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ABSTRACT
The Internet of Things (IoT) involves providing everyday devices

with a means to identify themselves and communicate with each

other over the Internet. It is a rapidly growing technology and has

already brought significant benefits to a range of domains, such as

smart cities, smart factories, wearables, e-health, and self-driving

cars. However, the increase of data transfer and inter-connection

between devices also brings an added security risk. As more per-

sonal devices are connected to the internet, privacy and security

concerns must be considered. Furthermore, the potential for large

numbers of unsecure IoT devices being coordinated to achieve

detrimental cyberattacks is a real concern and there have been a

growing number of these attacks in recent years. As the number of

connected IoT devices grows each year, the frequency and severity

of these attacks grow. It is clear from the number of IoT related

cyberattacks that primitive authentication techniques are not suit-

able for the IoT. It is therefore vital to find new ways to secure the

IoT, and in particular, to achieve secure authentication to prevent

malicious unauthenticated IoT devices causing damage within an

IoT network.

CHARIOT, an authentication protocol for the IoT, proposes a

potential solution.

Within CHARIOT, IoT devices are authenticated based on at-

tributes they possess which are kept secret by utilising digital sig-

natures. Since digital signature generation is computationally in-

tensive, the computations are offloaded to a powerful cloud server

which performs the computations without gaining any knowledge

about the private attributes.

This paper describes a prototype implementation for CHARIOT.

The prototype allowed for the protocol to be successfully validated

by performing time benchmarks that showed that the protocol is

suitable for a real IoT environment. Furthermore, due to the suc-

cessful implementation of the prototype, it can be extended to form

further prototypes, and finally, a fully operational authentication

system for a real IoT environment.
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1 INTRODUCTION
The Internet of Things (IoT) is an emerging technology that is

allowing communication between an increasing number of devices

over the Internet. This communication is enabling information

gathering and analysis on a level previously impossible. The number

of connected IoT devices is rapidly increasing and has surpassed

50 billion in 2020 [1]. The benefits of IoT are widespread across a

range of industries such as agriculture, manufacturing, retail, and

healthcare.

However, with this increase in inter-connectivity and data shar-

ing, there is also added security risk [2].With IoT, data can be shared

between devices that would previously never have been able to com-

municate, potentially exposing private information. Furthermore,

the massive amounts of weak and unsecure devices now connected

to the internet bring the potential for large-scale cyberattacks that

coordinate many infected IoT devices to achieve detrimental results.

Authenticationwithin IoT has added challenges due to the restricted

computational power and storage capacity of IoT devices, such as

actuators, sensors, and wearables. CHARIOT [3] is an innovative

authentication protocol that proposes a solution to these problems.

By utilising a powerful cloud server, computationally expensive

access control operations are offloaded from the less powerful IoT

devices.

To use CHARIOT in a real IoT environment, a functional proto-

type must first be built which can be tested and time benchmarked

to determine the protocol’s scalability. Furthermore, the system

parameters must be experimentally evaluated in order to determine

suitable values.

In Section 2, the objectives of the project and the context to

the problem are provided. In Section 3, existing work related to

CHARIOT is explored. Section 4 describes the design of the solu-

tion. Implementation details and the software development process

are described in Section 5. Section 6 contains an evaluation of the

implementation and a discussion of the results obtained. Finally,

Section 7 contains conclusions from the project and Section 8 con-

tains potential future work that may follow. Additional material is

provided in Section 9 including images related to how the project

was organised, how the source code was stored and versioned, as

well as some examples of unit tests.

2 BACKGROUND AND OBJECTIVES
The sole supervisor of the project was Clémentine Gritti: one of

the authors of CHARIOT and a University of Canterbury staff

member. The project was completed individually with no other

team members or third-parties. This was the first iteration of the

project so there was no existing solution to build upon.

The aim of the project was to build a prototype implementation

of CHARIOT. CHARIOT is currently a theoretical authentication
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protocol; to use it in a real IoT setting, a prototype must first be

built which can be tested and evaluated. Time benchmarking is

a key form of evaluation which must be performed to determine

the scalability and suitability of CHARIOT within a realistic IoT

environment. Furthermore, time benchmarking is needed to find

suitable value ranges for the system parameters which define what

environments CHARIOT may be suitable for. Once successfully

validated and evaluated, the prototype may be further extended in

the future to form further prototype iterations, and finally, a fully

functional and commercial authentication system for the IoT.

3 RELATEDWORK
Recent surveys of security and privacy of IoT [4], [5] have identified

the most important directions for future research to be authen-

tication and privacy, computational complexity, communication

overhead, and verification techniques.

In addition to traditional access control systems, such as dis-

cretionary access control (DAC) and mandatory access control

(MAC), attribute-based access control has recently attracted signifi-

cant interest [6]. Unlike traditional systems, attribute-based access

control is considered a "next-generation" model since it provides

dynamic, context-aware access control to resources based on vari-

ous attributes. Traditional access control solutions are not suitable

for IoT devices with limited computing power requiring access to

IoT platforms.

Gritti et. al. [3] have proposed an attribute-based scheme for

controlled access of IoT devices to an IoT platform. Their work in-

cludes a comprehensive description of novel techniques that enable

authentication of IoT devices to an IoT platformwithout compromis-

ing the privacy of the devices. Below, we discuss the existing work

related to CHARIOT and mention the shortcomings that CHARIOT

overcomes.

Attribute-based signatures (ABS), introduced in [7], allow a party

to sign a message with a predicate that is satisfied by attributes from

an authority. The signature reveals only the fact that a single user,

who has some set of attributes satisfying the predicate, has signed

the message. The signature does not disclose the attributes that

were used to satisfy the predicate or any identifying information

about the signer. ABS are useful in a variety of applications, such

as anonymous authentication and attribute-based messaging.

