diff --git a/notebooks/2_match_households_and_individuals.ipynb b/notebooks/2_match_households_and_individuals.ipynb index 05e5b85..1b010dc 100644 --- a/notebooks/2_match_households_and_individuals.ipynb +++ b/notebooks/2_match_households_and_individuals.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -67,364 +67,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idhouseholdworkplacelocationeventsweekday_diariesweekend_diariesorig_pidid_tus_hhid_tus_ppid_hsmsoaoamembersbmihas_cardiovascular_diseasehas_diabeteshas_high_blood_pressurenumber_medicationsself_assessed_healthlife_satisfactionsic1d2007sic2d2007soc2010pwkstatsalary_yearlysalary_hourlyhidaccommodation_typecommunal_typenum_roomscentral_heattenurenum_carssexage_yearsethnicitynssec8
000NaN{'x': -1.7892179489135742, 'y': 53.91915130615...{'concert_f': 1.2791347489984115e-31, 'concert...[1583, 13161][1582, 13160]E02002183_0001_0011129121812905399E02002183E00053954[0]24.879356FalseFalseFalseNaN3.02.0J58.01115.06NaNNaNE02002183_00011.0NaN2.0True2.0218611.0
111NaN{'x': -1.8262380361557007, 'y': 53.92028045654...{'concert_f': 9.743248151956307e-21, 'concert_...[2900, 4948, 4972, 7424, 10284, 10586, 12199, ...[2901, 4949, 4973, 7425, 10285, 10585, 12198, ...E02002183_0002_0011729121912905308E02002183E00053953[1, 2]27.491207FalseFalseTrueNaN3.0NaNC25.01121.06NaNNaNE02002183_00023.0NaN6.0True2.0217431.0
221NaN{'x': -1.8262380361557007, 'y': 53.92028045654...{'concert_f': 8.46716103992468e-16, 'concert_f...[3010, 6389, 9448, 10184, 11598][3011, 6388, 9447, 10183, 11599]E02002183_0002_0021707071322907681E02002183E00053953[1, 2]17.310829FalseTrueTrueNaN2.04.0P85.02311.06NaNNaNE02002183_00023.0NaN6.0True2.0226812.0
33256126.0{'x': -1.8749940395355225, 'y': 53.94298934936...{'concert_f': 1.8844366073608398, 'concert_fs'...[366, 867, 2096, 3678, 5212, 5450, 8145, 9254,...[365, 868, 2097, 3677, 5213, 5451, 8146, 9253,...E02002183_0003_0012031031312902817E02002183E00053689[3, 4]20.852091FalseFalseFalseNaN2.01.0C31.03422.0132857.85937514.360952E02002183_00033.0NaN6.0True2.0112714.0
442NaN{'x': -1.8749940395355225, 'y': 53.94298934936...{'concert_f': 4.877435207366943, 'concert_fs':...[1289, 12528, 12870][1288, 12529, 12871]E02002183_0003_0021301090932900884E02002183E00053689[3, 4]20.032526FalseFalseFalse1.02.03.0J62.07214.0118162.4511729.439944E02002183_00033.0NaN6.0True2.0122616.0
\n", - "
" - ], - "text/plain": [ - " id household workplace \\\n", - "0 0 0 NaN \n", - "1 1 1 NaN \n", - "2 2 1 NaN \n", - "3 3 2 56126.0 \n", - "4 4 2 NaN \n", - "\n", - " location \\\n", - "0 {'x': -1.7892179489135742, 'y': 53.91915130615... \n", - "1 {'x': -1.8262380361557007, 'y': 53.92028045654... \n", - "2 {'x': -1.8262380361557007, 'y': 53.92028045654... \n", - "3 {'x': -1.8749940395355225, 'y': 53.94298934936... \n", - "4 {'x': -1.8749940395355225, 'y': 53.94298934936... \n", - "\n", - " events \\\n", - "0 {'concert_f': 1.2791347489984115e-31, 'concert... \n", - "1 {'concert_f': 9.743248151956307e-21, 'concert_... \n", - "2 {'concert_f': 8.46716103992468e-16, 'concert_f... \n", - "3 {'concert_f': 1.8844366073608398, 'concert_fs'... \n", - "4 {'concert_f': 4.877435207366943, 'concert_fs':... \n", - "\n", - " weekday_diaries \\\n", - "0 [1583, 13161] \n", - "1 [2900, 4948, 4972, 7424, 10284, 10586, 12199, ... \n", - "2 [3010, 6389, 9448, 10184, 11598] \n", - "3 [366, 867, 2096, 3678, 5212, 5450, 8145, 9254,... \n", - "4 [1289, 12528, 12870] \n", - "\n", - " weekend_diaries orig_pid \\\n", - "0 [1582, 13160] E02002183_0001_001 \n", - "1 [2901, 4949, 4973, 7425, 10285, 10585, 12198, ... E02002183_0002_001 \n", - "2 [3011, 6388, 9447, 10183, 11599] E02002183_0002_002 \n", - "3 [365, 868, 2097, 3677, 5213, 5451, 8146, 9253,... E02002183_0003_001 \n", - "4 [1288, 12529, 12871] E02002183_0003_002 \n", - "\n", - " id_tus_hh id_tus_p pid_hs msoa oa members bmi \\\n", - "0 11291218 1 2905399 E02002183 E00053954 [0] 24.879356 \n", - "1 17291219 1 2905308 E02002183 E00053953 [1, 2] 27.491207 \n", - "2 17070713 2 2907681 E02002183 E00053953 [1, 2] 17.310829 \n", - "3 20310313 1 2902817 E02002183 E00053689 [3, 4] 20.852091 \n", - "4 13010909 3 2900884 E02002183 E00053689 [3, 4] 20.032526 \n", - "\n", - " has_cardiovascular_disease has_diabetes has_high_blood_pressure \\\n", - "0 False False False \n", - "1 False False True \n", - "2 False True True \n", - "3 False False False \n", - "4 False False False \n", - "\n", - " number_medications self_assessed_health life_satisfaction sic1d2007 \\\n", - "0 NaN 3.0 2.0 J \n", - "1 NaN 3.0 NaN C \n", - "2 NaN 2.0 4.0 P \n", - "3 NaN 2.0 1.0 C \n", - "4 1.0 2.0 3.0 J \n", - "\n", - " sic2d2007 soc2010 pwkstat salary_yearly salary_hourly hid \\\n", - "0 58.0 1115.0 6 NaN NaN E02002183_0001 \n", - "1 25.0 1121.0 6 NaN NaN E02002183_0002 \n", - "2 85.0 2311.0 6 NaN NaN E02002183_0002 \n", - "3 31.0 3422.0 1 32857.859375 14.360952 E02002183_0003 \n", - "4 62.0 7214.0 1 18162.451172 9.439944 E02002183_0003 \n", - "\n", - " accommodation_type communal_type num_rooms central_heat tenure \\\n", - "0 1.0 NaN 2.0 True 2.0 \n", - "1 3.0 NaN 6.0 True 2.0 \n", - "2 3.0 NaN 6.0 True 2.0 \n", - "3 3.0 NaN 6.0 True 2.0 \n", - "4 3.0 NaN 6.0 True 2.0 \n", - "\n", - " num_cars sex age_years ethnicity nssec8 \n", - "0 2 1 86 1 1.0 \n", - "1 2 1 74 3 1.0 \n", - "2 2 2 68 1 2.0 \n", - "3 1 1 27 1 4.0 \n", - "4 1 2 26 1 6.0 " - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Read in the spc data (parquet format)\n", "spc = pd.read_parquet('../data/external/spc_output/' + region + '_people_hh.parquet')\n", @@ -433,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -447,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -470,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -487,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -539,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -587,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -635,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -658,7 +303,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -678,7 +323,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -830,7 +475,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -851,34 +496,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAIjCAYAAABViau2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYkklEQVR4nO3de3zP9f//8fs23tuYHRy2WdjmkOMoFCsk9jEsIZ9PSA4lKlTyKaVP0emTUkkkOqJP5FBIhOb8CR8iZ1oOk4oNsc2cNvb8/eG319fbhh3e7O212/VyeV8u7fV6vl7vx+u16fG+v18nD2OMEQAAAAAAsC3Poi4AAAAAAABcW4R/AAAAAABsjvAPAAAAAIDNEf4BAAAAALA5wj8AAAAAADZH+AcAAAAAwOYI/wAAAAAA2BzhHwAAAAAAmyP8AwAAAABgc4R/oBBatmypli1bFnUZbi8iIkJ9+vRx6TrXr18vh8Oh3377zaXrvdTLL78sDw8Pp2kF3Z7JkyfLw8ND+/fvv+rYa7HPLtWnTx9FRETka5lFixbJz89PR44cuTZFAYAboL/nzY3c34tSy5YtVa9ePZeu08PDQy+//PJVx+X2ueZqdu7cqRIlSmj79u0FrA7ugvCPYmXbtm36+9//rvDwcPn4+Oimm27S3/72N40bN66oS0M+/etf/1L37t0VHh5uTbsWzRTO2rZtq+rVq2vkyJFFXQoAWOjv9pHf/r5//355eHjonXfeuV4lFjt16tRRXFychg8fXtSloJAI/yg21qxZo8aNG2vLli3q16+fPvjgAz3yyCPy9PTU+++/X9TlIR82b96sJUuW6LHHHiuS909ISNAnn3yS7+V69uyp06dPO32guRE9+uij+uijj3TixImiLgUA6O82UtT9HZf32GOPac6cOdq7d29Rl4JCKFHUBQDXy7///W8FBATop59+UmBgoNO8w4cPF01RFzl37pyysrLkcDiKuhSXMMbozJkz8vX1dfm6J02apCpVqqhp06YuX3deeHt7F2g5Ly8veXl5ubia669Lly564oknNGvWLD388MNFXQ6AYo7+fn3Zub/j8mJiYhQUFKQpU6bo1VdfLepyUEAc+UexsXfvXtWtWzfHBwNJCg4Odvp50qRJatWqlYKDg+Xt7a06depowoQJV32PjIwMDR8+XI0aNVJAQIBKly6t5s2ba/ny5U7jLj5FbcyYMapWrZq8vb21fv16lS5dWk899VSOdf/xxx/y8vK67OnWxhhFRESoY8eOOeadOXNGAQEBevTRR61pZ8+e1YgRI1S9enV5e3urcuXKGjp0qM6ePVugfREREaF77rlHixcvVuPGjeXr66uPPvoox7h9+/bJw8ND7733Xo55a9askYeHh7766qtctzHb3Llz1apVqzxds+bh4aFBgwZp7ty5qlevnry9vVW3bl0tWrQox9gff/xRt912m3x8fFStWrVc68/e1uxrHDds2CAPDw9NmTIlx7jFixfLw8ND8+fPl5T7Nf/GGL3++uuqVKmSSpUqpbvvvls7duzIsa7LXaOX2zq//fZbxcXFKSwsTN7e3qpWrZpee+01nT9//kq7SpI0ffp0NWrUSGXKlJG/v7+ioqJyHDkLDg5W/fr19e233151fQBwrdHfi2d/v5p9+/bpH//4h8qWLatSpUqpadOmWrBggdOYy92LZ8WKFfLw8NCKFSusabt371aXLl0UGhoqHx8fVapUSd26dVNqaqrTsl9++aUaNWokX19flS1bVt26ddPvv/+ea407d+7U3XffrVKlSummm27SqFGjcow5fPiw+vbtq5CQEPn4+KhBgwa5fubITV4/18THx6tZs2YKDAyUn5+fatasqRdeeMFpTMmSJdWyZUt6/w2OI/8oNsLDw7V27Vpt3779qteFT5gwQXXr1tW9996rEiVK6LvvvtOAAQOUlZWlgQMHXna5tLQ0ffrpp+revbv69eunEydO6LPPPlNsbKzWr1+vW265xWn8pEmTdObMGfXv31/e3t6qUqWKOnfurBkzZmj06NFOR4m/+uorGWPUo0ePXN/bw8NDDz74oEaNGqVjx46pbNmy1rzvvvtOaWlpevDBByVJWVlZuvfee/Xjjz+qf//+ql27trZt26b33ntPv/76q+bOnVugfZGQkKDu3bvr0UcfVb9+/VSzZs0cdVatWlV33nmnpk6dqqefftpp3tSpU1WmTJlcP+Bk+/PPP3XgwAE1bNjwsmMu9eOPP2r27NkaMGCAypQpo7Fjx6pLly46cOCAypUrJ+nC9aJt2rRRhQoV9PLLL+vcuXMaMWKEQkJCrrjuxo0bq2rVqpo5c6Z69+7tNG/GjBkKCgpSbGzsZZcfPny4Xn/9dbVv317t27fXzz//rDZt2igjIyPP23epyZMny8/PT0OGDJGfn5+WLVum4cOHKy0tTW+//fZll4uPj1f37t3VunVrvfXWW5KkXbt2afXq1Tk+sDZq1Mjp7wQAigr9vXj09/Pnz+vo0aM5ph8/fjzHtOTkZN1xxx06deqUnnzySZUrV05TpkzRvffeq6+//lqdO3e+bB25ycjIUGxsrM6ePasnnnhCoaGh+vPPPzV//nylpKQoICBA0oWzUF566SXdf//9euSRR3TkyBGNGzdOLVq00KZNm5y+oDp+/Ljatm2r++67T/fff7++/vprPffcc4qKilK7du0kSadPn1bLli21Z88eDRo0SJGRkZo1a5b69OmjlJSUXL9MypbXzzU7duzQPffco/r16+vVV1+Vt7e39uzZo9WrV+dYZ6NGjfTtt98qLS1N/v7++dqHcBMGKCZ++OEH4+XlZby8vEx0dLQZOnSoWbx4scnIyMgx9tSpUzmmxcbGmqpVqzpNu+uuu8xdd91l/Xzu3Dlz9uxZpzHHjx83ISEh5uGHH7amJSYmGknG39/fHD582Gn84sWLjSSzcOFCp+n169d3eq/cJCQkGElmwoQJTtPvvfdeExERYbKysowxxvznP/8xnp6e5r///a/TuIkTJxpJZvXq1da0vO6L8PBwI8ksWrQox/jw8HDTu3dv6+ePPvrISDK7du2ypmVkZJjy5cs7jcvNkiVLjCTz3Xff5Zh31113mbp16zpNk2QcDofZs2ePNW3Lli1Gkhk3bpw1rVOnTsbHx8f89ttv1rSdO3caLy8vc+n/Ki/dnmHDhpmSJUuaY8eOWdPOnj1rAgMDnX7vkyZNMpJMYmKiMcaYw4cPG4fDYeLi4qzfjTHGvPDCC0aS03uMGDEiRx25rdOY3H9njz76qClVqpQ5c+aMNa13794mPDzc+vmpp54y/v7+5ty5czmWv9Qbb7xhJJnk5OSrjgWAa4n+Xjz6u6Qrvt5++21r/ODBg40kp/1w4sQJExkZaSIiIsz58+eNMbn3UGOMWb58uZFkli9fbowxZtOmTUaSmTVr1mXr379/v/Hy8jL//ve/naZv27bNlChRwml69vZ88cUX1rSzZ8+a0NBQ06VLF2vamDFjjCTz5ZdfWtMyMjJMdHS08fPzM2lpadZ0SWbEiBHWz3n9XPPee+8ZSebIkSOX3bZs06ZNM5LMunXrrjoW7onT/lFs/O1vf9PatWt17733asuWLRo1apRiY2N10003ad68eU5jL76OLTU1VUePHtVdd92lffv25Ti962JeXl7WNX1ZWVk6duyYzp07p8aNG+vnn3/OMb5Lly6qUKGC07SYmBiFhYVp6tSp1rTt27dr69at1jf7l3PzzTerSZMmTsseO3ZMCxcuVI8ePazT6GbNmqXatWurVq1aOnr0qPVq1aqVJDmdxpiffREZGXnFo9zZ7r//fvn4+DjVuXjxYh09evSq2/jXX39JkoKCgq76PtliYmJUrVo16+f69evL399f+/btk3ThaMLixYvVqVMnValSxRpXu3btPG1P165dlZmZqdmzZ1vTfvjhB6WkpKhr166XXW7JkiXKyMjQE0884XSK4+DBg/O8bbm5+Hd24sQJHT16VM2bN9epU6f0yy+/XHa5wMBAnTx5UvHx8Vd9j+z9n9tRGAC4nujvxaO/R0REKD4+Psfryy+/zDH2+++/1+23365mzZpZ0/z8/NS/f3/t379fO3fuvOq2XCz7yP7ixYt16tSpXMfMnj1bWVlZuv/++532fWhoqGrUqJHjEhE/Pz+nfeJwOHT77bdbn02ytyM0NFTdu3e3ppUsWVJPPvmk0tPTtXLlylxryc/nmuyzEb799ltlZWVdcT/Q+298hH8UK7fddptmz56t48ePa/369Ro2bJhOnDihv//9706NYPXq1YqJiVHp0qUVGBioChUqWNc+XenDgSRNmTJF9evXl4+Pj8qVK6cKFSpowYIFuS4XGRmZY5qnp6d69OihuXPnWg1m6tSp8vHx0T/+8Y+rbmOvXr20evVq6/m4s2bNUmZmpnr27GmN2b17t3bs2KEKFSo4vW6++WZJzjdIys++yG17chMYGKgOHTpo2rRp1rSpU6fqpptusj6gXI0xJk/jJDk1vmxBQUHWqYJHjhzR6dOnVaNGjRzjcju18VINGjRQrVq1NGPGDGvajBkzVL58+StuT/bv6NL3rVChQr6+3LjUjh071LlzZwUEBMjf318VKlSwPmBc6e93wIABuvnmm9WuXTtVqlRJDz/8cK73RpD+b/+74rpMACgs+vsFdu7vpUuXVkxMTI7XnXfemWPsb7/9lmv/rl27tjU/PyIjIzVkyBB9+umnKl++vGJjYzV+/Hin/bR7924ZY1SjRo0c+3/Xrl05bj5ZqVKlHD304s8m2XXWqFFDnp7Oke1q25GfzzVdu3bVnXfeqUceeUQhISHq1q2bZs6cmesXAfT+Gx/hH8WSw+HQbbfdpjfeeEMTJkxQZmamZs2aJenCjYNat26to0ePavTo0VqwYIHi4+Ot69eu9K3ol19+qT59+qhatWr67LPPtGjRIsXHx6tVq1a5Lne5O+X26tVL6enpmjt3rowxmjZtmu655x7rm+cr6datm0qWLGl96/7ll1+qcePGTv+zz8rKUlRUVK7foMfHx2vAgAEF2hf5ufNvr169tG/fPq1Zs0YnTpzQvHnz1L179xwN7lLZ1+jndo3f5VzuDvv5+QLharp27arly5fr6NGjOnv2rObNm6cuXbqoRAnX3Frlco320pv4paSk6K677tKWLVv06quv6rvvvlN8fLx1Df+V/n6Dg4O1efNmzZs3T/fee6+WL1+udu3a5biXgfR/+798+fIF3SQAcDn6e/Hq74WV194qSe+++662bt2qF154QadPn9aTTz6punXr6o8//pB0YZ95eHhYfxuXvi692d71+GySF76+vlq1apWWLFminj17auvWreratav+9re/5dgP9P4bHzf8Q7HXuHFjSdKhQ4ckXbh5TnZ4u/iI8aWna+Xm66+/VtWqVTV79mynhjJixIh81VSvXj3deuutmjp1qipVqqQDBw5o3LhxeVq2bNmyiouL09SpU9WjRw+tXr1aY8aMcRpTrVo1bdmyRa1bt77it7eF2RdX07ZtW1WoUEFTp05VkyZNdOrUKaejF5dTq1YtSVJiYmKha8hWoUIF+fr6avfu3TnmJSQk5GkdXbt21SuvvKJvvvlGISEhSktLU7du3a64THh4uKQLRwuqVq1qTT9y5EiODz/ZZwKkpKQ43TDo0m/9V6xYob/++kuzZ89WixYtrOl53V8Oh0MdOnRQhw4dlJWVpQEDBuijjz7SSy+9pOrVqzutr3z58jlOawUAd0F/L779PTw8PNf+nX3pW3b/vbi3XuxyR9SjoqIUFRWlF198UWvWrNGdd96piRMn6vXXX1e1atVkjFFkZKR1poUrtmPr1q3Kyspy+vLk0u24VH4/13h6eqp169Zq3bq1Ro8erTfeeEP/+te/tHz5csXExFjjEhMT5enp6bLtw/XHkX8UG8uXL8/129Tvv/9e0v+dBpX9TezFY1NTUzVp0qSrvkduy65bt05r167Nd709e/bUDz/8oDFjxqhcuXLWnV/zuuzOnTv17LPPysvLK0cIvf/++/Xnn3/qk08+ybHs6dOndfLkyctuT173xdWUKFFC3bt318yZMzV58mRFRUWpfv36V13upptuUuXKlbVhw4ZC15DNy8tLsbGxmjt3rg4cOGBN37VrlxYvXpynddSuXVtRUVGaMWOGZsyYoYoVKzqF79zExMSoZMmSGjdunNM+vvTDnCTrngWrVq2ypp08eTLH435y+51lZGToww8/vOo2ZF9vmc3T09P6nVz6iKiNGzcqOjr6qusEgGuN/v5/6O8XtG/fXuvXr3f6/Zw8eVIff/yxIiIiVKdOHUm599bz58/r448/dlpfWlqazp075zQtKipKnp6eVn+877775OXlpVdeeSXH36MxJkePzet2JCUlOV1WeO7cOY0bN05+fn666667cl0uP59rjh07lmP57KdX5Nb769atm6czVeCeOPKPYuOJJ57QqVOn1LlzZ9WqVUsZGRlas2aNZsyYoYiICD300EOSpDZt2lhHPx999FGlp6frk08+UXBwsHX04HLuuecezZ49W507d1ZcXJwSExM1ceJE1alTR+np6fmq94EHHtDQoUM1Z84cPf744ypZsmSel42Li1O5cuU0a9YstWvXLsdzjnv27KmZM2fqscce0/Lly3XnnXfq/Pnz+uWXXzRz5kzrWb6F2Rd50atXL40dO1bLly+3TkvPi44dO2rOnDkyxrjsurNXXnlFixYtUvPmzTVgwACrudatW1dbt27N0zq6du2q4cOHy8fHR3379r3qKY4VKlTQM888o5EjR+qee+5R+/bttWnTJi1cuDDHKXVt2rRRlSpV1LdvX+tD3+eff64KFSo4NfY77rhDQUFB6t27t5588kl5eHjoP//5T55OI3zkkUd07NgxtWrVSpUqVdJvv/2mcePG6ZZbbrGuL5QuXDO6devWKz4WCwCuF/r7/6G/X/D888/rq6++Urt27fTkk0+qbNmymjJlihITE/XNN99Y/blu3bpq2rSphg0bZj1Gcfr06TmC/rJlyzRo0CD94x//0M0336xz587pP//5j7y8vNSlSxdJF75IeP311zVs2DDt379fnTp1UpkyZZSYmKg5c+aof//+euaZZ/K1Hf3799dHH32kPn36aOPGjYqIiNDXX39tnfVRpkyZyy6b1881r776qlatWqW4uDiFh4fr8OHD+vDDD1WpUiWnGyZmZmZq5cqV1qUjuEFdt+cKAEVs4cKF5uGHHza1atUyfn5+xuFwmOrVq5snnngix+PK5s2bZ+rXr298fHxMRESEeeutt8znn3+e43Ewlz4KKCsry7zxxhsmPDzceHt7m1tvvdXMnz8/xyPVsh8FdPFjaXLTvn17I8msWbMm39s7YMAAI8lMmzYt1/kZGRnmrbfeMnXr1jXe3t4mKCjINGrUyLzyyismNTU13/siPDzcxMXF5fpelz4K6GJ169Y1np6e5o8//sjztv388885HuFjzOUf9Tdw4MA81bRy5UrTqFEj43A4TNWqVc3EiRNzfcTe5bZn9+7d1iOHfvzxxxzzc3uk0Pnz580rr7xiKlasaHx9fU3Lli3N9u3bc32PjRs3miZNmhiHw2GqVKliRo8enes6V69ebZo2bWp8fX1NWFiY9dgrXfTYImNyPurv66+/Nm3atDHBwcHWezz66KPm0KFDTnVMmDDBlCpVyukRQwBQVOjvzopLf892uX2+d+9e8/e//90EBgYaHx8fc/vtt5v58+fnWH7v3r0mJibGeHt7m5CQEPPCCy+Y+Ph4p565b98+8/DDD5tq1aoZHx8fU7ZsWXP33XebJUuW5FjfN998Y5o1a2ZKly5tSpcubWrVqmUGDhxoEhISrro9l/49GWNMcnKyeeihh0z58uWNw+EwUVFRZtKkSTmW1SWP+jMmb59rli5dajp27GjCwsKMw+EwYWFhpnv37ubXX391WtfChQuNJLN79+4c740bh4cx1/muEgDyrHPnztq2bZv27NmT72WffvppffbZZ0pKSlKpUqWuQXWuceutt6ps2bJaunRpvpZr3bq1wsLC9J///OcaVYbLufXWW9WyZUu99957RV0KANyQ6O+XR393T506dZKHh4fmzJlT1KWgELjmH3BThw4d0oIFC/J0k5xLnTlzRl9++aW6dOni1h8MNmzYoM2bN6tXr175XvaNN97QjBkz8v24HhTOokWLtHv3bg0bNqyoSwGAGxL9/cro7+5n165dmj9/vl577bWiLgWFxJF/wM0kJiZq9erV+vTTT/XTTz9p7969Cg0NzdOyhw8f1pIlS/T1119r7ty5+vnnn62btriT7du3a+PGjXr33Xd19OhR7du3Tz4+PkVdFgAA1wz9HUBR48g/4GZWrlypnj17KjExUVOmTMnzBwNJ2rlzp/X4n7Fjx7rlBwPpwiOTHnroIWVmZuqrr77igwEAwPbo7wCKGkf+AQAAAACwOY78AwAAAABgc4R/AAAAAABsrkRRF2AXWVlZOnjwoMqUKSMPD4+iLgcAABljdOLECYWFhcnTk+/7C4teDwBwN/np9YR/Fzl48KAqV65c1GUAAJDD77//rkqVKhV1GTc8ej0AwF3lpdcT/l2kTJkyki7sdH9//yKuBgAAKS0tTZUrV7Z6FAqHXg8AcDf56fWEfxfJPv3P39+fDwQAALfCKequQa8HALirvPT6Ir0AcNWqVerQoYPCwsLk4eGhuXPnOs03xmj48OGqWLGifH19FRMTo927dzuNOXbsmHr06CF/f38FBgaqb9++Sk9PdxqzdetWNW/eXD4+PqpcubJGjRqVo5ZZs2apVq1a8vHxUVRUlL7//nuXby8AAAAAAEWhSMP/yZMn1aBBA40fPz7X+aNGjdLYsWM1ceJErVu3TqVLl1ZsbKzOnDljjenRo4d27Nih+Ph4zZ8/X6tWrVL//v2t+WlpaWrTpo3Cw8O1ceNGvf3223r55Zf18ccfW2PWrFmj7t27q2/fvtq0aZM6deqkTp06afv27ddu4wEAAAAAuE48jDGmqIuQLpymMGfOHHXq1EnShaP+YWFh+uc//6lnnnlGkpSamqqQkBBNnjxZ3bp1065du1SnTh399NNPaty4sSRp0aJFat++vf744w+FhYVpwoQJ+te//qWkpCQ5HA5J0vPPP6+5c+fql19+kSR17dpVJ0+e1Pz58616mjZtqltuuUUTJ07MU/1paWkKCAhQamoqpwICANwCvcm12J8AAHeTn97kts/9SUxMVFJSkmJiYqxpAQEBatKkidauXStJWrt2rQIDA63gL0kxMTHy9PTUunXrrDEtWrSwgr8kxcbGKiEhQcePH7fGXPw+2WOy3yc3Z8+eVVpamtMLAADYB70eAGAnbhv+k5KSJEkhISFO00NCQqx5SUlJCg4OdppfokQJlS1b1mlMbuu4+D0uNyZ7fm5GjhypgIAA68WjfwAAsBd6PQDATtw2/Lu7YcOGKTU11Xr9/vvvRV0SAABwIXo9AMBO3PZRf6GhoZKk5ORkVaxY0ZqenJysW265xRpz+PBhp+XOnTunY8eOWcuHhoYqOTnZaUz2z1cbkz0/N97e3vL29i7AlgEAgBsBvR4AYCdue+Q/MjJSoaGhWrp0qTUtLS1N69atU3R0tCQpOjpaKSkp2rhxozVm2bJlysrKUpMmTawxq1atUmZmpjUmPj5eNWvWVFBQkDXm4vfJHpP9PgAAAAAA3MiKNPynp6dr8+bN2rx5s6QLN/nbvHmzDhw4IA8PDw0ePFivv/665s2bp23btqlXr14KCwuznghQu3ZttW3bVv369dP69eu1evVqDRo0SN26dVNYWJgk6YEHHpDD4VDfvn21Y8cOzZgxQ++//76GDBli1fHUU09p0aJFevfdd/XLL7/o5Zdf1oYNGzRo0KDrvUsAAAAAAHC5Ij3tf8OGDbr77rutn7MDee/evTV58mQNHTpUJ0+eVP/+/ZWSkqJmzZpp0aJF8vHxsZaZOnWqBg0apNatW8vT01NdunTR2LFjrfkBAQH64YcfNHDgQDVq1Ejly5fX8OHD1b9/f2vMHXfcoWnTpunFF1/UCy+8oBo1amju3LmqV6/eddgLAAAAAABcWx7GGFPURdgBz/4FALgbepNrsT8BAO4mP73Jba/5BwAAAAAArkH4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsLkSRV0Achfx/IJ8L7P/zbhrUAkAAAAA4EbHkX8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbc+vwf/78eb300kuKjIyUr6+vqlWrptdee03GGGuMMUbDhw9XxYoV5evrq5iYGO3evdtpPceOHVOPHj3k7++vwMBA9e3bV+np6U5jtm7dqubNm8vHx0eVK1fWqFGjrss2AgAAAABwrbl1+H/rrbc0YcIEffDBB9q1a5feeustjRo1SuPGjbPGjBo1SmPHjtXEiRO1bt06lS5dWrGxsTpz5ow1pkePHtqxY4fi4+M1f/58rVq1Sv3797fmp6WlqU2bNgoPD9fGjRv19ttv6+WXX9bHH398XbcXAAAAAIBroURRF3Ala9asUceOHRUXFydJioiI0FdffaX169dLunDUf8yYMXrxxRfVsWNHSdIXX3yhkJAQzZ07V926ddOuXbu0aNEi/fTTT2rcuLEkady4cWrfvr3eeecdhYWFaerUqcrIyNDnn38uh8OhunXravPmzRo9erTTlwQAAAAAANyI3PrI/x133KGlS5fq119/lSRt2bJFP/74o9q1aydJSkxMVFJSkmJiYqxlAgIC1KRJE61du1aStHbtWgUGBlrBX5JiYmLk6empdevWWWNatGghh8NhjYmNjVVCQoKOHz+ea21nz55VWlqa0wsAANgHvR4AYCduHf6ff/55devWTbVq1VLJkiV16623avDgwerRo4ckKSkpSZIUEhLitFxISIg1LykpScHBwU7zS5QoobJlyzqNyW0dF7/HpUaOHKmAgADrVbly5UJuLQAAcCf0egCAnbh1+J85c6amTp2qadOm6eeff9aUKVP0zjvvaMqUKUVdmoYNG6bU1FTr9fvvvxd1SQAAwIXo9QAAO3Hra/6fffZZ6+i/JEVFRem3337TyJEj1bt3b4WGhkqSkpOTVbFiRWu55ORk3XLLLZKk0NBQHT582Gm9586d07Fjx6zlQ0NDlZyc7DQm++fsMZfy9vaWt7d34TcSAAC4JXo9AMBO3PrI/6lTp+Tp6Vyil5eXsrKyJEmRkZEKDQ3V0qVLrflpaWlat26doqOjJUnR0dFKSUnRxo0brTHLli1TVlaWmjRpYo1ZtWqVMjMzrTHx8fGqWbOmgoKCrtn2AQAAAABwPbh1+O/QoYP+/e9/a8GCBdq/f7/mzJmj0aNHq3PnzpIkDw8PDR48WK+//rrmzZunbdu2qVevXgoLC1OnTp0kSbVr11bbtm3Vr18/rV+/XqtXr9agQYPUrVs3hYWFSZIeeOABORwO9e3bVzt27NCMGTP0/vvva8iQIUW16QAAAAAAuIxbn/Y/btw4vfTSSxowYIAOHz6ssLAwPfrooxo+fLg1ZujQoTp58qT69++vlJQUNWvWTIsWLZKPj481ZurUqRo0aJBat24tT09PdenSRWPHjrXmBwQE6IcfftDAgQPVqFEjlS9fXsOHD+cxfwAAAAAAW/AwxpiiLsIO0tLSFBAQoNTUVPn7+xd6fRHPL8j3MvvfjCv0+wIA7MPVvam4Y38CANxNfnqTW5/2DwAAAAAACo/wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHNuH/7//PNPPfjggypXrpx8fX0VFRWlDRs2WPONMRo+fLgqVqwoX19fxcTEaPfu3U7rOHbsmHr06CF/f38FBgaqb9++Sk9PdxqzdetWNW/eXD4+PqpcubJGjRp1XbYPAAAAAIBrza3D//Hjx3XnnXeqZMmSWrhwoXbu3Kl3331XQUFB1phRo0Zp7NixmjhxotatW6fSpUsrNjZWZ86cscb06NFDO3bsUHx8vObPn69Vq1apf//+1vy0tDS1adNG4eHh2rhxo95++229/PLL+vjjj6/r9gIAAAAAcC2UKOoCruStt95S5cqVNWnSJGtaZGSk9d/GGI0ZM0YvvviiOnbsKEn64osvFBISorlz56pbt27atWuXFi1apJ9++kmNGzeWJI0bN07t27fXO++8o7CwME2dOlUZGRn6/PPP5XA4VLduXW3evFmjR492+pIAAAAAAIAbkVsf+Z83b54aN26sf/zjHwoODtatt96qTz75xJqfmJiopKQkxcTEWNMCAgLUpEkTrV27VpK0du1aBQYGWsFfkmJiYuTp6al169ZZY1q0aCGHw2GNiY2NVUJCgo4fP55rbWfPnlVaWprTCwAA2Ae9HgBgJ24d/vft26cJEyaoRo0aWrx4sR5//HE9+eSTmjJliiQpKSlJkhQSEuK0XEhIiDUvKSlJwcHBTvNLlCihsmXLOo3JbR0Xv8elRo4cqYCAAOtVuXLlQm4tAABwJ/R6AICduHX4z8rKUsOGDfXGG2/o1ltvVf/+/dWvXz9NnDixqEvTsGHDlJqaar1+//33oi4JAAC4EL0eAGAnbh3+K1asqDp16jhNq127tg4cOCBJCg0NlSQlJyc7jUlOTrbmhYaG6vDhw07zz507p2PHjjmNyW0dF7/Hpby9veXv7+/0AgAA9kGvBwDYiVuH/zvvvFMJCQlO03799VeFh4dLunDzv9DQUC1dutSan5aWpnXr1ik6OlqSFB0drZSUFG3cuNEas2zZMmVlZalJkybWmFWrVikzM9MaEx8fr5o1azo9WQAAAAAAgBuRW4f/p59+Wv/73//0xhtvaM+ePZo2bZo+/vhjDRw4UJLk4eGhwYMH6/XXX9e8efO0bds29erVS2FhYerUqZOkC2cKtG3bVv369dP69eu1evVqDRo0SN26dVNYWJgk6YEHHpDD4VDfvn21Y8cOzZgxQ++//76GDBlSVJsOAAAAAIDLuPWj/m677TbNmTNHw4YN06uvvqrIyEiNGTNGPXr0sMYMHTpUJ0+eVP/+/ZWSkqJmzZpp0aJF8vHxscZMnTpVgwYNUuvWreXp6akuXbpo7Nix1vyAgAD98MMPGjhwoBo1aqTy5ctr+PDhPOYPAAAAAGALHsYYU9RF2EFaWpoCAgKUmprqkmsCI55fkO9l9r8ZV+j3BQDYh6t7U3HH/gQAuJv89Ca3Pu0fAAAAAAAUHuEfAAAAAACbK1D437dvn6vrAAAAAAAA10iBwn/16tV1991368svv9SZM2dcXRMAAAAAAHChAoX/n3/+WfXr19eQIUMUGhqqRx99VOvXr3d1bQAAAAAAwAUKFP5vueUWvf/++zp48KA+//xzHTp0SM2aNVO9evU0evRoHTlyxNV1AgAAAACAAirUDf9KlCih++67T7NmzdJbb72lPXv26JlnnlHlypXVq1cvHTp0yFV1AgAAAACAAipU+N+wYYMGDBigihUravTo0XrmmWe0d+9excfH6+DBg+rYsaOr6gQAAAAAAAVUoiALjR49WpMmTVJCQoLat2+vL774Qu3bt5en54XvEiIjIzV58mRFRES4slYAAAAAAFAABQr/EyZM0MMPP6w+ffqoYsWKuY4JDg7WZ599VqjiAAAAAABA4RUo/O/evfuqYxwOh3r37l2Q1QMAAAAAABcq0DX/kyZN0qxZs3JMnzVrlqZMmVLoogAAAAAAgOsUKPyPHDlS5cuXzzE9ODhYb7zxRqGLAgAAAAAArlOg8H/gwAFFRkbmmB4eHq4DBw4UuigAAAAAAOA6BQr/wcHB2rp1a47pW7ZsUbly5QpdFAAAAAAAcJ0Chf/u3bvrySef1PLly3X+/HmdP39ey5Yt01NPPaVu3bq5ukYAAAAAAFAIBbrb/2uvvab9+/erdevWKlHiwiqysrLUq1cvrvkHAAAAAMDNFCj8OxwOzZgxQ6+99pq2bNkiX19fRUVFKTw83NX1AQAAAACAQipQ+M9288036+abb3ZVLQAAAAAA4BooUPg/f/68Jk+erKVLl+rw4cPKyspymr9s2TKXFAcAAAAAAAqvQOH/qaee0uTJkxUXF6d69erJw8PD1XUBAAAAAAAXKVD4nz59umbOnKn27du7uh4AAAAAAOBiBXrUn8PhUPXq1V1dCwAAAAAAuAYKFP7/+c9/6v3335cxxtX1AAAAAAAAFyvQaf8//vijli9froULF6pu3boqWbKk0/zZs2e7pDgAAAAAAFB4BQr/gYGB6ty5s6trAQAAAAAA10CBwv+kSZNcXQcAAAAAALhGCnTNvySdO3dOS5Ys0UcffaQTJ05Ikg4ePKj09HSXFQcAAAAAAAqvQEf+f/vtN7Vt21YHDhzQ2bNn9be//U1lypTRW2+9pbNnz2rixImurhMAAAAAABRQgY78P/XUU2rcuLGOHz8uX19fa3rnzp21dOlSlxUHAAAAAAAKr0BH/v/73/9qzZo1cjgcTtMjIiL0559/uqQwAAAAAADgGgU68p+VlaXz58/nmP7HH3+oTJkyhS4KAAAAAAC4ToGO/Ldp00ZjxozRxx9/LEny8PBQenq6RowYofbt27u0QAAAALuKeH5BvsbvfzPuGlUCALC7AoX/d999V7GxsapTp47OnDmjBx54QLt371b58uX11VdfubpGAAAAAABQCAUK/5UqVdKWLVs0ffp0bd26Venp6erbt6969OjhdANAAAAAAABQ9AoU/iWpRIkSevDBB11ZCwAAAAAAuAYKFP6/+OKLK87v1atXgYoBAAAAAACuV6Dw/9RTTzn9nJmZqVOnTsnhcKhUqVKEfwAAAAAA3EiBHvV3/Phxp1d6eroSEhLUrFkzbvgHAAAAAICbKVD4z02NGjX05ptv5jgrAAAAAAAAFC2XhX/pwk0ADx486MpVAgAAAACAQirQNf/z5s1z+tkYo0OHDumDDz7QnXfe6ZLCAAAAAACAaxQo/Hfq