-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_leakgan.py
147 lines (130 loc) · 3.55 KB
/
run_leakgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*- coding: utf-8 -*-
# @Author : William
# @Project : TextGAN-william
# @FileName : run_leakgan.py
# @Time : Created at 2019-05-27
# @Blog : http://zhiweil.ml/
# @Description :
# Copyrights (C) 2018. All Rights Reserved.
import sys
from subprocess import call
import os
# Job id and gpu_id
if len(sys.argv) > 2:
job_id = int(sys.argv[1])
gpu_id = str(sys.argv[2])
print('job_id: {}, gpu_id: {}'.format(job_id, gpu_id))
elif len(sys.argv) > 1:
job_id = int(sys.argv[1])
gpu_id = 0
print('job_id: {}, missing gpu_id (use default {})'.format(job_id, gpu_id))
else:
job_id = 0
gpu_id = 0
print('Missing argument: job_id and gpu_id. Use default job_id: {}, gpu_id: {}'.format(job_id, gpu_id))
# Executables
executable = 'python' # specify your own python interpreter path here
rootdir = './'
scriptname = 'main.py'
# ===Program===
if_test = int(False)
run_model = 'leakgan'
CUDA = int(True)
oracle_pretrain = int(True)
gen_pretrain = int(False)
dis_pretrain = int(False)
MLE_train_epoch = 8 #8
ADV_train_epoch = 10 #200 official, changed to 100
inter_epoch = 10 #10
tips = 'LeakGAN experiments'
# ===Oracle or Real===
if_real_data = [int(False), int(True), int(True)]
dataset = ['oracle', 'image_coco', 'emnlp_news']
vocab_size = [5000, 4683, 5256]
# ===Basic Param===
data_shuffle = int(False)
model_type = 'vanilla'
gen_init = 'normal'
dis_init = 'uniform'
samples_num = 10000
batch_size = 64
max_seq_len = 20
gen_lr = 0.0015
dis_lr = 1e-2
pre_log_step = 1
adv_log_step = 1
# ===Generator===
ADV_g_step = 2 #changed to 2 from 1
rollout_num = 4
gen_embed_dim = 32
gen_hidden_dim = 32
goal_size = 16
step_size = 4
# ===Discriminator===
d_step = 3#5
d_epoch = 2#3
ADV_d_step = 2#5
ADV_d_epoch = 2#3
dis_embed_dim = 64
dis_hidden_dim = 64
# ===Metrics===
use_nll_oracle = int(True)
use_nll_gen = int(True)
use_nll_div = int(True)
use_bleu = int(True)
use_self_bleu = int(True)
use_ppl = int(False)
args = [
# Program
'--if_test', if_test,
'--run_model', run_model,
'--cuda', CUDA,
# '--device', gpu_id, # comment for auto GPU
'--ora_pretrain', oracle_pretrain,
'--gen_pretrain', gen_pretrain,
'--dis_pretrain', dis_pretrain,
'--mle_epoch', MLE_train_epoch,
'--adv_epoch', ADV_train_epoch,
'--inter_epoch', inter_epoch,
'--tips', tips,
# Oracle or Real
'--if_real_data', if_real_data[job_id],
'--dataset', dataset[job_id],
'--vocab_size', vocab_size[job_id],
# Basic Param
'--shuffle', data_shuffle,
'--model_type', model_type,
'--gen_init', gen_init,
'--dis_init', dis_init,
'--samples_num', samples_num,
'--batch_size', batch_size,
'--max_seq_len', max_seq_len,
'--gen_lr', gen_lr,
'--dis_lr', dis_lr,
'--pre_log_step', pre_log_step,
'--adv_log_step', adv_log_step,
# Generator
'--adv_g_step', ADV_g_step,
'--rollout_num', rollout_num,
'--gen_embed_dim', gen_embed_dim,
'--gen_hidden_dim', gen_hidden_dim,
'--goal_size', goal_size,
'--step_size', step_size,
# Discriminator
'--d_step', d_step,
'--d_epoch', d_epoch,
'--adv_d_step', ADV_d_step,
'--adv_d_epoch', ADV_d_epoch,
'--dis_embed_dim', dis_embed_dim,
'--dis_hidden_dim', dis_hidden_dim,
# Metrics
'--use_nll_oracle', use_nll_oracle,
'--use_nll_gen', use_nll_gen,
'--use_nll_div', use_nll_div,
'--use_bleu', use_bleu,
'--use_self_bleu', use_self_bleu,
'--use_ppl', use_ppl,
]
args = list(map(str, args))
my_env = os.environ.copy()
call([executable, scriptname] + args, env=my_env, cwd=rootdir)