There have been a number of works that built upon this idea,

including [8], [9]. These papers contain constructions that provide

a high-level of security and are proved secure against the random-

oracle assumption and the standard computational Diffie-Hellman

assumption (these are assumptions that can be used as the basis of

security proofs). However, the high level of security also results in

a lack of efficiency which is vital for practical applications. Previ-

ous ABS schemes contained signatures that grew linearly in size

with the number of attributes specified by the attribute authority,

resulting in poor performance. Herranz et al. [10] proposed an ABS

scheme with constant-size signatures and a threshold policy re-

sulting in an increase in efficiency. Threshold policies allow the

attribute authority to define the minimum number of specified at-

tributes a user must hold to be authenticated. The solution proposed

by Herranz et al. [10] utilises dummy attributes however (attributes

whose only purpose is to pad the specified attributes to maintain

a constant number of total attributes), resulting in computational

and storage overhead. Susilo et al. [11] improve upon the work of

Herranz et al. [10] by proposing a new scheme that does not rely

on dummy attributes and has increased performance.

Securely outsourcing expensive computations is explored in [12],

[13], [14] which involve outsourcing sequence comparison, lin-

ear algebra, and linear programming computations respectively.

However, these cannot be directly applied to signature generation.

Schemes which utilise servers to specifically aid signature genera-

tion are proposed in [15], [16]; however, they do not allow access

control management based on user’s credentials.

4 DESIGN
4.1 Overview of CHARIOT
The CHARIOT protocol consists of four entities that run six algo-

rithms between them.

4.1.1 Entities.

(1) The IoT device to be authenticated

(2) The IoT platform responsible for authenticating devices

(3) The untrusted powerful cloud server which performs com-

putationally intensive mathematical operations on behalf of

the IoT device

(4) The trusted attribute authority which is responsible for gen-

erating secret keys and initialising the protocol

4.1.2 Algorithms.

(1) Setup (run by the trusted attribute authority): Initialises the

public parameters within the protocol and the master secret

key stored by the trusted attribute authority

(2) KeyGen (run by the trusted attribute authority): Generates

secret keys for the cloud server, IoT device, and IoT platform

(3) Request (run by the IoT device): Hashes the attributes em-

bedded in the access policy

(4) Signout (run by the cloud server): Performs computationally

intensive digital signature generation for the IoT device

(5) Sign (run by the IoT device): Finalises the digital signature

of the IoT device

(6) Verify (run by the IoT platform): Decides whether or not the

IoT device should be authenticated based on its signature

A diagram of the CHARIOT protocol is shown in Figure 1.

The various design decisions required to implement the protocol

are discussed below including preliminary information.

4.2 Preliminaries
Several algebraic structures are needed for the implementation of

CHARIOT. Here we provide their brief definitions; more details are

given in the abstract algebra textbooks [17], [18].

4.2.1 Group.
A group is a set𝐺 combined with a binary operation ⊕ that satisfies

the following properties:

(1) The group is closed under the operation: that is, the opera-

tion assigns to each ordered pair (𝑎, 𝑏) of elements in 𝐺 an

element in 𝐺 denoted 𝑎 ⊕ 𝑏.
(2) The group contains an identity element 0, such that for all

elements 𝑎 in G, 𝑎 ⊕ 0 = 0 ⊕ 𝑎 = 𝑎.
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Figure 1: Overview of CHARIOT architecture

(3) The group contains inverses: for each element 𝑎 in 𝐺 , there

is an element 𝑏 in 𝐺 , such that 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 = 0.

(4) The operation is associative: that is, for all elements 𝑎, 𝑏, 𝑐 in

𝐺 it is valid that (𝑎 ⊕ 𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐).
If a group has the property that 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 for every pair of

elements 𝑎, 𝑏 in 𝐺 , the group is called abelian.

4.2.2 Field.
A field is a set 𝐹 together with two binary operations ⊕ (addition)

and ⊙ (multiplication), that satisfy the following requirements:

(1) Identities: there are two elements 0 and 1 in 𝐹 such that for

all elements 𝑎 in 𝐹 , 𝑎 ⊕ 0 = 𝑎 and 𝑎 ⊙ 1 = 𝑎.

(2) Additive inverse: for every element 𝑎 in 𝐹 , there exists 𝑏 in

𝐹 such that 𝑎 ⊕ 𝑏 = 0.

(3) Multiplicative inverse: for every element 𝑎 in 𝐹 , there exists

𝑏 in 𝐹 such that 𝑎 ⊙ 𝑏 = 1.

(4) Both operations are associative, that is for all elements 𝑎, 𝑏, 𝑐

in 𝐹 it is valid that (𝑎 ⊕𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐), and (𝑎 ⊙𝑏) ⊙ 𝑐 =
𝑎 ⊙ (𝑏 ⊙ 𝑐).

(5) Commutativity of addition and multiplication: 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎
and 𝑎 ⊙ 𝑏 = 𝑏 ⊙ 𝑎 for every pair of elements 𝑎, 𝑏 in 𝐹 .

(6) Distributivity of multiplication over addition, that is for all

elements 𝑎, 𝑏, 𝑐 in 𝐹 , 𝑎 ⊙ (𝑏 ⊕ 𝑐) = 𝑎 ⊙ 𝑏 ⊕ 𝑎 ⊙ 𝑐 .

4.2.3 Bilinear map.
A bilinear map is a function that takes an element from a group

𝐺1 and an element from a group 𝐺2 and outputs an element from

another group𝐺𝑇 . If the map is symmetric, then𝐺1 and𝐺2 are the

same group.