1MnpZw8PD1WoUEGtWrXSu+++64q6AAAAAACAixQo/GdlZbm6DgAAAAAAcI249Jp/AAAAAADgfgp05H/IkCF5Hjt69OiCvAUAAAAAAHCRAoX/TZs2adOmTcrMzFTNmjUlSb/++qu8vLzUsGFDa5yHh4drqgQAAAAAAAVWoPDfoUMHlSlTRlOmTFFQUJAk6fjx43rooYfUvHlz/fOf/3RpkQAAAAAAoOAKdM3/u+++q5EjR1rBX5KCgoL0+uuvc7d/AAAAAADcTIHCf1pamo4cOZJj+pEjR3TixIlCFwUAAAAAAFynQOG/c+fOeuihhzR79mz98ccf+uOPP/TNN9+ob9++uu+++1xdIwAAAAAAKIQCXfM/ceJEPfPMM3rggQeUmZl5YUUlSqhv3756++23XVogAAAAAAAonAKF/1KlSunDDz/U22+/rb1790qSqlWrptKlS7u0OAAAAAAAUHgFOu0/26FDh3To0CHVqFFDpUuXljHGVXUBAAAAAAAXKVD4/+uvv9S6dWvdfPPNat++vQ4dOiRJ6tu3L4/5AwAAAADAzRQo/D/99NMqWbKkDhw4oFKlSlnTu3btqkWLFrmsOAAAAAAAUHgFuub/hx9+0OLFi1WpUiWn6TVq1NBvv/3mksIAAAAAAIBrFOjI/8mTJ52O+Gc7duyYvL29C10UAAAAAABwnQKF/+bNm+uLL76wfvbw8FBWVpZGjRqlu+++22XFAQAAAACAwivQaf+jRo1S69attWHDBmVkZGjo0KHasWOHjh07ptWrV7u6RgAAAAAAUAgFOvJfr149/frrr2rWrJk6duyokydP6r777tOmTZtUrVo1V9cIAAAAAAAKId9H/jMzM9W2bVtNnDhR//rXv65FTQAAAAAAwIXyfeS/ZMmS2rp167WoBQAAAAAAXAMFOu3/wQcf1GeffebqWgAAAAAAwDVQoBv+nTt3Tp9//rmWLFmiRo0aqXTp0k7zR48e7ZLiAAAAAABA4eUr/O/bt08RERHavn27GjZsKEn69ddfncZ4eHi4rjoAAAAAAFBo+Qr/NWrU0KFDh7R8+XJJUteuXTV27FiFhIRck+IAAAAAAEDh5euaf2OM088LFy7UyZMnXVoQAAAAAABwrQLd8C/bpV8GAAAAAAAA95Ov8O/h4ZHjmn6u8QcAAAAAwL3l65p/Y4z69Okjb29vSdKZM2f02GOP5bjb/+zZs11XIQAAAAAAKJR8hf/evXs7/fzggw+6tBgAAAAAAOB6+Qr/kyZNulZ1AAAAAACAa6RQN/wDAAAAAADuj/APAAAAAIDNEf4BAAAAALA5wj8AAAAAADZH+AcAAAAAwOYI/wAAAAAA2BzhHwAAAAAAm7uhwv+bb74pDw8PDR482Jp25swZDRw4UOXKlZOfn5+6dOmi5ORkp+UOHDiguLg4lSpVSsHBwXr22Wd17tw5pzErVqxQw4YN5e3trerVq2vy5MnXYYsAAAAAALj2bpjw/9NPP+mjjz5S/fr1naY//fTT+u677zRr1iytXLlSBw8e1H333WfNP3/+vOLi4pSRkaE1a9ZoypQpmjx5soYPH26NSUxMVFxcnO6++25t3rxZgwcP1iOPPKLFixdft+0DAAAAAOBauSHCf3p6unr06KFPPvlEQUFB1vTU1FR99tlnGj16tFq1aqVGjRpp0qRJWrNmjf73v/9Jkn744Qft3LlTX375pW655Ra1a9dOr732msaPH6+MjAxJ0sSJExUZGal3331XtWvX1qBBg/T3v/9d7733XpFsLwAAAAAArnRDhP+BAwcqLi5OMTExTtM3btyozMxMp+m1atVSlSpVtHbtWknS2rVrFRUVpZCQEGtMbGys0tLStGPHDmvMpeuOjY211pGbs2fPKi0tzekFAADsg14PALATtw//06dP188//6yRI0fmmJeUlCSHw6HAwECn6SEhIUpKSrLGXBz8s+dnz7vSmLS0NJ0+fTrXukaOHKmAgADrVbly5QJtHwAAcE/0egCAnbh1+P/999/11FNPaerUqfLx8SnqcpwMGzZMqamp1uv3338v6pIAAIAL0esBAHZSoqgLuJKNGzfq8OHDatiwoTXt/PnzWrVqlT744AMtXrxYGRkZSklJcTr6n5ycrNDQUElSaGio1q9f77Te7KcBXDzm0icEJCcny9/fX76+vrnW5u3tLW9v70JvIwAAcE/0egCAnbj1kf/WrVtr27Zt2rx5s/Vq3LixevToYf13yZIltXTpUmuZhIQEHThwQNHR0ZKk6Ohobdu2TYcPH7bGxMfHy9/fX3Xq1LHGXLyO7DHZ6wAAAAAA4Ebm1kf+y5Qpo3r16jlNK126tMqVK2dN79u3r4YMGaKyZcvK399fTzzxhKKjo9W0aVNJUps2bVSnTh317NlTo0aNUlJSkl588UUNHDjQ+jb/scce0wcffKChQ4fq4Ycf1rJlyzRz5kwtWLDg+m4wAAAAAADXgFuH/7x477335OnpqS5duujs2bOKjY3Vhx9+aM338vLS/Pnz9fjjjys6OlqlS5dW79699eqrr1pjIiMjtWDBAj399NN6//33ValSJX366aeKjY0tik0CAAAAAMClbrjwv2LFCqeffXx8NH78eI0fP/6yy4SHh+v777+/4npbtmypTZs2uaJEAAAAAADciltf8w8AAAAAAAqP8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzbh3+R44cqdtuu01lypRRcHCwOnXqpISEBKcxZ86c0cCBA1WuXDn5+fmpS5cuSk5Odhpz4MABxcXFqVSpUgoODtazzz6rc+fOOY1ZsWKFGjZsKG9vb1WvXl2TJ0++1psHAAAAAMB14dbhf+XKlRo4cKD+97//KT4+XpmZmWrTpo1OnjxpjXn66af13XffadasWVq5cqUOHjyo++67z5p//vx5xcXFKSMjQ2vWrNGUKVM0efJkDR8+3BqTmJiouLg43X333dq8ebMGDx6sRx55RIsXL76u2wsAAAAAwLXgYYwxRV1EXh05ckTBwcFauXKlWrRoodTUVFWoUEHTpk3T3//+d0nSL7/8otq1a2vt2rVq2rSpFi5cqHvuuUcHDx5USEiIJGnixIl67rnndOTIETkcDj333HNasGCBtm/fbr1Xt27dlJKSokWLFuWptrS0NAUEBCg1NVX+/v6F3taI5xfke5n9b8YV+n0BAPbh6t5U3F2L/Znffk+vBwBcLD+9ya2P/F8qNTVVklS2bFlJ0saNG5WZmamYmBhrTK1atVSlShWtXbtWkrR27VpFRUVZwV+SYmNjlZaWph07dlhjLl5H9pjsdeTm7NmzSktLc3oBAAD7oNcDAOzkhgn/WVlZGjx4sO68807Vq1dPkpSUlCSHw6HAwECnsSEhIUpKSrLGXBz8s+dnz7vSmLS0NJ0+fTrXekaOHKmAgADrVbly5UJvIwAAcB/0egCAndww4X/gwIHavn27pk+fXtSlSJKGDRum1NRU6/X7778XdUkAAMCF6PUAADspUdQF5MWgQYM0f/58rVq1SpUqVbKmh4aGKiMjQykpKU5H/5OTkxUaGmqNWb9+vdP6sp8GcPGYS58QkJycLH9/f/n6+uZak7e3t7y9vQu9bQAAwD3R6wEAduLWR/6NMRo0aJDmzJmjZcuWKTIy0ml+o0aNVLJkSS1dutSalpCQoAMHDig6OlqSFB0drW3btunw4cPWmPj4ePn7+6tOnTrWmIvXkT0mex0AAAAAANzI3PrI/8CBAzVt2jR9++23KlOmjHWNfkBAgHx9fRUQEKC+fftqyJAhKlu2rPz9/fXEE08oOjpaTZs2lSS1adNGderUUc+ePTVq1CglJSXpxRdf1MCBA61v8x977DF98MEHGjp0qB5++GEtW7ZMM2fO1IIF+b/jPgAAAAAA7satj/xPmDBBqampatmypSpWrGi9ZsyYYY157733dM8996hLly5q0aKFQkNDNXv2bGu+l5eX5s+fLy8vL0VHR+vBBx9Ur1699Oqrr1pjIiMjtWDBAsXHx6tBgwZ699139emnnyo2Nva6bi8AAAAAANeCWx/5N8ZcdYyPj4/Gjx+v8ePHX3ZMeHi4vv/++yuup2XLltq0aVO+awQAAAAAwN259ZF/AAAAAABQeIR/AAAAAABsjvAPAAAAAIDNEf4BAAAAALA5wj8AAAAAADZH+AcAAAAAwOYI/wAAAAAA2BzhHwAAAAAAmyP8AwAAAABgc4R/AAAAAABsjvAPAAAAAIDNEf4BAAAAALA5wj8AAAAAADZH+AcAAAAAwOZKFHUBAAAAcC8Rzy/I9zL734y7BpUAAFyFI/8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOR71BwAAYGMFeWwfAMB+OPIPAAAAAIDNceQfAAAAhVaQMwz2vxl3DSoBAOSGI/8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzXG3fwAAgBtEQe6oDwCARPgv9ngsDwAAAADYH6f9AwAAAABgc4R/AAAAAABsjvAPAAAAAIDNEf4BAAAAALA5wj8AAAAAADZH+AcAAAAAwOYI/wAAAAAA2BzhHwAAAAAAmytR1AXAdSKeX1DUJQAAAAAA3BBH/gEAAAAAsDmO/CPfCnKGwf43465BJQAAAACAvODIPwAAAAAANseRfwAAABSJ/J5NyJmEAFBwHPkHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJsj/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzfGoP1wXPMoHAAAUVn4/T0h8pgCAbBz5BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBz3PAPAAAAtlWQmwQWBDcWBODuOPIPAAAAAIDNEf4BAAAAALA5wj8AAAAAADZH+AcAAAAAwOa44R/cUkFuzsONdgAAAAAgdxz5BwAAAADA5gj/AAAAAADYHKf9AwAAAIXEJYsA3B1H/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHDf8AwAAAG4Q+b2xIDcVBJCNI/8AAAAAANgcR/5hGzxiBwAAAAByR/gHAAAAikBBDlwAQEFx2j8AAAAAADZH+AcAAAAAwOYI/wAAAAAA2BzX/KNY4yaBAAAAAIoDjvwDAAAAAGBzhH8AAAAAAGyO0/6BfOJSAQAAAAA3GsI/cB3k9wsDviwAAAAA4EqE/0uMHz9eb7/9tpKSktSgQQONGzdOt99+e1GXhWKGswsAAIArFOQzxfXirp9d+BwGu+Ka/4vMmDFDQ4YM0YgRI/Tzzz+rQYMGio2N1eHDh4u6NAAAAAAACowj/xcZPXq0+vXrp4ceekiSNHHiRC1YsECff/65nn/++SKuDriy6/XNPt9sAwCAosKllEDBEf7/v4yMDG3cuFHDhg2zpnl6eiomJkZr167NMf7s2bM6e/as9XNqaqokKS0tzSX1ZJ095ZL1AK5W5elZRV1Ckdr+SmxRlwDkWXZPMsYUcSU3pmvd6yX6PYq36/GZ4np9brHT5yM+69xY8tPrCf//39GjR3X+/HmFhIQ4TQ8JCdEvv/ySY/zIkSP1yiuv5JheuXLla1YjgKIXMKaoKwDy78SJEwoICCjqMm449HoAxRGfdW5Meen1HobDAZKkgwcP6qabbtKaNWsUHR1tTR86dKhWrlypdevWOY2/9GhAVlaWjh07pnLlysnDw6NQtaSlpaly5cr6/fff5e/vX6h12QX7JCf2iTP2R07sk5yK2z4xxujEiRMKCwuTpye3+cmva9nrpeL391ictrc4bavE9tod2+ve8tPrOfL//5UvX15eXl5KTk52mp6cnKzQ0NAc4729veXt7e00LTAw0KU1+fv73xB/cNcT+yQn9okz9kdO7JOcitM+4Yh/wV2PXi8Vr79HqXhtb3HaVonttTu2133ltddzGOD/czgcatSokZYuXWpNy8rK0tKlS53OBAAAAAAA4EbDkf+LDBkyRL1791bjxo11++23a8yYMTp58qR1938AAAAAAG5EhP+LdO3aVUeOHNHw4cOVlJSkW265RYsWLcpxE8BrzdvbWyNGjMhxqmFxxj7JiX3ijP2RE/skJ/YJ3Elx+3ssTttbnLZVYnvtju21D274BwAAAACAzXHNPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/y7ofHjxysiIkI+Pj5q0qSJ1q9fX9Ql5dvLL78sDw8Pp1etWrWs+WfOnNHAgQNVrlw5+fn5qUuXLkpOTnZax4EDBxQXF6dSpUopODhYzz77rM6dO+c0ZsWKFWrYsKG8vb1VvXp1TZ48OUctRbU/V61apQ4dOigsLEweHh6aO3eu03xjjIYPH66KFSvK19dXMTEx2r17t9OYY8eOqUePHvL391dgYKD69u2r9PR0pzFbt25V8+bN5ePjo8qVK2vUqFE5apk1a5Zq1aolHx8fRUVF6fvvv893La5wtX3Sp0+fHH83bdu2dRpjp30ycuRI3XbbbSpTpoyCg4PVqVMnJSQkOI1xp38reamlMPKyP1q2bJnjb+Sxxx5zGmOX/QF7uxF6vd17eXHr08WpBxe3/lrc+ueECRNUv359+fv7y9/fX9HR0Vq4cGG+1n+jbKvLGbiV6dOnG4fDYT7//HOzY8cO069fPxMYGGiSk5OLurR8GTFihKlbt645dOiQ9Tpy5Ig1/7HHHjOVK1c2S5cuNRs2bDBNmzY1d9xxhzX/3Llzpl69eiYmJsZs2rTJfP/996Z8+fJm2LBh1ph9+/aZUqVKmSFDhpidO3eacePGGS8vL7No0SJrTFHuz++//97861//MrNnzzaSzJw5c5zmv/nmmyYgIMDMnTvXbNmyxdx7770mMjLSnD592hrTtm1b06BBA/O///3P/Pe//zXVq1c33bt3t+anpqaakJAQ06NHD7N9+3bz1VdfGV9fX/PRRx9ZY1avXm28vLzMqFGjzM6dO82LL75oSpYsabZt25avWq7HPundu7dp27at09/NsWPHnMbYaZ/ExsaaSZMmme3bt5vNmzeb9u3bmypVqpj09HRrjDv9W7laLddjf9x1112mX79+Tn8jqampttwfsK8bpdfbvZcXtz5dnHpwceuvxa1/zps3zyxYsMD8+uuvJiEhwbzwwgumZMmSZvv27Xla/420ra5G+Hczt99+uxk4cKD18/nz501YWJgZOXJkEVaVfyNGjDANGjTIdV5KSoopWbKkmTVrljVt165dRpJZu3atMeZCg/L09DRJSUnWmAkTJhh/f39z9uxZY4wxQ4cONXXr1nVad9euXU1sbKz1s7vsz0ubbFZWlgkNDTVvv/22NS0lJcV4e3ubr776yhhjzM6dO40k89NPP1ljFi5caDw8PMyff/5pjDHmww8/NEFBQdY+McaY5557ztSsWdP6+f777zdxcXFO9TRp0sQ8+uijea7lWrjcB4+OHTtedhm775PDhw8bSWblypXWe7rLv5W81OJql+4PYy58eHnqqacuu4yd9wfsw11609UUp15e3Pp0cevBxa2/Fsf+GRQUZD799FPb/24Li9P+3UhGRoY2btyomJgYa5qnp6diYmK0du3aIqysYHbv3q2wsDBVrVpVPXr00IEDByRJGzduVGZmptN21qpVS1WqVLG2c+3atYqKilJISIg1JjY2VmlpadqxY4c15uJ1ZI/JXoc778/ExEQlJSU51RYQEKAmTZo47YPAwEA1btzYGhMTEyNPT0+tW7fOGtOiRQs5HA5rTGxsrBISEnT8+HFrzJX2U15quZ5WrFih4OBg1axZU48//rj++usva57d90lqaqokqWzZspLc699KXmpxtUv3R7apU6eqfPnyqlevnoYNG6ZTp05Z8+y8P2AP7tybclNce3lx7dN27cHFrb8Wp/55/vx5TZ8+XSdPnlR0dLTtf7eFVaJI3hW5Onr0qM6fP+/0hyhJISEh+uWXX4qoqoJp0qSJJk+erJo1a+rQoUN65ZVX1Lx5c23fvl1JSUlyOBwKDAx0WiYkJERJSUmSpKSkpFz3Q/a8K41JS0vT6dOndfz4cbfdn9nbkFttF29fcHCw0/wSJUqobNmyTmMiIyNzrCN7XlBQ0GX308XruFot10vbtm113333KTIyUnv37tULL7ygdu3aae3atfLy8rL1PsnKytLgwYN15513ql69elYd7vJvJS+1uFJu+0OSHnjgAYWHhyssLExbt27Vc889p4SEBM2ePfuK25o970pj3Hl/wD5upF5fnHt5cezTdu3Bxa2/Fpf+uW3bNkVHR+vMmTPy8/PTnDlzVKdOHW3evNm2v1tXIPzjmmjXrp313/Xr11eTJk0UHh6umTNnytfXtwgrgzvr1q2b9d9RUVGqX7++qlWrphUrVqh169ZFWNm1N3DgQG3fvl0//vhjUZfiFi63P/r372/9d1RUlCpWrKjWrVtr7969qlat2vUuE7A1ennxYtceXNz6a3HpnzVr1tTmzZuVmpqqr7/+Wr1799bKlSuLuiy3x2n/bqR8+fLy8vLKcQfI5ORkhYaGFlFVrhEYGKibb75Ze/bsUWhoqDIyMpSSkuI05uLtDA0NzXU/ZM+70hh/f3/5+vq69f7Mfv8r1RYaGqrDhw87zT937pyOHTvmkv108fyr1VJUqlatqvLly2vPnj2S7LtPBg0apPnz52v58uWqVKmSNd2d/q3kpRZXudz+yE2TJk0kyelvxG77A/bizr3paopTL6dP26MHF7f+Wpz6p8PhUPXq1dWoUSONHDlSDRo00Pvvv2/b362rEP7diMPhUKNGjbR06VJrWlZWlpYuXaro6OgirKzw0tPTtXfvXlWsWFGNGjVSyZIlnbYzISFBBw4csLYzOjpa27Ztc2oy8fHx8vf3V506dawxF68je0z2Otx5f0ZGRio0NNSptrS0NK1bt85pH6SkpGjjxo3WmGXLlikrK8v6H3Z0dLRWrVqlzMxMa0x8fLxq1qypoKAga8yV9lNeaikqf/zxh/766y9VrFhRkv32iTFGgwYN0pw5c7Rs2bIcp0q607+VvNRSWFfbH7nZvHmzJDn9jdhlf8Ce3Lk3XU1x6uX06Ru7Bxe3/kr/vPA+Z8+etd3v1uWK5DaDuKzp06cbb29vM3nyZLNz507Tv39/ExgY6HQ3yhvBP//5T7NixQqTmJhoVq9ebWJiYkz58uXN4cOHjTEXHntRpUoVs2zZMrNhwwYTHR1toqOjreWzH8HRpk0bs3nzZrNo0SJToUKFXB/B8eyzz5pdu3aZ8ePH5/oIjqLanydOnDCbNm0ymzZtMpLM6NGjzaZNm8xvv/1mjLnwGJvAwEDz7bffmq1bt5qOHTvm+gihW2+91axbt878+OOPpkaNGk6P1ElJSTEhISGmZ8+eZvv27Wb69OmmVKlSOR6pU6JECfPOO++YXbt2mREjRuT6SJ2r1XKt98mJEyfMM888Y9auXWsSExPNkiVLTMOGDU2NGjXMmTNnbLlPHn/8cRMQEGBWrFjh9OidU6dOWWPc6d/K1Wq51vtjz5495tVXXzUbNmwwiYmJ5ttvvzVVq1Y1LVq0sOX+gH3dKL3e7r28uPXp4tSDi1t/LW798/nnnzcrV640iYmJZuvWreb55583Hh4e5ocffsjT+m+kbXU1wr8bGjdunKlSpYpxOBzm9ttvN//73/+KuqR869q1q6lYsaJxOBzmpptuMl27djV79uyx5p8+fdoMGDDABAUFmVKlSpnOnTubQ4cOOa1j//79pl27dsbX19eUL1/e/POf/zSZmZlOY5YvX25uueUW43A4TNWqVc2kSZNy1FJU+3P58uVGUo5X7969jTEXHmXz0ksvmZCQEOPt7W1at25tEhISnNbx119/me7duxs/Pz/j7+9vHnroIXPixAmnMVu2bDHNmjUz3t7e5qabbjJvvvlmjlpmzpxpbr75ZuNwOEzdunXNggULnObnpRZXuNI+OXXqlGnTpo2pUKGCKVmypAkPDzf9+vXL8eHOTvskt30hyenv2J3+reSllmu5Pw4cOGBatGhhypYta7y9vU316tXNs88+6/ScYjvtD9jbjdDr7d7Li1ufLk49uLj11+LWPx9++GETHh5uHA6HqVChgmndurUV/PO6/htlW13NwxhjXH8+AQAAAAAAcBdc8w8AAAAAgM0R/gEAAAAAsDnCPwAAAAAANkf4BwAAAADA5gj/AAAAAADYHOEfAAAAAACbI/wDAAAAAGBzhH8AAAAAAGyO8A8gTyZPnqzAwMCiLuO6K67bDQAofoprzyuu243ih/APFANHjhzR448/ripVqsjb21uhoaGKjY3V6tWri7o0AADgAvR6AFdToqgLAHDtdenSRRkZGZoyZYqqVq2q5ORkLV26VH/99dd1rSMjI0MOh+O6vmdhZGZmFnUJAADkCb2+YOj1KE448g/YXEpKiv773//qrbfe0t13363w8HDdfvvtGjZsmO69915r3OjRoxUVFaXSpUurcuXKGjBggNLT0y+73r1796pjx44KCQmRn5+fbrvtNi1ZssRpTEREhF577TX16tVL/v7+6t+/v1q1aqVBgwY5jTty5IgcDoeWLl2a4332798vT09PbdiwwWn6mDFjFB4erqysLEnS9u3b1a5dO/n5+SkkJEQ9e/bU0aNHrfGLFi1Ss2bNFBgYqHLlyumee+7R3r17nd7Hw8NDM2bM0F133SUfHx9NnTq1QLUAAHA90esvoNcDV0b4B2zOz89Pfn5+mjt3rs6ePXvZcZ6enho7dqx27NihKVOmaNmyZRo6dOhlx6enp6t9+/ZaunSpNm3apLZt26pDhw46cOCA07h33nlHDRo00KZNm/TSSy/pkUce0bRp05xq+fLLL3XTTTepVatWOd4nIiJCMTExmjRpktP0SZMmqU+fPvL09FRKSopatWqlW2+9VRs2bNCiRYuUnJys+++/3xp/8uRJDRkyRBs2bNDSpUvl6empzp0752jizz//vJ566int2rVLsbGx+a4FAIDrjV5/Ab0euAoDwPa+/vprExQUZHx8fMwdd9xhhg0bZrZs2XLFZWbNmmXKlStn/Txp0iQTEBBwxWXq1q1rxo0bZ/0cHh5uOnXq5DTm9OnTJigoyMyYMcOaVr9+ffPyyy9fdr0zZswwQUFB5syZM8YYYzZu3Gg8PDxMYmKiMcaY1157zbRp08Zpmd9//91IMgkJCbmu88iRI0aS2bZtmzHGmMTERCPJjBkzxmncpdt9tVoAACgK9Pqc6PWAM766AoqBLl266ODBg5o3b57atm2rFStWqGHDhpo8ebI1ZsmSJWrdurVuuukmlSlTRj179tRff/2lU6dO5brO9PR0PfPMM6pdu7YCAwPl5+enXbt25Tga0LhxY6effXx81LNnT33++eeSpJ9//lnbt29Xnz59Llt/p06d5OXlpTlz5ki6cFfeu+++WxEREZKkLVu2aPny5daRDz8/P9WqVUuSrNP9du/ere7du6tq1ary9/e3lr1avfmtBQCAokCvp9cDV0P4B4oJHx8f/e1vf9NLL72kNWvWqE+fPhoxYoSkC9e33XPPPapfv76++eYbbdy4UePHj5d04cY9uXnmmWc0Z84cvfHGG/rvf/+rzZs3KyoqKsf40qVL51j2kUceUXx8vP744w9NmjRJrVq1Unh4+GVrdzgc6tWrlyZNmqSMjAxNmzZNDz/8sDU/PT1dHTp00ObNm51eu3fvVosWLSRJHTp00LFjx/TJJ59o3bp1WrduXa7bl1u9+akFAICiQq+n1wNXwt3+gWKqTp06mjt3riRp48aNysrK0rvvvmtdyzZz5swrLr969Wr16dNHnTt3lnShKe/fvz9P7x0VFaXGjRvrk08+0bRp0/TBBx9cdZlHHnlE9erV04cffqhz587pvvvus+Y1bNhQ33zzjSIiIlSiRM7/rf31119KSEjQJ598oubNm0uSfvzxxzzVmt9aAABwF/R6ej1wMY78Azb3119/qVWrVvryyy+1detWJSYmatasWRo1apQ6duwoSapevboyMzM1btw47du3T//5z380ceLEK663Ro0amj17tjZv3qwtW7bogQceyNcdcB955BG9+eabMsZYHyqupHbt2mratKmee+45de/eXb6+vta8gQMH6tixY+revbt++ukn7d27V4sXL9ZDDz2k8+fPKygoSOXKldPHH3+sPXv2aNmyZRoyZEiea81PLQAAXG/0eno9kBeEf8Dm/Pz81KRJE7333ntq0aKF6tWrp5deekn9+vWzvoVv0KCBRo8erbfeekv16tXT1KlTNXLkyCuud/To0QoKCtIdd9yhDh06KDY2Vg0bNsxzXd27d1eJEiXUvXt3+fj45GmZvn37KiMjI8epd2FhYVq9erXOnz+vNm3aKCoqSoMHD1ZgYKA8PT3l6emp6dOna+PGjapXr56efvppvf3223muNT+1AABwvdHr6fVAXngYY0xRFwGg+Nm/f7+qVaumn376Kc8fJF577TXNmjVLW7duvcbV3Vi1AADgjuj1gHvhyD+A6yozM1NJSUl68cUX1bRp0zx9GEhPT9f27dv1wQcf6IknnrgOVd4YtQAA4I7o9YB7IvwDuK5Wr16tihUr6qeffrrqtYbZBg0apEaNGqlly5ZFfuqdO9UCAIA7otcD7onT/gEAAAAAsDmO/AMAAAAAYHOEfwAAAAAAbI7wDwAAAACAzRH+AQAAAACwOcI/AAAAAAA2R/gHAAAAAMDmCP8AAAAAANgc4R8AAAAAAJv7f/vjSyoW9hyFAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Individuals in SPC = 15000\n", - "Individuals without reported income = 9226\n", - "% of individuals with reported income = 38.5\n", - "Individuals with reported income: 0 = 0\n", - "Households in SPC = 6725\n", - "Households without reported income = 4605\n", - "% of households with reported income = 68.5\n", - "Households with reported income: 0 = 4605\n" - ] - } - ], + "outputs": [], "source": [ "# histogram for individuals and households (include NAs as 0)\n", "fig, ax = plt.subplots(1, 2, figsize=(12, 6), sharey=True)\n", @@ -914,7 +534,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -948,30 +568,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAIjCAYAAACpnIB8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXLUlEQVR4nO3deXhMd///8dcEWSxJbEmECKr2JaTK0NYuSNXWXVFVLY22aG13FdWFKg1apYuKLu6qW7lrqQhKi6ANqRRNW02Lkrj9kKAkJOf3R6/M1zQJmZhkcpLn47rmujqf8zln3ufTI595zTlzxmIYhiEAAAAAAGBKbq4uAAAAAAAAFBzBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAyiwhIQE3XvvvQoODpanp6dq1qyp7t2766233rL1qVOnjiwWi+3h5+enO++8U6tXr851m6tXr1avXr1UrVo1ubu7KzAwUPfff7+2bt1aVLsFAAAkRUVFyWKxyNPTU3/++WeO5Z06dVKzZs00ffp0u7k+r0enTp1s665du1YdO3aUn5+fypcvr3r16un+++/Xxo0bi3APgZKjrKsLAGBOu3btUufOnVW7dm2NGDFCAQEBOnbsmHbv3q358+fr6aeftvUNCQnRc889J0k6ceKE3n33XQ0YMECLFi3SyJEjJUmGYeixxx5TVFSUWrVqpXHjxikgIEAnT57U6tWr1bVrV+3cuVPt27d3yf4CAFBapaena9asWXYf3F9rwIABql+/vu35hQsXNGrUKPXv318DBgywtfv7+0uS5syZo/Hjx6tjx46aPHmyypcvr19//VWbN2/WZ599pp49exbuDgElkMUwDMPVRQAwn/DwcH333Xf6+eef5evra7fs1KlT8vPzk/T3GftmzZpp3bp1tuXJycmqX7++atasqcTEREn/N8mPGTNGb775piwWi902P/74YzVs2FC333574e4YAACQ9PcZ+2HDhikkJESHDx/Wb7/9psDAQNvyTp066fTp0/rxxx/t1jt9+rSqV6+uadOmafr06XbLrl69qqpVq6pt27batGlTjte89j0EgPzjUnwABXLkyBE1bdo0R6iXdMMJOSAgQI0bN1ZSUpIk6dKlS5o5c6YaNWqkOXPm5Aj1kjR48GBCPQAALvCvf/1LmZmZmjVr1k1v6/Tp00pLS1OHDh1yXU6oBwqGYA+gQIKDgxUXF5fjU/r8uHLlio4dO6aqVatKknbs2KEzZ87o4YcfVpkyZZxdKgAAuAl169bVkCFD9P777+vEiRM3tS0/Pz95eXlp7dq1OnPmjJMqBECwB1Agzz//vP766y+FhISoffv2mjhxojZt2qQrV67k6HvlyhWdPn1ap0+f1oEDBzRkyBClpKTovvvukyQdPnxYktS8efMi3QcAAJA/L7zwgq5evarXX3/9prbj5uam8ePHKy4uTrVr11bv3r312muvad++fU6qFCidCPYACqR79+6KjY3VPffcox9++EGzZ89WWFiYatasqS+//NKu76ZNm1S9enVVr15dLVu21MqVKzV48GDbm4O0tDRJUqVKlYp8PwAAwI3Vq1dPgwcP1nvvvaeTJ0/e1LZeeuklLV++XK1atVJ0dLReeOEFhYaGqnXr1rYP+wE4hmAPoMDatGmjL774QmfPntXevXs1efJknT9/Xvfee68OHTpk69e2bVvFxMRo8+bN2rVrl06fPq2PPvpIXl5ekiRvb29J0vnz512yHwAA4MamTJmiq1evOuW79g899JC+/fZbnT17Vps2bdLDDz+s/fv3q0+fPrp8+bITqgVKF4I9gJvm7u6uNm3a6LXXXtOiRYt05coVrVy50ra8WrVq6tatm7p27Sqr1ZrjhnuNGjWSJCUkJBRl2QAAwAH16tXTI4884pSz9tm8vb3VvXt3ffrppxo6dKiOHDmiPXv2OGXbQGlCsAfgVLfddpskOTTh33HHHapcubL+/e9/KzMzs7BKAwAANyn7rP3Nftc+NwV5DwHgbwR7AAXy9ddfyzCMHO0bNmyQJDVs2DDf2ypfvrwmTpyow4cPa+LEiblu95NPPtHevXsLXjAAALhpt9xyix555BG9++67Sk5Odnj9v/76S7Gxsbku++qrryQ59h4CwN/KuroAAOb09NNP66+//lL//v3VqFEjZWRkaNeuXVqxYoXq1KmjYcOGObS98ePH6+DBg5o7d66+/vpr3XvvvQoICFBycrLWrFmjvXv3ateuXYW0NwAAIL9eeOEFffzxx0pMTFTTpk0dWvevv/5S+/bt1a5dO/Xs2VNBQUE6d+6c1qxZo2+//Vb9+vVTq1atCqlyoOQi2AMokDlz5mjlypXasGGD3nvvPWVkZKh27dp66qmnNGXKlBzfo78RNzc3ffTRR+rbt6/ee+89zZkzR2lpaapevbruuusuzZ49W1artXB2BgAA5Fv9+vX1yCOPaNmyZQ6v6+vrq/fff1/r16/X0qVLlZycrDJlyqhhw4Z644039MwzzxRCxUDJZzFyu+YVAAAAAACYAt+xBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgInxO/b5kJWVpRMnTqhSpUqyWCyuLgcAABmGofPnzyswMFBubnxO7wzM9wCA4sSRuZ5gnw8nTpxQUFCQq8sAACCHY8eOqVatWq4uo0RgvgcAFEf5mesJ9vlQqVIlSX8PqLe3t4urAQBASktLU1BQkG2Ows1jvgcAFCeOzPUE+3zIvhzP29ubiR4AUKxwybjzMN8DAIqj/Mz1fCkPAAAAAAATI9gDAAAAAGBiLg32derUkcViyfGIiIiQJF2+fFkRERGqWrWqKlasqIEDByolJcVuG0ePHlV4eLjKly8vPz8/jR8/XlevXrXrs23bNrVu3VoeHh6qX7++oqKiimoXAQAAAAAoVC4N9t99951Onjxpe8TExEiS7rvvPknS2LFjtXbtWq1cuVLbt2/XiRMnNGDAANv6mZmZCg8PV0ZGhnbt2qVly5YpKipKU6dOtfVJSkpSeHi4OnfurPj4eI0ZM0aPP/64oqOji3ZnAQAAAAAoBBbDMAxXF5FtzJgxWrdunX755RelpaWpevXqWr58ue69915J0k8//aTGjRsrNjZW7dq101dffaW7775bJ06ckL+/vyRp8eLFmjhxov73v//J3d1dEydO1Pr16/Xjjz/aXufBBx/UuXPntHHjxnzVlZaWJh8fH6WmpnIzHQBAscDc5HyMKQCgOHFkXio237HPyMjQJ598oscee0wWi0VxcXG6cuWKunXrZuvTqFEj1a5dW7GxsZKk2NhYNW/e3BbqJSksLExpaWk6ePCgrc+128juk72N3KSnpystLc3uAQAAShbmewBASVFsgv2aNWt07tw5Pfroo5Kk5ORkubu7y9fX166fv7+/kpOTbX2uDfXZy7OXXa9PWlqaLl26lGstM2fOlI+Pj+0RFBR0s7sHAACKGeZ7AEBJUWyC/ZIlS9SrVy8FBga6uhRNnjxZqamptsexY8dcXRIAAHAy5nsAQElR1tUFSNIff/yhzZs364svvrC1BQQEKCMjQ+fOnbM7a5+SkqKAgABbn71799ptK/uu+df2+eed9FNSUuTt7S0vL69c6/Hw8JCHh8dN7xcAACi+mO8BACVFsThjv3TpUvn5+Sk8PNzWFhoaqnLlymnLli22tsTERB09elRWq1WSZLValZCQoFOnTtn6xMTEyNvbW02aNLH1uXYb2X2ytwEAAAAAgJm5PNhnZWVp6dKlGjp0qMqW/b8LCHx8fDR8+HCNGzdOX3/9teLi4jRs2DBZrVa1a9dOktSjRw81adJEgwcP1g8//KDo6GhNmTJFERERtk/gR44cqd9++00TJkzQTz/9pHfeeUeff/65xo4d65L9BQAAAADAmVx+Kf7mzZt19OhRPfbYYzmWRUZGys3NTQMHDlR6errCwsL0zjvv2JaXKVNG69at06hRo2S1WlWhQgUNHTpUM2bMsPWpW7eu1q9fr7Fjx2r+/PmqVauWPvjgA4WFhRXJ/gEAAAAAUJiK1e/YF1f8ri0AoLhhbnI+xhQAUJyY8nfsAQAAAACA4wj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIm5/HfsS6s6k9a7ugQ46PdZ4a4uAQAAAABy4Iw9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAibk82P/555965JFHVLVqVXl5eal58+b6/vvvbcsNw9DUqVNVo0YNeXl5qVu3bvrll1/stnHmzBkNGjRI3t7e8vX11fDhw3XhwgW7PgcOHNCdd94pT09PBQUFafbs2UWyfwAAAAAAFCaXBvuzZ8+qQ4cOKleunL766isdOnRIc+fOVeXKlW19Zs+erQULFmjx4sXas2ePKlSooLCwMF2+fNnWZ9CgQTp48KBiYmK0bt06ffPNN3riiSdsy9PS0tSjRw8FBwcrLi5Ob7zxhqZPn6733nuvSPcXAAAAAABnK+vKF3/99dcVFBSkpUuX2trq1q1r+2/DMDRv3jxNmTJFffv2lSR99NFH8vf315o1a/Tggw/q8OHD2rhxo7777jvddtttkqS33npLvXv31pw5cxQYGKhPP/1UGRkZ+vDDD+Xu7q6mTZsqPj5eb775pt0HAAAAAAAAmI1Lz9h/+eWXuu2223TffffJz89PrVq10vvvv29bnpSUpOTkZHXr1s3W5uPjo7Zt2yo2NlaSFBsbK19fX1uol6Ru3brJzc1Ne/bssfW566675O7ubusTFhamxMREnT17Nkdd6enpSktLs3sAAICShfkeAFBSuDTY//bbb1q0aJFuvfVWRUdHa9SoUXrmmWe0bNkySVJycrIkyd/f3249f39/27Lk5GT5+fnZLS9btqyqVKli1ye3bVz7GteaOXOmfHx8bI+goCAn7C0AAChOmO8BACWFS4N9VlaWWrdurddee02tWrXSE088oREjRmjx4sWuLEuTJ09Wamqq7XHs2DGX1gMAAJyP+R4AUFK4NNjXqFFDTZo0sWtr3Lixjh49KkkKCAiQJKWkpNj1SUlJsS0LCAjQqVOn7JZfvXpVZ86cseuT2zaufY1reXh4yNvb2+4BAABKFuZ7AEBJ4dJg36FDByUmJtq1/fzzzwoODpb09430AgICtGXLFtvytLQ07dmzR1arVZJktVp17tw5xcXF2fps3bpVWVlZatu2ra3PN998oytXrtj6xMTEqGHDhnZ34AcAAAAAwGxcGuzHjh2r3bt367XXXtOvv/6q5cuX67333lNERIQkyWKxaMyYMXrllVf05ZdfKiEhQUOGDFFgYKD69esn6e8z/D179tSIESO0d+9e7dy5U6NHj9aDDz6owMBASdLDDz8sd3d3DR8+XAcPHtSKFSs0f/58jRs3zlW7DgAAAACAU7j05+7atGmj1atXa/LkyZoxY4bq1q2refPmadCgQbY+EyZM0MWLF/XEE0/o3LlzuuOOO7Rx40Z5enra+nz66acaPXq0unbtKjc3Nw0cOFALFiywLffx8dGmTZsUERGh0NBQVatWTVOnTuWn7gAAAAAApmcxDMNwdRHFXVpamnx8fJSamuq079/VmbTeKdtB0fl9VrirSwAAm8KYm0o7xhQAUJw4Mi+59FJ8AAAAAABwcwj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiZV1dAAAAAACgcNWZtL5IXuf3WeFF8jqwxxl7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyvr6gIAAAAAAChsdSatL5LX+X1WeJG8zrU4Yw8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIm5NNhPnz5dFovF7tGoUSPb8suXLysiIkJVq1ZVxYoVNXDgQKWkpNht4+jRowoPD1f58uXl5+en8ePH6+rVq3Z9tm3bptatW8vDw0P169dXVFRUUeweAAAAAACFzuVn7Js2baqTJ0/aHjt27LAtGzt2rNauXauVK1dq+/btOnHihAYMGGBbnpmZqfDwcGVkZGjXrl1atmyZoqKiNHXqVFufpKQkhYeHq3PnzoqPj9eYMWP0+OOPKzo6ukj3EwAAAACAwlDW5QWULauAgIAc7ampqVqyZImWL1+uLl26SJKWLl2qxo0ba/fu3WrXrp02bdqkQ4cOafPmzfL391dISIhefvllTZw4UdOnT5e7u7sWL16sunXrau7cuZKkxo0ba8eOHYqMjFRYWFiR7isAAAAAAM7m8jP2v/zyiwIDA1WvXj0NGjRIR48elSTFxcXpypUr6tatm61vo0aNVLt2bcXGxkqSYmNj1bx5c/n7+9v6hIWFKS0tTQcPHrT1uXYb2X2yt5Gb9PR0paWl2T0AAEDJwnwPACgpXBrs27Ztq6ioKG3cuFGLFi1SUlKS7rzzTp0/f17Jyclyd3eXr6+v3Tr+/v5KTk6WJCUnJ9uF+uzl2cuu1yctLU2XLl3Kta6ZM2fKx8fH9ggKCnLG7gIAgGKE+R4AUFK4NNj36tVL9913n1q0aKGwsDBt2LBB586d0+eff+7KsjR58mSlpqbaHseOHXNpPQAAwPmY7wEAJYXLv2N/LV9fXzVo0EC//vqrunfvroyMDJ07d87urH1KSortO/kBAQHau3ev3Tay75p/bZ9/3kk/JSVF3t7e8vLyyrUODw8PeXh4OGu3AABAMcR8DwAoKVz+HftrXbhwQUeOHFGNGjUUGhqqcuXKacuWLbbliYmJOnr0qKxWqyTJarUqISFBp06dsvWJiYmRt7e3mjRpYutz7Tay+2RvAwAAAAAAM3NpsH/++ee1fft2/f7779q1a5f69++vMmXK6KGHHpKPj4+GDx+ucePG6euvv1ZcXJyGDRsmq9Wqdu3aSZJ69OihJk2aaPDgwfrhhx8UHR2tKVOmKCIiwvYJ/MiRI/Xbb79pwoQJ+umnn/TOO+/o888/19ixY1256wAAAAAAOIVLL8U/fvy4HnroIf2///f/VL16dd1xxx3avXu3qlevLkmKjIyUm5ubBg4cqPT0dIWFhemdd96xrV+mTBmtW7dOo0aNktVqVYUKFTR06FDNmDHD1qdu3bpav369xo4dq/nz56tWrVr64IMP+Kk7AAAAAECJ4NJg/9lnn113uaenpxYuXKiFCxfm2Sc4OFgbNmy47nY6deqk/fv3F6hGAAAAAACKs2L1HXsAAAAAAOAYgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYi79uTsAQMHVmbTe1SWgAH6fFe7qEgAAQAnDGXsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawBwAAAADAxLgrPgAAAACg0BXVL/qUxl+g4Yw9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIOB/uNGzdqx44dtucLFy5USEiIHn74YZ09e9apxQEAAAAAgOtzONiPHz9eaWlpkqSEhAQ999xz6t27t5KSkjRu3DinFwgAAAAAAPJW1tEVkpKS1KRJE0nSqlWrdPfdd+u1117Tvn371Lt3b6cXCAAAAAAA8ubwGXt3d3f99ddfkqTNmzerR48ekqQqVarYzuQDAAAAAICi4fAZ+zvuuEPjxo1Thw4dtHfvXq1YsUKS9PPPP6tWrVpOLxAAAAAAAOTN4TP2b7/9tsqWLav//Oc/WrRokWrWrClJ+uqrr9SzZ0+nFwgAAAAAAPLm8Bn72rVra926dTnaIyMjnVIQAAAAAADIv3wFe0e+O+/t7V3gYgAAAAAAgGPyFex9fX1lsVjytcHMzMybKggAAAAAAORfvoL9119/bfvv33//XZMmTdKjjz4qq9UqSYqNjdWyZcs0c+bMwqkSAAAAAADkKl/BvmPHjrb/njFjht5880099NBDtrZ77rlHzZs313vvvaehQ4c6v0oAAAAAAJArh++KHxsbq9tuuy1H+2233aa9e/c6pSgAAAAAAJA/Dgf7oKAgvf/++znaP/jgAwUFBTmlKAAAAAAAkD8O/9xdZGSkBg4cqK+++kpt27aVJO3du1e//PKLVq1a5fQCAQAAAABA3hw+Y9+7d2/9/PPP6tOnj86cOaMzZ86oT58++vnnn9W7d+/CqBEAAAAAAOTB4TP20t+X47/22mvOrgUAAAAAADgoX8H+wIED+d5gixYtClwMAAAAAABwTL6CfUhIiCwWiwzDuG4/i8WizMxMpxQGAAAAAABuLF/BPikpqbDrAAAAAAAABZCvYB8cHFzYdQAAAAAAgAIo0M3zjhw5onnz5unw4cOSpCZNmujZZ5/VLbfc4tTiAAAAAADA9Tn8c3fR0dFq0qSJ9u7dqxYtWqhFixbas2ePmjZtqpiYmMKoEQAAAAAA5MHhM/aTJk3S2LFjNWvWrBztEydOVPfu3Z1WHAAAAAAAuD6Hz9gfPnxYw4cPz9H+2GOP6dChQ04pCgAAAAAA5I/Dwb569eqKj4/P0R4fHy8/Pz9n1AQAAAAAAPLJ4UvxR4wYoSeeeEK//fab2rdvL0nauXOnXn/9dY0bN87pBQIAAAAAgLw5HOxffPFFVapUSXPnztXkyZMlSYGBgZo+fbqeeeYZpxcIAAAAAADy5vCl+BaLRWPHjtXx48eVmpqq1NRUHT9+XM8++6wsFkuBC5k1a5YsFovGjBlja7t8+bIiIiJUtWpVVaxYUQMHDlRKSordekePHlV4eLjKly8vPz8/jR8/XlevXrXrs23bNrVu3VoeHh6qX7++oqKiClwnAAAAAADFicPB/lqVKlVSpUqVbrqI7777Tu+++65atGhh1z527FitXbtWK1eu1Pbt23XixAkNGDDAtjwzM1Ph4eHKyMjQrl27tGzZMkVFRWnq1Km2PklJSQoPD1fnzp0VHx+vMWPG6PHHH1d0dPRN1w0AAAAAgKs5HOxTUlI0ePBgBQYGqmzZsipTpozdw1EXLlzQoEGD9P7776ty5cq29tTUVC1ZskRvvvmmunTpotDQUC1dulS7du3S7t27JUmbNm3SoUOH9MknnygkJES9evXSyy+/rIULFyojI0OStHjxYtWtW1dz585V48aNNXr0aN17772KjIx0uFYAAAAAAIobh79j/+ijj+ro0aN68cUXVaNGjZu6/F6SIiIiFB4erm7duumVV16xtcfFxenKlSvq1q2bra1Ro0aqXbu2YmNj1a5dO8XGxqp58+by9/e39QkLC9OoUaN08OBBtWrVSrGxsXbbyO5z7SX//5Senq709HTb87S0tJvaRwAAUPww3wMASgqHg/2OHTv07bffKiQk5KZf/LPPPtO+ffv03Xff5ViWnJwsd3d3+fr62rX7+/srOTnZ1ufaUJ+9PHvZ9fqkpaXp0qVL8vLyyvHaM2fO1EsvvVTg/QIAAMUf8z0AoKRw+FL8oKAgGYZx0y987NgxPfvss/r000/l6el509tzpsmTJ9tuDJiamqpjx465uiQAAOBkzPcAgJLC4WA/b948TZo0Sb///vtNvXBcXJxOnTql1q1bq2zZsipbtqy2b9+uBQsWqGzZsvL391dGRobOnTtnt15KSooCAgIkSQEBATnukp/9/EZ9vL29cz1bL0keHh7y9va2ewAAgJKF+R4AUFLk61L8ypUr232X/uLFi7rllltUvnx5lStXzq7vmTNn8vXCXbt2VUJCgl3bsGHD1KhRI02cOFFBQUEqV66ctmzZooEDB0qSEhMTdfToUVmtVkmS1WrVq6++qlOnTsnPz0+SFBMTI29vbzVp0sTWZ8OGDXavExMTY9sGAAAAAABmlq9gP2/ePKe/cKVKldSsWTO7tgoVKqhq1aq29uHDh2vcuHGqUqWKvL299fTTT8tqtapdu3aSpB49eqhJkyYaPHiwZs+ereTkZE2ZMkURERHy8PCQJI0cOVJvv/22JkyYoMcee0xbt27V559/rvXr1zt9nwAAAAAAKGr5CvZDhw4t7DpyFRkZKTc3Nw0cOFDp6ekKCwvTO++8Y1tepkwZrVu3TqNGjZLValWFChU0dOhQzZgxw9anbt26Wr9+vcaOHav58+erVq1a+uCDDxQWFuaKXQIAAAAAwKkcviu+JB05ckRLly7VkSNHNH/+fPn5+emrr75S7dq11bRp0wIXs23bNrvnnp6eWrhwoRYuXJjnOsHBwTkutf+nTp06af/+/QWuCwAAAACA4srhm+dt375dzZs31549e/TFF1/owoULkqQffvhB06ZNc3qBAAAAAAAgbw4H+0mTJumVV15RTEyM3N3dbe1dunTR7t27nVocAAAAAAC4PoeDfUJCgvr375+j3c/PT6dPn3ZKUQAAAAAAIH8cDva+vr46efJkjvb9+/erZs2aTikKAAAAAADkj8PB/sEHH9TEiROVnJwsi8WirKws7dy5U88//7yGDBlSGDUCAAAAAIA8OBzsX3vtNTVq1EhBQUG6cOGCmjRporvuukvt27fXlClTCqNGAAAAAACQB4d/7s7d3V3vv/++pk6dqoSEBF24cEGtWrXSrbfeWhj1AQAAAACA6yjQ79hLUlBQkIKCgpSZmamEhASdPXtWlStXdmZtAAAAAADgBhy+FH/MmDFasmSJJCkzM1MdO3ZU69atFRQUpG3btjm7PgAAAAAAcB0OB/v//Oc/atmypSRp7dq1+u233/TTTz9p7NixeuGFF5xeIAAAAAAAyJvDwf706dMKCAiQJG3YsEH333+/GjRooMcee0wJCQlOLxAAAAAAAOTN4WDv7++vQ4cOKTMzUxs3blT37t0lSX/99ZfKlCnj9AIBAAAAAEDeHL553rBhw3T//ferRo0aslgs6tatmyRpz549atSokdMLBAAAAAAAeXM42E+fPl3NmjXTsWPHdN9998nDw0OSVKZMGU2aNMnpBQIAAAAAgLwV6Ofu7r333hxtQ4cOveliAAAAAACAYxwO9jNmzLju8qlTpxa4GAAAAAAA4BiHg/3q1avtnl+5ckVJSUkqW7asbrnlFoI9AAAAAABFyOFgv3///hxtaWlpevTRR9W/f3+nFAUAAAAAAPLH4Z+7y423t7deeuklvfjii87YHAAAAAAAyCenBHtJSk1NVWpqqrM2BwAAAAAA8sHhS/EXLFhg99wwDJ08eVIff/yxevXq5bTCAAAAAADAjTkc7CMjI+2eu7m5qXr16ho6dKgmT57stMIAAAAAAMCNORzsk5KSCqMOAAAAAABQADf1Hfvjx4/r+PHjzqoFAAAAAAA4yOFgn5WVpRkzZsjHx0fBwcEKDg6Wr6+vXn75ZWVlZRVGjQAAAAAAIA8OX4r/wgsvaMmSJZo1a5Y6dOggSdqxY4emT5+uy5cv69VXX3V6kQAAAAAAIHcOB/tly5bpgw8+0D333GNra9GihWrWrKmnnnqKYA8AAAAAQBFy+FL8M2fOqFGjRjnaGzVqpDNnzjilKAAAAAAAkD8OB/uWLVvq7bffztH+9ttvq2XLlk4pCgAAAAAA5I/Dl+LPnj1b4eHh2rx5s6xWqyQpNjZWx44d04YNG5xeIAAAAAAAyJvDZ+w7duyon3/+Wf3799e5c+d07tw5DRgwQImJibrzzjsLo0YAAAAAAJAHh8/YS1JgYCA3yQMAAAAAoBjId7A/cOBAvvq1aNGiwMUA+D91Jq13dQkogN9nhbu6BAAAAJQy+Q72ISEhslgsMgxDkmSxWCTJ9jy7LTMz08klAgAAAACAvOQ72CclJdn+2zAMNWvWTBs2bFBwcHChFAYAAAAAAG4s38H+nwHeYrGoVq1aBHsAAAAAAFzI4bviAwAAAACA4oNgDwAAAACAid1UsM++gR4AAAAAAHCNfH/HvlWrVnZB/tKlS+rTp4/c3d3t+u3bt8951QEAAAAAgOvKd7Dv16+f3fO+ffs6uxYAAAAAAOCgfAf7adOmFWYdAAAAAACgALh5HgAAAAAAJkawBwAAAADAxAj2AAAAAACYGMEeAAAAAAATy1ewr1Klik6fPi1Jeuyxx3T+/PlCLQoAAAAAAORPvoJ9RkaG0tLSJEnLli3T5cuXC7UoAAAAAACQP/n6uTur1ap+/fopNDRUhmHomWeekZeXV659P/zwQ6cWCAAAAAAA8pavYP/JJ58oMjJSR44ckcViUWpqKmftAQAAAAAoBvIV7P39/TVr1ixJUt26dfXxxx+ratWqhVoYAAAAAAC4sXwF+2slJSUVRh0AAAAAAKAACvRzd9u3b1efPn1Uv3591a9fX/fcc4++/fZbZ9cGAAAAAABuwOFg/8knn6hbt24qX768nnnmGduN9Lp27arly5cXRo0AAAAAACAPDgf7V199VbNnz9aKFStswX7FihWaNWuWXn75ZYe2tWjRIrVo0ULe3t7y9vaW1WrVV199ZVt++fJlRUREqGrVqqpYsaIGDhyolJQUu20cPXpU4eHhKl++vPz8/DR+/HhdvXrVrs+2bdvUunVreXh4qH79+oqKinJ0twEAAAAAKJYcDva//fab+vTpk6P9nnvucfj797Vq1dKsWbMUFxen77//Xl26dFHfvn118OBBSdLYsWO1du1arVy5Utu3b9eJEyc0YMAA2/qZmZkKDw9XRkaGdu3apWXLlikqKkpTp0619UlKSlJ4eLg6d+6s+Ph4jRkzRo8//riio6Md3XUAAAAAAIodh2+eFxQUpC1btqh+/fp27Zs3b1ZQUJBD2/rnBwSvvvqqFi1apN27d6tWrVpasmSJli9fri5dukiSli5dqsaNG2v37t1q166dNm3apEOHDmnz5s3y9/dXSEiIXn75ZU2cOFHTp0+Xu7u7Fi9erLp162ru3LmSpMaNG2vHjh2KjIxUWFiYo7sPAAAAAECx4nCwf+655/TMM88oPj5e7du3lyTt3LlTUVFRmj9/foELyczM1MqVK3Xx4kVZrVbFxcXpypUr6tatm61Po0aNVLt2bcXGxqpdu3aKjY1V8+bN5e/vb+sTFhamUaNG6eDBg2rVqpViY2PttpHdZ8yYMXnWkp6ervT0dNvztLS0Au8XAAAonpjvAQAlhcPBftSoUQoICNDcuXP1+eefS/r7LPiKFSvUt29fhwtISEiQ1WrV5cuXVbFiRa1evVpNmjRRfHy83N3d5evra9ff399fycnJkqTk5GS7UJ+9PHvZ9fqkpaXp0qVL8vLyylHTzJkz9dJLLzm8LwAAwDyY7wEAJYXDwV6S+vfvr/79+zulgIYNGyo+Pl6pqan6z3/+o6FDh2r79u1O2XZBTZ48WePGjbM9T0tLc/hrBgAAoHhjvgcAlBQFCvbO5O7ubvu+fmhoqL777jvNnz9fDzzwgDIyMnTu3Dm7s/YpKSkKCAiQJAUEBGjv3r1228u+a/61ff55J/2UlBR5e3vnerZekjw8POTh4eGU/QMAAMUT8z0AoKRw+K74hS0rK0vp6ekKDQ1VuXLltGXLFtuyxMREHT16VFarVZJktVqVkJCgU6dO2frExMTI29tbTZo0sfW5dhvZfbK3AQAAAACAmbn0jP3kyZPVq1cv1a5dW+fPn9fy5cu1bds2RUdHy8fHR8OHD9e4ceNUpUoVeXt76+mnn5bValW7du0kST169FCTJk00ePBgzZ49W8nJyZoyZYoiIiJsn8CPHDlSb7/9tiZMmKDHHntMW7du1eeff67169e7ctcBAAAAAHAKlwb7U6dOaciQITp58qR8fHzUokULRUdHq3v37pKkyMhIubm5aeDAgUpPT1dYWJjeeecd2/plypTRunXrNGrUKFmtVlWoUEFDhw7VjBkzbH3q1q2r9evXa+zYsZo/f75q1aqlDz74gJ+6AwAAAACUCDcV7A3DkCRZLJYCrb9kyZLrLvf09NTChQu1cOHCPPsEBwdrw4YN191Op06dtH///gLVCAAAAABAcVag79h/9NFHat68uby8vOTl5aUWLVro448/dnZtAAAAAADgBhw+Y//mm2/qxRdf1OjRo9WhQwdJ0o4dOzRy5EidPn1aY8eOdXqRAAAAAAAgdw4H+7feekuLFi3SkCFDbG333HOPmjZtqunTpxPsAQAAAAAoQg5fin/y5Em1b98+R3v79u118uRJpxQFAAAAAADyx+FgX79+fX3++ec52lesWKFbb73VKUUBAAAAAID8cfhS/JdeekkPPPCAvvnmG9t37Hfu3KktW7bkGvgBAAAAAEDhcfiM/cCBA7Vnzx5Vq1ZNa9as0Zo1a1StWjXt3btX/fv3L4waAQAAAABAHgr0O/ahoaH65JNPnF0LAAAAAABwUIF+xx4AAAAAABQP+T5j7+bmJovFct0+FotFV69evemiAAAAAABA/uQ72K9evTrPZbGxsVqwYIGysrKcUhQAAAAAAMiffAf7vn375mhLTEzUpEmTtHbtWg0aNEgzZsxwanEAAAAAAOD6CvQd+xMnTmjEiBFq3ry5rl69qvj4eC1btkzBwcHOrg8AAAAAAFyHQ8E+NTVVEydOVP369XXw4EFt2bJFa9euVbNmzQqrPgAAAAAAcB35vhR/9uzZev311xUQEKB///vfuV6aDwAAAAAAila+g/2kSZPk5eWl+vXra9myZVq2bFmu/b744gunFQcAAAAAAK