Skip to content

Latest commit

 

History

History
86 lines (72 loc) · 3.99 KB

README_cn.md

File metadata and controls

86 lines (72 loc) · 3.99 KB

简体中文 | English

DeepSORT (Deep Cosine Metric Learning for Person Re-identification)

内容

简介

DeepSORT(Deep Cosine Metric Learning SORT) 扩展了原有的SORT(Simple Online and Realtime Tracking)算法,增加了一个CNN模型用于在检测器限定的人体部分图像中提取特征,在深度外观描述的基础上整合外观信息,将检出的目标分配和更新到已有的对应轨迹上即进行一个ReID重识别任务。DeepSORT所需的检测框可以由任意一个检测器来生成,然后读入保存的检测结果和视频图片即可进行跟踪预测。ReID模型此处选择PaddleClas提供的PCB+Pyramid ResNet101模型。

模型库

DeepSORT在MOT-16 Training Set上结果

骨干网络 输入尺寸 MOTA IDF1 IDS FP FN FPS 下载链接 配置文件
ResNet101 1088x608 72.2 60.5 998 8054 21644 - 下载链接 配置文件

DeepSORT在MOT-16 Test Set上结果

骨干网络 输入尺寸 MOTA IDF1 IDS FP FN FPS 下载链接 配置文件
ResNet101 1088x608 64.1 53.0 1024 12457 51919 - 下载链接 配置文件

注意: DeepSORT不需要训练MOT数据集,只用于评估。在使用DeepSORT模型评估之前,应该首先通过一个检测模型得到检测结果,然后像这样准备好结果文件:

det_results_dir
   |——————MOT16-02.txt
   |——————MOT16-04.txt
   |——————MOT16-05.txt
   |——————MOT16-09.txt
   |——————MOT16-10.txt
   |——————MOT16-11.txt
   |——————MOT16-13.txt

对于MOT16数据集,可以下载PaddleDetection提供的det_results_dir.zip并解压:

wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip

其中每个txt是每个视频中所有图片的检测结果,每行都描述一个边界框,格式如下:

[frame_id],[identity],[bb_left],[bb_top],[width],[height],[conf]

注意:

  • frame_id是图片帧的序号
  • identity是目标id采用默认值为-1
  • bb_left是目标框的左边界的x坐标
  • bb_top是目标框的上边界的y坐标
  • width,height是真实的像素宽高
  • conf是目标得分设置为1(已经按检测的得分阈值筛选出的检测结果)

快速开始

1. 评估

# 加载检测结果文件得到跟踪结果
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml --det_results_dir {your detection results}

引用

@inproceedings{Wojke2017simple,
  title={Simple Online and Realtime Tracking with a Deep Association Metric},
  author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
  booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
  year={2017},
  pages={3645--3649},
  organization={IEEE},
  doi={10.1109/ICIP.2017.8296962}
}

@inproceedings{Wojke2018deep,
  title={Deep Cosine Metric Learning for Person Re-identification},
  author={Wojke, Nicolai and Bewley, Alex},
  booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
  year={2018},
  pages={748--756},
  organization={IEEE},
  doi={10.1109/WACV.2018.00087}
}