CHARIOT relies on an efficiently computable (symmetric) bilin-

ear map, 𝑒 : 𝐺1 ×𝐺2 → 𝐺𝑇 . The specific groups and bilinear map

are not specified by CHARIOT and can vary between implemen-

tations. A decision was made to use elliptic curves for the groups

and elliptic curve pairings for the bilinear map. The map takes

two points on an elliptic curve and outputs a point on the same

curve. Below is a description of elliptic curve cryptography and the

motivation behind this decision.

4.3 Elliptic Curve Cryptography
The goal of cryptography is to conceal information from an adver-

sary that might have access to the communication channel between

two parties. Before the mid-1970s, all cipher systems used sym-

metric key algorithms, that is the same secret key was used by

the sender and the receiver. The key in every such system had to

be exchanged securely between the communicating parties before

the system could be used. This requirement quickly becomes over-

whelming with an increase in the number of communicating parties

or when keys are frequently changed. Diffie-Hellman key exchange

was a groundbreaking protocol introduced to enable the secure

exchange of keys over a public channel [19]. Their method was

followed shortly afterwards by RSA [20], which is nowadays widely

used for data encryption of e-mail and other internet transactions.

All public cryptographic systems employ trapdoor functions; such

functions are easy to compute one way but are difficult to invert.

In the case of RSA, the trapdoor function involves calculating the

multiplication of two prime numbers; computing the inverse oper-

ation, that is finding the prime factors of a composite number, is

a highly time-consuming operation. The most efficient algorithm

for integer factorization is the general number field sieve for which

the running time is sub-exponential [21] (caveat: this applies to

classical computers; for a quantum computer there is much more

efficient algorithm [22], but large scale quantum computers capa-

ble of this task have not yet been built). As the computing power

available to adversaries increases, the size of the keys needs to

grow. This is not suitable for IoT devices with limited storage ca-

pacity and computational power; therefore, RSA is not an ideal

system for the IoT environment. Elliptic curves provide much more

efficient trapdoor functions and are used widely throughout vari-

ous internet protocols, such as encryption over SSL/TLS/HTTPS.

The same level of security of the RSA algorithm with a 2048-bit

prime is achieved with elliptic curve cryptography (ECC) with a

224-bit prime [23]. Below we provide a brief description of the basic

elements of ECC [24], [25].

An elliptic curve over real numbers is defined as a plane curve

of the form:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, (1)

where 𝑎, 𝑏 ∈ R. The curve is defined to be smooth when its graph

has no cusps, self-intersections or isolated points. For the above

elliptic curve, this is satisfied when its discriminant Δ = −16(4𝑎3 +
27𝑏2) ≠ 0. For Δ < 0, the graph has one, otherwise two components.

A property of the set of points on an elliptic curve is that together

with a point O ‘at infinity’ they form an abelian group. The point

‘at infinity’ is defined as the additive identity, that is 𝑃 + O = 𝑃 .

The addition of two points, 𝑃 and 𝑄 , is defined by drawing a line

through the points and reflecting the intersection between the line

and the elliptic curve over the 𝑥 axis. An example of addition is

shown in Figure 2.

The algebraic expressions for the coordinates of 𝑃 + 𝑄 , corre-
sponding to the above geometric construction, when 𝑃 ≠ 𝑄 are
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Figure 2: Elliptic curve addition on a curve with a=-3, b=5.

given by,

𝑥𝑃+𝑄 =

(
𝑦𝑃 − 𝑦𝑄
𝑥𝑃 − 𝑥𝑄

)
2

− 𝑥𝑃 − 𝑥𝑄 (2)

𝑦𝑃+𝑄 = −𝑦𝑃 +
𝑦𝑃 − 𝑦𝑄
𝑥𝑃 − 𝑥𝑄

(𝑥𝑃 − 𝑥𝑃+𝑄 ) .

When 𝑃 = 𝑄 , we have,

𝑥2𝑃 =

(
3𝑥2

𝑃
+ 𝑎

2𝑦𝑃

)
2

− 2𝑥𝑃 (3)

𝑦2𝑃 = −𝑦𝑃 +
3𝑥2

𝑃
+ 𝑎

2𝑦𝑃
(𝑥𝑃 − 𝑥𝑃+𝑄 ) .

The notation 𝑛𝑃 is used to denote 𝑃 added to itself 𝑛 times if 𝑛

is positive, and otherwise - P added to itself |𝑛 | times
1
. Computing

𝑛𝑃 , by using the double and add algorithm is 𝑂 (log𝑛). For a given
𝑃 and 𝑛𝑃 , finding 𝑛 is known as the logarithm problem. There is

a variant of the logarithm problem, called the discrete logarithm

problem, when considering a finite field. If we reduce the domain

of an elliptic curve to be a finite field, scalar multiplication remains

easy, while the discrete logarithm becomes a hard problem. This is

called the elliptic curve discrete logarithm problem (ECDLP) and is

the basis of security of ECC. Currently, no known algorithm solves

this problem on a classical computer in polynomial time.

For this reason, instead of the real field, elliptic curves are defined

over a finite field for cryptographic use. The most popular choice is

a Galois field,𝐺𝐹 (𝑝), where all arithmetic operations are performed

modulo a prime 𝑝 . In this case, the elliptic curve is defined as,

{(𝑥,𝑦) ∈ 𝐺𝐹 (𝑝)2 |𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (mod𝑝),
4𝑎3 + 27𝑏2 . 0(mod𝑝)} ∪ {O}, (4)

where 𝑝 > 3, O is still the point at infinity, and 𝑎, 𝑏 ∈ 𝐺𝐹 (𝑝).
An example of a curve over 𝐺𝐹 (127) is shown in Figure 3. The

definitions for calculations of point additions are the same as al-

gebraically defined above for the case of a real field, except that

all the operations are now performed modulo 𝑝 . Division 𝑥/𝑦 in

a finite field is defined as 𝑥 · 𝑦−1, where 𝑦−1 is the multiplicative

inverse of 𝑦, i.e. 𝑦 ·𝑦−1 ≡ 1(mod𝑝). For every point 𝑃 , we have that

𝑛𝑃 +𝑚𝑃 = (𝑛 +𝑚)𝑃 , i.e. multiples of 𝑃 are closed under addition.

