_img_dir ./pytorch_fid/celebahq_512_stat.npy \
# --measure_time --batch_size 25 \
elif [[ $DATASET == lsun ]]; then
python test_ddgan.py --dataset lsun --image_size 256 --exp ddgan_lsun_exp1 --num_channels 3 --num_channels_dae 64 \
--ch_mult 1 1 2 2 4 4 --num_timesteps 4 --num_res_blocks 2 --epoch_id 500 \
# --compute_fid --real_img_dir pytorch_fid/lsun_church_stat.npy \
# --measure_time \
fi
fi