-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
283 lines (203 loc) Β· 11.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from flask import Flask, render_template, Response
import cv2
import mediapipe as mp
import math
import matplotlib.pyplot as plt
# Initialize Flask app
app = Flask(__name__)
# Initialize mediapipe pose class
mp_pose = mp.solutions.pose
# Setting up the Pose function
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
# Initializing mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils
def detectPose(image, pose, display=True):
'''
This function performs pose detection on an image.
Args:
image: The input image with a prominent person whose pose landmarks needs to be detected.
pose: The pose setup function required to perform the pose detection.
display: A boolean value that is if set to true the function displays the original input image, the resultant image,
and the pose landmarks in 3D plot and returns nothing.
Returns:
output_image: The input image with the detected pose landmarks drawn.
landmarks: A list of detected landmarks converted into their original scale.
'''
# Create a copy of the input image.
output_image = image.copy()
# Convert the image from BGR into RGB format.
imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Perform the Pose Detection.
results = pose.process(imageRGB)
# Retrieve the height and width of the input image.
height, width, _ = image.shape
# Initialize a list to store the detected landmarks.
landmarks = []
# Check if any landmarks are detected.
if results.pose_landmarks:
# Draw Pose landmarks on the output image.
mp_drawing.draw_landmarks(image=output_image, landmark_list=results.pose_landmarks,
connections=mp_pose.POSE_CONNECTIONS)
# Iterate over the detected landmarks.
for landmark in results.pose_landmarks.landmark:
# Append the landmark into the list.
landmarks.append((int(landmark.x * width), int(landmark.y * height),
(landmark.z * width)))
return output_image,landmarks
def calculateAngle(landmark1, landmark2, landmark3):
'''
This function calculates angle between three different landmarks.
Args:
landmark1: The first landmark containing the x,y and z coordinates.
landmark2: The second landmark containing the x,y and z coordinates.
landmark3: The third landmark containing the x,y and z coordinates.
Returns:
angle: The calculated angle between the three landmarks.
'''
# Get the required landmarks coordinates.
x1, y1, _ = landmark1
x2, y2, _ = landmark2
x3, y3, _ = landmark3
# Calculate the angle between the three points
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))
# Check if the angle is less than zero.
if angle < 0:
# Add 360 to the found angle.
angle += 360
# Return the calculated angle.
return angle
def classifyPose(landmarks, output_image, display=False):
'''
This function classifies yoga poses depending upon the angles of various body joints.
Args:
landmarks: A list of detected landmarks of the person whose pose needs to be classified.
output_image: A image of the person with the detected pose landmarks drawn.
display: A boolean value that is if set to true the function displays the resultant image with the pose label
written on it and returns nothing.
Returns:
output_image: The image with the detected pose landmarks drawn and pose label written.
label: The classified pose label of the person in the output_image.
'''
# Initialize the label of the pose. It is not known at this stage.
label = 'Unknown Pose'
# Specify the color (Red) with which the label will be written on the image.
color = (0, 0, 255)
# Calculate the required angles.
#----------------------------------------------------------------------------------------------------------------
# Get the angle between the left shoulder, elbow and wrist points.
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
# Get the angle between the right shoulder, elbow and wrist points.
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
# Get the angle between the left elbow, shoulder and hip points.
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
# Get the angle between the right hip, shoulder and elbow points.
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
# Get the angle between the left hip, knee and ankle points.
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
# Get the angle between the right hip, knee and ankle points
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
#----------------------------------------------------------------------------------------------------------------
# Check if it is the warrior II pose or the T pose.
# As for both of them, both arms should be straight and shoulders should be at the specific angle.
#----------------------------------------------------------------------------------------------------------------
if (165 < left_knee_angle < 195) and (165 < right_knee_angle < 195) \
and (130 < left_elbow_angle < 180) and (175 < right_elbow_angle < 220) \
and (100 < left_shoulder_angle < 200) and (50 < right_shoulder_angle < 130):
# Specify the label of the pose as Trikonasana Pose
label = 'T Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if the both arms are straight.
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195:
# Check if shoulders are at the required angle.
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110:
# Check if it is the warrior II pose.
#----------------------------------------------------------------------------------------------------------------
# Check if one leg is straight.
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
# Check if the other leg is bended at the required angle.
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120:
# Specify the label of the pose that is Warrior II pose.
label = 'Warrior II Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if it is the T pose.
#----------------------------------------------------------------------------------------------------------------
# Check if both legs are straight
# if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195:
# # Specify the label of the pose that is tree pose.
# label = 'T Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if it is the tree pose.
#----------------------------------------------------------------------------------------------------------------
# Check if one leg is straight
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
# Check if the other leg is bended at the required angle.
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45:
# Specify the label of the pose that is tree pose.
label = 'Tree Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if the pose is classified successfully
if label != 'Unknown Pose':
# Update the color (to green) with which the label will be written on the image.
color = (0, 255, 0)
# Write the label on the output image.
cv2.putText(output_image, label, (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
# Check if the resultant image is specified to be displayed.
if display:
# Display the resultant image.
plt.figure(figsize=[10,10])
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
else:
# Return the output image and the classified label.
return output_image, label
# Release the VideoCapture object and close the windows
def webcam_feed():
# Initialize the VideoCapture object to read from the webcam
camera_video = cv2.VideoCapture(0)
camera_video.set(3, 1380)
camera_video.set(4, 960)
while camera_video.isOpened():
# Read a frame
ok, frame = camera_video.read()
if not ok:
continue
# Flip the frame horizontally for natural (selfie-view) visualization
frame = cv2.flip(frame, 1)
# Get the width and height of the frame
frame_height, frame_width, _ = frame.shape
# Resize the frame while keeping the aspect ratio
frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
# Perform Pose landmark detection
frame, landmarks = detectPose(frame, pose, display=False)
if landmarks:
# Perform the Pose Classification
frame, _ = classifyPose(landmarks, frame, display=False)
# Convert the frame to JPEG format
ret, jpeg = cv2.imencode('.jpg', frame)
frame = jpeg.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
camera_video.release()
cv2.destroyAllWindows()
@app.route('/')
def index():
return render_template('index.html')
@app.route('/yoga_try')
def yoga_try():
return render_template('yoga_try.html')
@app.route('/video_feed1')
def video_feed1():
return Response(webcam_feed(), mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
app.run(debug=True)