1
Alternative notation for 𝑛𝑃 is 𝑃𝑛

which we use in other parts of the text

Figure 3: Elliptic curve modulo p with a=-5, b=13, p=173.

Figure 4: Elliptic curve pairing

Furthermore, the multiples of 𝑃 form a cyclic subgroup of the group

formed by the elliptic curve. The point 𝑃 is called a base point or a

generator of its cyclic subgroup.

In practice, instead of low order groups (groups with few ele-

ments), such as the curve shown in Figure 3, elliptic curve groups

with high order are used (large prime 𝑝).

Elliptic curve pairing, shown in Figure 4, involves defining a

function that takes two points from an elliptic curve (or from two

different elliptic curves) and outputs an element from another group.

This function is a map 𝑒 : 𝐺1 × 𝐺2 → 𝐺𝑇 , where 𝐺1 and 𝐺2 are

elliptic curves, and 𝐺𝑇 is another group. The map is bilinear if for

any two element elements 𝑔1 ∈ 𝐺1 and 𝑔2 ∈ 𝐺2, and integers 𝑎, 𝑏:

𝑒 (𝑔𝑎
1
, 𝑔𝑏

2
) = 𝑒 (𝑔1, 𝑔2)𝑎𝑏 ,

(5)

The map 𝑒 is called admissible bilinear map if 𝑒 (𝑔1, 𝑔2) generates𝐺𝑇
and 𝑒 is efficiently computable. Bilinear maps give cyclic groups ad-

ditional properties that are useful for identity-based encryption [26,

27].

Elliptic curve pairings were therefore chosen to form the basis

of all the mathematical operations within the implementation of

CHARIOT. This meant that all operations were performed as elliptic

curve arithmetic and the bilinear map took two points from an

elliptic curve and output a point from the same curve.
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4.4 Hash functions
One of the parameters of CHARIOT is a hash function, 𝐻 , which

must be collision-resistant (highly unlikely for two different inputs

to hash to the same output). Unlike most hash functions, 𝐻 must

also be an extendable-output function (XOF), i.e. the output length

(number of bits) is adjustable. Several hash functions were con-

sidered, including SHAKE128, SHAKE256 and BLAKE2. BLAKE2

performs faster than SHAKE128 and SHAKE256 [28] and all three

functions have sufficient security needed for CHARIOT. Therefore,

the BLAKE2 function was selected.

Another hash function within CHARIOT is 𝜏 , a hash-based mes-

sage authentication code (HMAC). HMACs include a cryptographic

hash function and a chosen secret key. The difficulty in selecting

the hash function is that it must output values within the finite

field of integers defined by 𝑝 , a value defined by the elliptic curve

we choose to use. The finite field of integers defined by 𝑝 refers to

integers modulo 𝑝 , i.e. 0, 1, ..., 𝑝 − 1 (Z𝑝 ). All calculations within the

protocol are performed modulo 𝑝 . If we simply set the output of

the hash function to be the modulo of 𝑝 of the output, the function

cannot be guaranteed to be collision-resistant. We must therefore

choose a hash function and an elliptic curve where the 𝑝 value of

the elliptic curve has more bits than the output of the hash function.

Python has an in-built HMAC library that allows us to specify a

hash function. SHA-256 was chosen as the hash function as it out-

puts 256-bit values and the elliptic curves provided by Charm have

either a 512 or 1024-bit base field, i.e. 𝑝 is at least 512-bit, ensuring

collision-resistance.

4.5 Language and Framework
The code was written in Python with the aid of Charm

2
, a frame-

work for rapid cryptographic prototyping. There are a range of

valuable cryptographic libraries, such as Stanford’s Pairing-Based

Cryptography Library
3
and MIRACL

4
which could be used to im-

plement CHARIOT; however, many of them are not designed with

usability in mind with the aim of enabling quick development of

prototype systems. Charm performs intensive mathematical opera-

tions in native C modules to maximise performance while allowing

prototypes to be written in Python to allow higher readability. Fur-

thermore, Charm has an extensive range of example cryptographic

schemes implemented by researchers that can be used for reference.

Therefore, Charmwas chosen as the cryptographic framework used

for the implementation of the CHARIOT prototype.

5 IMPLEMENTATION
The algorithms within CHARIOT (Setup, KeyGen, Request, Signout,

Sign, and Verify) were all implemented successfully. Since the arith-

metic within CHARIOT occurs within multiple different groups

with different operators, care had to be taken to ensure that the cor-

rect operations were being performed throughout the computations.

An example calculation is given below.

2
Charm, a framework for rapid cryptographic prototyping: http://charm-crypto.io

3
The Pairing-Based Cryptography Library, a free C library for implementing pairing-

based cryptosystems: Phttps://crypto.stanford.edu/pbc/

4
MIRACL, an open source SDK for elliptic curve cryptography:

https://github.com/miracl

Figure 5: Source code for the Vector class

𝑒 (𝑇 ′
2
, 𝑣−1𝑛−𝑠+𝑡 ) · 𝑒 (𝑇1, ℎ𝛼𝐹𝑆 (𝛾 ) ) = 𝑒 (𝑢 · 𝑔𝛽1 , ℎ𝑠−𝑡 ) . (6)

where each of the symbols are values calculated or defined previ-

ously within CHARIOT.

