-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
252 lines (217 loc) · 8.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse, os, sys, datetime
from omegaconf import OmegaConf
from transformers import logging as transf_logging
import torch
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
sys.path.insert(0, os.getcwd())
from utils.common_utils import instantiate_from_config
from utils.train_utils import (
get_trainer_callbacks,
get_trainer_logger,
get_trainer_strategy,
)
from utils.train_utils import (
set_logger,
init_workspace,
load_checkpoints,
get_autoresume_path,
)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def get_parser(**parser_kwargs):
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"--seed", "-s", type=int, default=20230211, help="seed for seed_everything"
)
parser.add_argument(
"--name", "-n", type=str, default="", help="experiment name, as saving folder"
)
parser.add_argument(
"--base",
"-b",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"--train", "-t", action="store_true", default=False, help="train"
)
parser.add_argument("--val", "-v", action="store_true", default=False, help="val")
parser.add_argument("--test", action="store_true", default=False, help="test")
parser.add_argument(
"--logdir",
"-l",
type=str,
default="logs",
help="directory for logging dat shit",
)
parser.add_argument(
"--auto_resume",
action="store_true",
default=False,
help="resume from full-info checkpoint",
)
parser.add_argument(
"--debug",
"-d",
action="store_true",
default=False,
help="enable post-mortem debugging",
)
return parser
def get_nondefault_trainer_args(args):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
default_trainer_args = parser.parse_args([])
return sorted(
k
for k in vars(default_trainer_args)
if getattr(args, k) != getattr(default_trainer_args, k)
)
if __name__ == "__main__":
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
try:
local_rank = int(os.environ.get("LOCAL_RANK"))
global_rank = int(os.environ.get("RANK"))
num_rank = int(os.environ.get("WORLD_SIZE"))
except:
local_rank, global_rank, num_rank = 0, 0, 1
# print(f'local_rank: {local_rank} | global_rank:{global_rank} | num_rank:{num_rank}')
parser = get_parser()
## Extends existing argparse by default Trainer attributes
parser = Trainer.add_argparse_args(parser)
args, unknown = parser.parse_known_args()
## disable transformer warning
transf_logging.set_verbosity_error()
seed_everything(args.seed)
## yaml configs: "model" | "data" | "lightning"
configs = [OmegaConf.load(cfg) for cfg in args.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop("lightning", OmegaConf.create())
trainer_config = lightning_config.get("trainer", OmegaConf.create())
## setup workspace directories
workdir, ckptdir, cfgdir, loginfo = init_workspace(
args.name, args.logdir, config, lightning_config, global_rank
)
logger = set_logger(
logfile=os.path.join(loginfo, "log_%d:%s.txt" % (global_rank, now))
)
logger.info("@lightning version: %s [>=1.8 required]" % (pl.__version__))
## MODEL CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
logger.info("***** Configing Model *****")
config.model.params.logdir = workdir
model = instantiate_from_config(config.model)
if args.auto_resume:
## the saved checkpoint must be: full-info checkpoint
resume_ckpt_path = get_autoresume_path(workdir)
if resume_ckpt_path is not None:
args.resume_from_checkpoint = resume_ckpt_path
logger.info("Resuming from checkpoint: %s" % args.resume_from_checkpoint)
## just in case train empy parameters only
else:
model = load_checkpoints(model, config.model)
logger.warning("Auto-resuming skipped as No checkpoit found!")
else:
model = load_checkpoints(model, config.model)
## update trainer config
for k in get_nondefault_trainer_args(args):
trainer_config[k] = getattr(args, k)
print(trainer_config)
num_nodes = trainer_config.num_nodes
ngpu_per_node = trainer_config.devices
logger.info(f"Running on {num_rank}={num_nodes}x{ngpu_per_node} GPUs")
## setup learning rate
base_lr = config.model.base_learning_rate
bs = config.data.params.batch_size
if getattr(config.model, "scale_lr", True):
model.learning_rate = num_rank * bs * base_lr
else:
model.learning_rate = base_lr
## DATA CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
logger.info("***** Configing Data *****")
data = instantiate_from_config(config.data)
data.setup()
for k in data.datasets:
logger.info(
f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
)
## TRAINER CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
logger.info("***** Configing Trainer *****")
if "accelerator" not in trainer_config:
trainer_config["accelerator"] = "gpu"
torch.set_float32_matmul_precision("medium")
## setup trainer args: pl-logger and callbacks
trainer_kwargs = dict()
trainer_kwargs["num_sanity_val_steps"] = 0
logger_cfg = get_trainer_logger(lightning_config, workdir, args.debug)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
## setup callbacks
callbacks_cfg = get_trainer_callbacks(
lightning_config, config, workdir, ckptdir, logger
)
trainer_kwargs["callbacks"] = [
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
]
strategy_cfg = get_trainer_strategy(lightning_config)
trainer_kwargs["strategy"] = (
strategy_cfg
if type(strategy_cfg) == str
else instantiate_from_config(strategy_cfg)
)
trainer_kwargs["precision"] = lightning_config.get("precision", "bf16")
trainer_kwargs["sync_batchnorm"] = False
## trainer config: others
if (
"train" in config.data.params
and config.data.params.train.target == "lvdm.data.hdvila.HDVila"
or (
"validation" in config.data.params
and config.data.params.validation.target == "lvdm.data.hdvila.HDVila"
)
):
trainer_kwargs["replace_sampler_ddp"] = False
## for debug
# trainer_kwargs["fast_dev_run"] = 10
# trainer_kwargs["limit_train_batches"] = 1./32
# trainer_kwargs["limit_val_batches"] = 0.01
# trainer_kwargs["val_check_interval"] = 20 #float: epoch ratio | integer: batch num
trainer_args = argparse.Namespace(**trainer_config)
trainer = Trainer.from_argparse_args(trainer_args, **trainer_kwargs)
## allow checkpointing via USR1
def melk(*args, **kwargs):
## run all checkpoint hooks
if trainer.global_rank == 0:
print("Summoning checkpoint.")
ckpt_path = os.path.join(ckptdir, "last_summoning.ckpt")
trainer.save_checkpoint(ckpt_path)
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb
pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
## Running LOOP >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
logger.info("***** Running the Loop *****")
if args.train:
try:
if "strategy" in lightning_config:
logger.info("<Training in DeepSpeed Mode>")
## deepspeed
with torch.cuda.amp.autocast():
trainer.fit(model, data)
else:
logger.info("<Training in DDPShare Mode>")
## ddpshare
trainer.fit(model, data)
except Exception:
# melk()
raise
if args.val:
trainer.validate(model, data)
if args.test or not trainer.interrupted:
trainer.test(model, data)