forked from jinyeying/night-enhancement
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
69 lines (56 loc) · 3.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from ENHANCENET import ENHANCENET
import argparse
from utils import *
def parse_args():
desc = "Pytorch implementation of NightImageEnhancement"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--phase', type=str, default='test', help='[train / test]')
parser.add_argument('--dataset', type=str, default='LOL', help='dataset_name')
parser.add_argument('--datasetpath', type=str, default='LOL', help='dataset_path')
parser.add_argument('--iteration', type=int, default=900000, help='The number of training iterations')
parser.add_argument('--batch_size', type=int, default=1, help='The size of batch size')
parser.add_argument('--print_freq', type=int, default=1000, help='The number of image print freq')
parser.add_argument('--save_freq', type=int, default=100000, help='The number of model save freq')
parser.add_argument('--decay_flag', type=str2bool, default=True, help='The decay_flag')
parser.add_argument('--lr', type=float, default=0.0001, help='The learning rate')
parser.add_argument('--weight_decay', type=float, default=0.0001, help='The weight decay')
parser.add_argument('--atten_weight', type=int, default=0.5, help='Weight for Attention Loss')
parser.add_argument('--use_gray_feat_loss', type=str2bool, default=True, help='use Structure and HF-Features Consistency Losses')
parser.add_argument('--feat_weight', type=int, default=1, help='Weight for Structure and HF-Features Consistency Losses')
parser.add_argument('--adv_weight', type=int, default=1, help='Weight for GAN Loss')
parser.add_argument('--identity_weight', type=int, default=5, help='Weight for Identity Loss')
parser.add_argument('--ch', type=int, default=64, help='base channel number per layer')
parser.add_argument('--n_res', type=int, default=4, help='The number of resblock')
parser.add_argument('--n_dis', type=int, default=6, help='The number of discriminator layer')
parser.add_argument('--img_size', type=int, default=512, help='The training size of image')
parser.add_argument('--img_ch', type=int, default=3, help='The size of image channel')
parser.add_argument('--result_dir', type=str, default='results', help='Directory name to save the results')
parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda'], help='Set gpu mode; [cpu, cuda]')
parser.add_argument('--benchmark_flag', type=str2bool, default=False)
parser.add_argument('--resume', type=str2bool, default=True)
parser.add_argument('--im_suf_A', type=str, default='.png', help='The suffix of test images [.png / .jpg]')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
check_folder(os.path.join(args.result_dir, args.dataset, 'model'))
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
args = parse_args()
if args is None:
exit()
gan = ENHANCENET(args)
gan.build_model()
if args.phase == 'test' :
gan.test()
print(" Test finished!")
if __name__ == '__main__':
main()