Here, ℎ,𝑔 ∈ G, while 𝛼, 𝛽1, 𝛾 ∈𝑅 Z∗𝑝 . In the expression 𝑢 · 𝑔𝛽1 ,
all the operations are performed in the groupG, while in calculating
the exponent𝛼𝐹𝑆 (𝛾) = 𝛼

∏
𝑎𝑡 ∈𝑆 (𝛾+𝜏 (𝐾, 𝑎𝑡)) = 𝛼

∑𝑠−𝑡
𝑖=0 𝛾

𝑖𝑏𝑖 , (𝑏𝑠−𝑡 =
1) , all the operations are performed in the field 𝑍𝑝 . Operations per-

formed within the G group are done with elliptic curve arithmetic

whereas operations within 𝑍𝑝 are performed as addition and multi-

plication modulo 𝑝 . Using Charm, the Python syntax is the same for

operators in different groups and the functionality is determined

by the type of the object that the operation is being applied to. To

ensure that the correct objects were being used at every stage of the

computations, unit tests were written that verify the correct type

of the involved objects. Following test-driven development with

this form of tests helped to identify bugs caused by incorrect object

types within complex pieces of code. The tests that were written

throughout development were mostly limited to simply verifying

object types due to the limitation on the ability to test which is

discussed in Section 5.3.

5.1 Object-Oriented Programming
Due to the complexity of the calculations, it was important to focus

on code reusability and code cleanliness to minimise the potential

for bugs. To achieve this, object-oriented programming was used.

Helper classes were defined to store repeated functionality. For

example, element-wisemultiplication and exponentiation of vectors

are used frequently throughout the protocol so a vector helper class

was defined to store this logic. The source code for this class is

shown in Figure 5.

A similar recurring calculation was the computation of Groth-

Sahai commitments, which are defined as an element-wise multi-

plication of vectors:

®𝐶𝑥 = (1, 1, 𝑥)𝑇 · ( ®𝑔1)𝑟1 · ( ®𝑔2)𝑟2 ,
where 𝑥 ∈ G, 𝑟1, 𝑟2 ∈ Z𝑝 , and ®𝑔𝑖 ∈ G3.

Since the individual values within the above equation must be re-

membered, Groth-Sahai commitments were implemented as classes

that contain both the values within the equation and the logic for

performing the calculation. The code for the commitment class is

shown in Figure 6.
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Figure 6: Source code for the Commitment class

Figure 7: Source code for the PublicParams data class

CHARIOT contains many large tuples containing numerous val-

ues. To store this information, Python data classes were used. Data

classes simplify the code for complex classes by providing built-

in basic functionality for instantiating, printing, and comparing

objects. For example, the public parameters within CHARIOT are

given by: 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝜆,P, 𝑛, 𝑝,G,G𝑇 , 𝑒, 𝑔, ℎ,𝑢, {𝑣𝑖 }𝑖∈[0,𝑛] , {ℎ𝑖 }𝑖∈[0,𝑛] ,
®𝑔1, ®𝑔2, { ®𝑔3,𝑖 }𝑖∈[0,𝑘 ] , 𝐻, 𝜏). The corresponding Python class is shown

in Figure 7.

Since there are a large number of such classes within the im-

plementation, the amount of boilerplate code was significantly

reduced.

5.2 Algorithm for converting a polynomial
from factored form to expanded form

One of the necessary computations within CHARIOT is finding

the coefficients of an expanded form polynomial given its factored

form. This is a particularly expensive computation and was the

cause of the key results of the evaluation of the prototype discussed

in Section 7.

The following general formula was derived:

(𝑥 + 𝑎1) (𝑥 + 𝑎2)...(𝑥 + 𝑎n) = 𝑥n + (𝑎1 + 𝑎2 + ... + 𝑎n)𝑥n-1 +
(𝑎1𝑎2 + 𝑎1𝑎3 + ... + 𝑎n-1𝑎n)𝑥n-2 + ... +

(𝑎1𝑎2 ...𝑎i + ... + 𝑎n-i+1𝑎n-i+2 ...𝑎n)𝑥n-i + ... + 𝑎1𝑎2 ...𝑎n (7)

i.e. the coefficient of x
n-i

in the expanded form is the sum of all

𝑖-length combinations of the values 𝑎1, 𝑎2, ...𝑎i from the factored

form. The source code that was written to find the coefficients of

an expanded polynomial is shown in Figure 8.

5.3 Testing
Testing the implementation had unique challenges. Since each of

the algorithms performed a series of complex computations which

Figure 8: Source code for generating the coefficients of a
polynomial given its zeros

Figure 9: Unit test coverage

involved random numbers, it was impossible to verify the exact

output of each algorithm. Furthermore, trivially testing the output

of the individual algorithms would involve duplicating the mathe-

matics within the unit tests and would therefore accomplish little.

Therefore, until the entire protocol was implemented, testing

was limited to verifying correct object types and testing of functions

outside the core algorithms (for example, the function that finds

polynomial coefficients). Once the entire protocol was implemented,

it could be tested by passing in parameters that were expected to

result in successful authentication or not and verifying the output.

An example set of inputs is given below.

device_attributes = [1, 2, 3]

threshold = 2
policy_attributes = [1, 2, 3, 4]

These inputs specify that the IoT device must have at least 2 of

the attributes specified by the policy to be authenticated which

is the case here so the device should be authenticated. Unit tests

with a range of inputs were used to validate the functionality of the

implementation. A total of 36 automated unit tests were written.

The tests achieved 97% line coverage as shown in Figure 9.

Since the program has no user interface and only one core mod-

ule, forms of testing such as manual testing and integration testing

were not appropriate and thus the prototype’s functionality was

tested solely with unit testing.

5.4 Project Management
5.4.1 Research.
CHARIOT is a theoretical cryptographic protocol that requires com-

prehensive validation before being able to be used in a practical

environment. Validation research involves asking questions about

something that does not exist yet: the implementation of the solu-

tion. Prototypes are therefore used to model a simplified version

of the solution and can be evaluated to gain knowledge about the
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validity of the final solution. Prototypes are often built iteratively

with increasing complexity and evaluated in more and more realis-

tic environments. Within this project, the first prototype iteration

of CHARIOT was designed, implemented, and evaluated. The re-

search method that was used was an instance of the design science

cycle [29] (a regulative cycle). A regulative cycle involves design-

ing a solution, validating the design, implementing the solution,

then evaluating the solution. The solution design involved making

the series of design decisions discussed within Section 4. These

decisions were validated through discussions with the supervisor,

Clémentine Gritti, where pros and cons of different solutions were

explored and final design decisions were made. Implementing the

solution is what consumed most of the time spent on the project

and involved building the prototype using the design decisions.

After implementation was complete, the prototype was evaluated

with testing and time benchmarking. The effect of changing various

system parameters within the implementation was measured to

evaluate the protocol. Initially, all system parameters were experi-

mented with, then more thorough experiments were conducted on

the parameters that were found to have the greatest effect on the

protocol’s performance. The evaluation provided useful insight into

the protocol’s performance and scalability; this is discussed in detail

in Section 6. Due to the prototypes successful implementation, it

can be extended in further iterations of prototype implementations

as validation research continues.

5.4.2 Software development.
Since the CHARIOT protocol is fixed and there are no changing

user requirements or market conditions, the requirements of the

project were strict, well understood, and highly unlikely to change.

The timeline of the project was fixed by the deadlines throughout

the year. The nature of the functionality of each of the six algo-

rithms meant it was difficult to test their functionality until all of

them were completed and thus the amount of testing that could be

performed throughout development was limited. Since the project

had fixed requirements, a firm timeline, and a limited ability to

perform testing during development, each of the stages of develop-

ment needed to be performed separately. Therefore, waterfall was

used as the software development methodology [30].

To organise completion of tasks throughout the project, a kanban

board was used. Tasks were organised by research, code, evaluation,

and report related tasks. A prioritised backlog was created each

week and the completed tasks were archived at the end of the

week. Although a kanban board was used, the methodology of

kanban, such as focusing on optimising the cycle time of tasks and

removing bottlenecks, was not followed. The software tool used

for the kanban board was Notion
5
.

Git was used as the version control system and the codebase

was stored in a repository on Github
6
. The Git Feature Branch

Workflow [31] was used to work on individual features on separate

branches within the repository. Since there was no team involved

in the development, the main benefit of this strategy was the abil-

ity to experiment with different implementations without risking

jeopardising the main prototype.

5
Notion, a collaboration tool: https://www.notion.so

6
GitHub, an online platform for hosting software projects with using Git:

https://github.com/

Figure 10: Time benchmarks of each algorithm within
CHARIOT with varied parameters

6 EVALUATION AND DISCUSSION
6.1 Benchmarking
In order to evaluate the prototype implementation, a set of time

benchmarks were performed to determine the suitability of the

protocol in an IoT environment. The input parameters were varied

during the benchmark process to determine how the prototype

performed under various conditions. The parameters that were

experimented with include:

• Security parameter, 𝜆: This defines the length in bits of

the hashed message. Since the message itself is public, the

hash function does not need to be cryptographic but rather

collision-resistant and thus 𝜆 must be sufficiently large to

avoid collisions. It is assumed that the IoT devices have a lim-

ited dictionary of messages they can sign and thus relatively

small values of 𝜆 can be chosen.

• Attribute set, Ω: This is the set of attributes contained by the
IoT device. The size of the attribute set is referred to as 𝜔 .

• Policy, 𝑆 : This is the set of attributes that defines which

attributes the IoT device must have to be authenticated. The

size of the policy is referred to as 𝑠 .

• Upper bound of policy sizes, 𝑛: This defines the maximum

number of attributes that policies can contain.

The execution time of each of the algorithms within the protocol

was measured for varied parameter values to determine their in-

dividual performance under different conditions. The benchmarks

results are shown in Figure 10. The initial parameter values were

based on the example configuration within the original CHARIOT

paper [3]. When varying the parameters, each value was doubled

so that the performance impact could be compared between all pa-

rameters. All benchmarking was performed on a machine with a 2.7

GHz Dual-Core Intel Core i5 processor. More accurate benchmark-

ing would require installing and running the program on separate

machines that resemble the entities within the protocol (this is

discussed in Section 8).

The time complexities of each of the algorithms are given below.
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• Setup was found to scale linearly with the upper bound of

policy sizes, 𝑛 and the security parameter, 𝜆.

• KeyGen was found to scale linearly with the upper bound

of policy sizes, 𝑛, and the number of attributes on the IoT

device, 𝜔 .

• Request was found to scale linearly with the number of

attributes in the policy, 𝑠 .

• Signout was found to scale exponentially with the number

of attributes in the policy, 𝑠 .

• Sign was found to scale linearly with the security parameter,

𝜆.

• Verify was found to scale exponentially with the number of

attributes in the policy, 𝑠 .

6.1.1 Signout and Verify.
The key finding was that 𝑆𝑖𝑔𝑛𝑂𝑢𝑡 and Verify scale exponentially

with the number of attributes in the policy.

The cause of the time complexity growth is the computation of

polynomial coefficients given the list of its zeros (i.e. the conver-

sion of a polynomial from factored form to expanded form). This

requires finding all possible combinations of the values within the

factored form of every length between 1 and the degree of the

polynomial, each of the values within these combinations must

then be multiplied together. This requires the following number of

computations:

𝑡 (𝑛) =
𝑛∑
𝑖=1

(
𝑛

𝑖

)
𝑖 (8)

To determine the time complexity of the algorithm, the equation

for the number of computations can be simplified as follows:

𝑡 (𝑛) =
𝑛∑
𝑖=1

(
𝑛

𝑖

)
𝑖

=

𝑛∑
𝑖=1

𝑛!

(𝑛 − 𝑖)!𝑖! 𝑖

=

𝑛∑
𝑖=1

𝑛!

(𝑛 − 𝑖)!(𝑖 − 1)!

=
𝑛!2𝑛−1

Γ(𝑛) =
𝑛!2𝑛−1

(𝑛 − 1)! = 𝑛2
𝑛−1

(9)

The time complexity is therefore:

𝑂 (2𝑛) (10)

It is important to note that Signout is intended to run on a pow-

erful cloud server and Verify on the IoT platform. Both of these

machines are more powerful than the machine used for bench-

marking and can be upscaled to mitigate the inefficiency of the

algorithms. However, with an exponential time complexity, even

upscaling has limited effects and larger policies quickly become

impractical to process.

Further benchmarking was performed to determine the perfor-

mance of Signout and Verify for various policy sizes to find the range

of possible policy sizes where the algorithms complete within a

reasonable time frame. The results are shown in Figure 11.

Figure 11: Time benchmarks of Signout and Verify algo-
rithms for different policy sizes

It was observed that both algorithms completed in less than 1

second for up to 17 attributes. The time taken for the algorithms

increased steeply for larger policy sizes and exceeded 10 seconds

for policies with 21 attributes. This indicates the approximate maxi-

mum number of attributes the protocol can reasonably handle. The

example configuration in the original CHARIOT paper [3] used a

policy with 15 attributes. Furthermore, attribute policies of size 10

were chosen by Ambrosin et al. [32] in their experiment to deter-

mine the feasability of attribute-based encryption within a realistic

IoT healthcare environment. A maximum size of 15 attributes is

therefore reasonable and does not prevent CHARIOT from being

used in an IoT environment with a large number of IoT devices.

Furthermore, there are various potential strategies for overcoming

this limitation within large systems. One such example is segregat-

ing devices into separated groups with unique group IDs. Specific

group IDs can then be specified as attributes in policies to limit the

number of devices affected by the policy and effectively decrease

the size of the system.

6.1.2 Request and Sign.
Another key finding was that Request and Sign, the algorithms that

run on the IoT device, were both efficient and scaled linearly with

input parameters. This is vital since IoT devices are characteris-

tically constrained in their computational power. The execution

time of Request remained below 10 milliseconds for up to 500 at-

tributes on the IoT device and was measured to execute in 0.0004

seconds for 15 attributes (a more realistic number of attributes).

The execution time of Sign remained below 80 milliseconds for up

to 𝜆 = 512 (maximum possible value) and was measured to execute

in 0.0569 seconds for 𝜆 = 40 (a more realistic value). It is important

to note that these benchmarks were performed on a machine that

is significantly more powerful that a typical IoT device and do not

form comprehensive benchmarks. However, they provide a valuable

early indication of the performance, and especially the scalability

(which does not depend on the machine used), of these algorithms.
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6.2 Results Summary
Overall, given the efficiency of the algorithms that run on the

computationally constrained IoT devices and the reasonable value

range that the remaining algorithms remain performant for, the

protocol was evaluated to be suitable for a realistic IoT environment.

The limit on the number of attributes in the policies (approximately

15 depending on the power of the cloud server and IoT platform)

was found to be sufficiently large to allow for fine-grained policies

that can accurately authenticate specific subsets of devices from a

large system.

6.3 Evaluation of Method
The inability to test the functionality of each algorithm individually

was the cause of a significant amount of time spent debugging. By

the time the entire protocol was implemented and could be tested,

a significant amount of code was written which made locating bugs

challenging.

The end-to-end tests that were written once the implementation

was complete involved verifying the equalities within CHARIOT.

An example of one of these equalities is:

𝑒 (𝑇1, 𝐻𝑆 ) = 𝑒 (𝑢,ℎ𝑠−𝑡 ) · 𝑒 (𝑇2, 𝑣𝑛−𝑠+𝑡 ) (11)

where𝑇1,𝐻𝑆 ,𝑢,ℎ𝑠−𝑡 ,𝑇2, and 𝑣𝑛−𝑠+𝑡 are calculated or defined earlier
within the protocol. The tests initially did not pass (the equality did

not hold) indicating there were bugs present.

To debug the implementation, the above equality was proved

which was then used to write tests that verified each of the individ-

ual equalities within the proof. The proof is as follows:

𝑒 (𝑇 ′
2
, 𝑣−1𝑛−𝑠+𝑡 ) · 𝑒 (𝑇1, ℎ𝛼𝐹𝑆 (ℎ) ) =

𝑒

(
ℎ (𝑟−𝛽2)𝛾

𝑛

·
𝑠−𝑡−1∏
𝑖=0

(
ℎ𝑟𝛾

𝑖+𝑛−𝑠+𝑡 )𝑏𝑖
, 𝑔

− 𝛼

𝛾𝑛−𝑠+𝑡

)
·𝑒 (𝑔

𝑟
𝐹Ω𝑆

(𝛾 )
, ℎ𝛼𝐹𝑆 (𝛾 ) ) =

𝑒

(
ℎ (𝑟−𝛽2)𝛾

𝑠−𝑡
·
𝑠−𝑡−1∏
𝑖=0

((
ℎ𝑟𝛾

𝑖
)𝛾𝑛−𝑠+𝑡 )𝑏𝑖

, 𝑔
− 𝛼

𝛾𝑛−𝑠+𝑡

)
·𝑒 (𝑔, ℎ)𝛼𝑟𝐹𝑆\Ω𝑆 (𝛾 )

=

𝑒

(
ℎ𝑟𝛾

𝑠−𝑡
· ℎ−𝛽2𝛾

𝑠−𝑡
·
𝑠−𝑡−1∏
𝑖=0

(
ℎ𝑟𝛾

𝑖
)𝑏𝑖

, 𝑔−𝛼
)

·𝑒 (𝑔, ℎ)𝛼𝑟𝐹𝑆\Ω𝑆 (𝛾 )
=

𝑒

(
ℎ−𝛽2𝛾

𝑠−𝑡
·
𝑠−𝑡∏
𝑖=0

(
ℎ𝑟𝛾

𝑖
)𝑏𝑖

, 𝑔−𝛼
)
· 𝑒 (𝑔, ℎ)𝛼𝑟𝐹𝑆\Ω𝑆 (𝛾 )

=

𝑒 (ℎ,𝑔)𝛼𝛽2𝛾
𝑠−𝑡

· 𝑒 (ℎ,𝑔)−𝛼𝑟𝐹𝑆\Ω𝑆 (𝛾 ) · 𝑒 (𝑔, ℎ)𝛼𝑟𝐹𝑆\Ω𝑆 (𝛾 )
=

𝑒 (𝑔𝛽2 , ℎ𝛼𝛾
𝑠−𝑡

) = 𝑒 (𝑔𝛽 · 𝑔𝛽1 , ℎ𝛼 (𝑠−𝑡 ) ) = 𝑒 (𝑢 · 𝑔𝛽1 , ℎ𝑠−𝑡 ) .
where the property of symmetric bilinear maps that states that

𝑒 (𝑔, ℎ) = 𝑒 (ℎ,𝑔) was used. This method greatly helped in narrowing

down the locations of bugs within the code.

However, to further decrease the time spent debugging, greater

effort could have been made to enable testing at smaller intervals

throughout development. To avoid simply duplicatingmathematical

operations in the unit tests, the best way to verify the correct

functionality of the individual algorithms is to perform equality

checks (such as the equality check in equation 11). Since all the

equality checks within CHARIOT were already used for testing

and debugging, this would have required deriving further equality

checks using the properties of symmetric bilinear maps. Although

this too would have been time consuming, it would have likely

overall decreased the time spent on development.

7 CONCLUSION
A prototype implementation of CHARIOT was successfully built

and evaluated by performing time benchmarking for a range of

system parameters. The results indicated that CHARIOT success-

fully runs efficiently for IoT devices and is performant for realistic

parameter values. However, benchmarking also revealed that the

protocol is limited by the number of attributes that can be speci-

fied in the policies due to an algorithm with an exponential time

complexity. The limit for the number of attributes was determined

to be sufficiently large for this not to be a problem for the majority

of systems, although it may be a problem for systems with mas-

sive amounts of IoT devices that require highly fine-grained access

policies. It is also important to note that the algorithm runs on

powerful machines, namely the cloud server and the IoT platform.

These machines can be upscaled to mitigate the effects of the inef-

ficient algorithm; however, with an exponential time complexity,

there is limited potential for reducing the algorithm’s run-time.

Overall, given its performance for typical system parameter val-

ues, CHARIOT was determined to be suitable for a realistic IoT

environment.

8 FUTUREWORK
Given the correct and robust functionality of the prototype, it can be

further extended to form further prototype iterations. The success-

ful implementation of the individual algorithms within the protocol

will greatly speed up the process of building later prototypes. To

improve the existing solution, it would be worthwhile to investigate

more efficient methods for generating polynomial coefficients from

polynomial zeros to replace the algorithm described in Section 5.2.

This algorithm has exponential time complexity and is the main

bottleneck for the implementation.

The next stage for the implementation is extending the system

to run on web servers hosting the cloud server and the IoT platform

and separate machines for the trusted attribute authority and IoT

device where communication is performed over the Internet. The

system then needs to be extended so that, instead of running proce-

durally, the web servers hosting the IoT platform and cloud server

are listening for requests from the IoT device. The Charm frame-

work will also eventually need to be replaced since it is designed

for prototyping and therefore has sacrificed some performance for

usability.

At each new iteration of the implementation, new benchmarks

need to be performed that approximate the performance of the final

product with increasing accuracy. Realistic devices need to be used

for evaluation, such as specifically configured virtual machines or

actual web servers and hardware devices for the IoT device (such

as a Rasberry Pi).
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Once the protocol has been sufficiently validated, the implemen-

tation can be extended further until the solution is a commercially

viable product used in a real IoT environment.
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Figure 12: Kanban board for organising tasks

Figure 13: Example commits on Github
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Figure 14: Project repository on GitHub
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Figure 15: Examples of unit tests


	Abstract
	1 Introduction
	2 Background and Objectives
	3 Related work
	4 Design
	4.1 Overview of CHARIOT
	4.2 Preliminaries
	4.3 Elliptic Curve Cryptography
	4.4 Hash functions
	4.5 Language and Framework

	5 Implementation
	5.1 Object-Oriented Programming
	5.2 Algorithm for converting a polynomial from factored form to expanded form
	5.3 Testing
	5.4 Project Management

	6 Evaluation and Discussion
	6.1 Benchmarking
	6.2 Results Summary
	6.3 Evaluation of Method

	7 Conclusion
	8 Future Work