4v38F+yJAhN/y5OwAAAAAAULTyHeyjoqIKsQwAAAAAAFAQBborPgAAAAAAKB4I9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYi4N9jNnzlSbNm1UqVIl+fn5qV+/fkpMTLTrc/nyZUVERKhq1aqqWLGiBg4cqJSUFLs+R48eVXh4uMqXLy8/Pz+NHz9eV69eteuzbds2tW7dWh4eHqpfv76ioqIKe/cAAAAAACh0Lg3227dvV0REhHbv3q2YmBhduXJFPXr00MWLF219xo4dq7Vr12rlypXavn27Tpw4oQEDBtiWZ2ZmKjw8XBkZGdq1a5eWLVumqKgoTZ061dYnKSlJ4eHh6ty5s+Lj4zVmzBg9/vjjio6OLtL9BQAAAADA2cq68sU3btxo9zwqKkp+fn6Ki4vTXXfdpdTUVC1ZskTLly9Xly5dJElLly5V48aNtXv3brVr106bNm3SoUOHtHnzZvn7+yskJEQvv/yyJk6cqOnTp8vd3V2LFy9W3bp1NXfuXElS48aNtWPHDkVGRiosLCxHXenp6UpPT7c9T0tLK8RRAAAArsB8DwAoKYrVd+xTU1MlSVWqVJEkxcXF6cqVK+rWrZutT6NGjVS7dm3FxsZKkmJjY9W8eXP5+/vb+oSFhSktLU0HDx609bl2G9l9srfxTzNnzpSPj4/tERQU5LydBAAAxQLzPQCgpCg2wT4rK0tjxoxRhw4d1KxZM0lScnKy3N3d5evra9fX399fycnJtj7Xhvrs5dnLrtcnLS1Nly5dylHL5MmTlZqaanscO3bMKfsIAACKD+Z7AEBJ4dJL8a8VERGhH3/8UTt27HB1KfLw8JCHh4erywAAAIWI+R4AUFIUizP2o0eP1rp16/T111+rVq1atvaAgABlZGTo3Llzdv1TUlIUEBBg6/PPu+RnP79RH29vb3l5eTl7dwAAAAAAKDIuDfaGYWj06NFavXq1tm7dqrp169otDw0NVbly5bRlyxZbW2Jioo4ePSqr1SpJslqtSkhI0KlTp2x9YmJi5O3trSZNmtj6XLuN7D7Z2wAAAAAAwKxceil+RESEli9frv/+97+qVKmS7TvxPj4+8vLyko+Pj4YPH65x48apSpUq8vb21tNPPy2r1ap27dpJknr06KEmTZpo8ODBmj17tpKTkzVlyhRFRETYLq8bOXKk3n77bU2YMEGPPfaYtm7dqs8//1zr16932b4DAAAAAOAMLj1jv2jRIqWmpqpTp06qUaOG7bFixQpbn8jISN19990aOHCg7rrrLgUEBOiLL76wLS9TpozWrVunMmXKyGq16pFHHtGQIUM0Y8YMW5+6detq/fr1iomJUcuWLTV37lx98MEHuf7UHQAAAAAAZuLSM/aGYdywj6enpxYuXKiFCxfm2Sc4OFgbNmy47nY6deqk/fv3O1wjAAAAAADFWbG4eR4AAAAAACgYgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAEyPYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEewBAAAAADAxgj0AAAAAACZGsAcAAAAAwMQI9gAAAAAAmBjBHgAAAAAAE3NpsP/mm2/Up08fBQYGymKxaM2aNXbLDcPQ1KlTVaNGDXl5ealbt2765Zdf7PqcOXNGgwYNkre3t3x9fTV8+HBduHDBrs+BAwd05513ytPTU0FBQZo9e3Zh7xoAAAAAAEXCpcH+4sWLatmypRYuXJjr8tmzZ2vBggVavHix9uzZowoVKigsLEyXL1+29Rk0aJAOHjyomJgYrVu3Tt98842eeOIJ2/K0tDT16NFDwcHBiouL0xtvvKHp06frvffeK/T9AwAAAACgsJV15Yv36tVLvXr1ynWZYRiaN2+epkyZor59+0qSPvroI/n7+2vNmjV68MEHdfjwYW3cuFHfffedbrvtNknSW2+9pd69e2vOnDkKDAzUp59+qoyMDH344Ydyd3dX06ZNFR8frzfffNPuAwAAAAAAAMyo2H7HPikpScnJyerWrZutzcfHR23btlVsbKwkKTY2Vr6+vrZQL0ndunWTm5ub9uzZY+tz1113yd3d3dYnLCxMiYmJOnv2bK6vnZ6errS0NLsHAAAoWZjvAQAlRbEN9snJyZIkf39/u3Z/f3/bsuTkZPn5+dktL1u2rKpUqWLXJ7dtXPsa/zRz5kz5+PjYHkFBQTe/QwAAoFhhvgcAlBTFNti70uTJk5Wammp7HDt2zNUlAQAAJ2O+BwCUFC79jv31BAQESJJSUlJUo0YNW3tKSopCQkJsfU6dOmW33tWrV3XmzBnb+gEBAUpJSbHrk/08u88/eXh4yMPDwyn7AQAAiifmewBASVFsz9jXrVtXAQEB2rJli60tLS1Ne/bskdVqlSRZrVadO3dOcXFxtj5bt25VVlaW2rZta+vzzTff6MqVK7Y+MTExatiwoSpXrlxEewMAAAAAQOFwabC/cOGC4uPjFR8fL+nvG+bFx8fr6NGjslgsGjNmjF555RV9+eWXSkhI0JAhQxQYGKh+/fpJkho3bqyePXtqxIgR2rt3r3bu3KnRo0frwQcfVGBgoCTp4Ycflru7u4YPH66DBw9qxYoVmj9/vsaNG+eivQYAAAAAwHlcein+999/r86dO9ueZ4ftoUOHKioqShMmTNDFixf1xBNP6Ny5c7rjjju0ceNGeXp62tb59NNPNXr0aHXt2lVubm4aOHCgFixYYFvu4+OjTZs2KSIiQqGhoapWrZqmTp3KT90BAAAAAEoElwb7Tp06yTCMPJdbLBbNmDFDM2bMyLNPlSpVtHz58uu+TosWLfTtt98WuE4AAAAAAIqrYvsdewAAAAAAcGMEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDESlWwX7hwoerUqSNPT0+1bdtWe/fudXVJAAAAAADclFIT7FesWKFx48Zp2rRp2rdvn1q2bKmwsDCdOnXK1aUBAAAAAFBgpSbYv/nmmxoxYoSGDRumJk2aaPHixSpfvrw+/PBDV5cGAAAAAECBlXV1AUUhIyNDcXFxmjx5sq3Nzc1N3bp1U2xsbI7+6enpSk9Ptz1PTU2VJKWlpTmtpqz0v5y2LRQNZ/7/zw+OEXMqyuOEY8ScnHWMZG/HMAynbK80Kuz5vtm0aKds50Z+fCmsSF4HgLkV1fuG6/0NdXUNrn79gm4nP3N9qQj2p0+fVmZmpvz9/e3a/f399dNPP+XoP3PmTL300ks52oOCggqtRhR/PvNcXQHMgOMEN+LsY+T8+fPy8fFx7kZLiZIy3/N3B0BxUhz+Jrm6BlfM9RajFHzUf+LECdWsWVO7du2S1Wq1tU+YMEHbt2/Xnj177Pr/8xP8rKwsnTlzRlWrVpXFYrG1p6WlKSgoSMeOHZO3t3fh74gJMCb2GI+cGBN7jEdOjElOuY2JYRg6f/68AgMD5eZWar5Z51T5ne+LCsc+YyAxBhJjIDEG2Ur7ODgy15eKM/bVqlVTmTJllJKSYteekpKigICAHP09PDzk4eFh1+br65vn9r29vUvlgXY9jIk9xiMnxsQe45ETY5LTP8eEM/U3x9H5vqhw7DMGEmMgMQYSY5CtNI9Dfuf6UvERv7u7u0JDQ7VlyxZbW1ZWlrZs2WJ3Bh8AAAAAALMpFWfsJWncuHEaOnSobrvtNt1+++2aN2+eLl68qGHDhrm6NAAAAAAACqzUBPsHHnhA//vf/zR16lQlJycrJCREGzduzHFDPUd4eHho2rRpOS7jK80YE3uMR06MiT3GIyfGJCfGpHTg/zNjIDEGEmMgMQbZGIf8KxU3zwMAAAAAoKQqFd+xBwAAAACgpCLYAwAAAABgYgR7AAAAAABMjGAPAAAAAICJEexvYOHChapTp448PT3Vtm1b7d27N8++UVFRslgsdg9PT88irLZwffPNN+rTp48CAwNlsVi0Zs2aG66zbds2tW7dWh4eHqpfv76ioqIKvc6i5OiYbNu2LccxYrFYlJycXDQFF7KZM2eqTZs2qlSpkvz8/NSvXz8lJibecL2VK1eqUaNG8vT0VPPmzbVhw4YiqLbwFWQ8SvrfkUWLFqlFixby9vaWt7e3rFarvvrqq+uuU1KPj2yOjklJP0bwt59//ll9+/ZVtWrV5O3trTvuuENff/21q8sqcuvXr1fbtm3l5eWlypUrq1+/fq4uySXS09MVEhIii8Wi+Ph4V5dTpH7//XcNHz5cdevWlZeXl2655RZNmzZNGRkZri6tUDmSQUqagr6fLO0I9texYsUKjRs3TtOmTdO+ffvUsmVLhYWF6dSpU3mu4+3trZMnT9oef/zxRxFWXLguXryoli1bauHChfnqn5SUpPDwcHXu3Fnx8fEaM2aMHn/8cUVHRxdypUXH0THJlpiYaHec+Pn5FVKFRWv79u2KiIjQ7t27FRMToytXrqhHjx66ePFinuvs2rVLDz30kIYPH679+/erX79+6tevn3788ccirLxwFGQ8pJL9d6RWrVqaNWuW4uLi9P3336tLly7q27evDh48mGv/knx8ZHN0TKSSfYzgb3fffbeuXr2qrVu3Ki4uTi1bttTdd99dYj4Izo9Vq1Zp8ODBGjZsmH744Qft3LlTDz/8sKvLcokJEyYoMDDQ1WW4xE8//aSsrCy9++67OnjwoCIjI7V48WL961//cnVphaYgGaQkKej7p1LPQJ5uv/12IyIiwvY8MzPTCAwMNGbOnJlr/6VLlxo+Pj5FVJ1rSTJWr1593T4TJkwwmjZtatf2wAMPGGFhYYVYmevkZ0y+/vprQ5Jx9uzZIqnJ1U6dOmVIMrZv355nn/vvv98IDw+3a2vbtq3x5JNPFnZ5RS4/41Ga/o5kq1y5svHBBx/kuqw0HR/Xut6YlMZjpLT53//+Z0gyvvnmG1tbWlqaIcmIiYlxYWVF58qVK0bNmjXz/HdQmmzYsMFo1KiRcfDgQUOSsX//fleX5HKzZ8826tat6+oyCo2jGaSky8/7JxgGZ+zzkJGRobi4OHXr1s3W5ubmpm7duik2NjbP9S5cuKDg4GAFBQXd8IxLSRcbG2s3fpIUFhZ23fErLUJCQlSjRg11795dO3fudHU5hSY1NVWSVKVKlTz7lKbjJD/jIZWevyOZmZn67LPPdPHiRVmt1lz7lKbjQ8rfmEil5xgprapWraqGDRvqo48+0sWLF3X16lW9++678vPzU2hoqKvLKxL79u3Tn3/+KTc3N7Vq1Uo1atRQr169StTVOvmRkpKiESNG6OOPP1b58uVdXU6xkZqaesO51KwKmkFKsvy+fyrtCPZ5OH36tDIzM+Xv72/X7u/vn+dlcA0bNtSHH36o//73v/rkk0+UlZWl9u3b6/jx40VRcrGTnJyc6/ilpaXp0qVLLqrKtWrUqKHFixdr1apVWrVqlYKCgtSpUyft27fP1aU5XVZWlsaMGaMOHTqoWbNmefbL6zgpaZeb5nc8SsPfkYSEBFWsWFEeHh4aOXKkVq9erSZNmuTat7QcH46MSWk4Rko7i8WizZs3a//+/apUqZI8PT315ptvauPGjapcubKryysSv/32myRp+vTpmjJlitatW6fKlSurU6dOOnPmjIurKxqGYejRRx/VyJEjddttt7m6nGLj119/1VtvvaUnn3zS1aUUioJkkJIsv++fQLB3KqvVqiFDhigkJEQdO3bUF198oerVq+vdd991dWkoJho2bKgnn3xSoaGhat++vT788EO1b99ekZGRri7N6SIiIvTjjz/qs88+c3UpxUJ+x6M0/B1p2LCh4uPjtWfPHo0aNUpDhw7VoUOHXF2WSzkyJqXhGCmpJk2alOsNVK99/PTTTzIMQxEREfLz89O3336rvXv3ql+/furTp49Onjzp6t24Kfkdg6ysLEnSCy+8oIEDByo0NFRLly6VxWLRypUrXbwXNye/Y/DWW2/p/Pnzmjx5sqtLLhT5HYdr/fnnn+rZs6fuu+8+jRgxwkWVoyjxfjL/yrq6gOKqWrVqKlOmjFJSUuzaU1JSFBAQkK9tlCtXTq1atdKvv/5aGCUWewEBAbmOn7e3t7y8vFxUVfFz++23a8eOHa4uw6lGjx6tdevW6ZtvvlGtWrWu2zev4yS//87MwJHx+KeS+HfE3d1d9evXlySFhobqu+++0/z583MNpqXh+JAcG5N/KonHSEn13HPP6dFHH71un3r16mnr1q1at26dzp49K29vb0nSO++8o5iYGC1btkyTJk0qgmoLR37HIPsDjGuvXPHw8FC9evV09OjRwiyx0DlyHMTGxsrDw8Nu2W233aZBgwZp2bJlhVhl4cvvOGQ7ceKEOnfurPbt2+u9994r5OpcxxkZpKS4mfdPpRHBPg/u7u4KDQ3Vli1bbD+tkpWVpS1btmj06NH52kZmZqYSEhLUu3fvQqy0+LJarTl+liomJua63xstjeLj41WjRg1Xl+EUhmHo6aef1urVq7Vt2zbVrVv3hutYrVZt2bJFY8aMsbWVlOOkIOPxT6Xh70hWVpbS09NzXVaSj4/rud6Y/FNpOEZKiurVq6t69eo37PfXX39J+vt7tddyc3Oznck2q/yOQWhoqDw8PJSYmKg77rhDknTlyhX9/vvvCg4OLuwyC1V+x2DBggV65ZVXbM9PnDihsLAwrVixQm3bti3MEotEfsdB+vtMfefOnW1Xbvzz30ZJ4owMYnbOeP9UKrn01n3F3GeffWZ4eHgYUVFRxqFDh4wnnnjC8PX1NZKTkw3DMIzBgwcbkyZNsvV/6aWXjOjoaOPIkSNGXFyc8eCDDxqenp7GwYMHXbULTnX+/Hlj//79xv79+w1Jxptvvmns37/f+OOPPwzDMIxJkyYZgwcPtvX/7bffjPLlyxvjx483Dh8+bCxcuNAoU6aMsXHjRlftgtM5OiaRkZHGmjVrjF9++cVISEgwnn32WcPNzc3YvHmzq3bBqUaNGmX4+PgY27ZtM06ePGl7/PXXX7Y+//x3s3PnTqNs2bLGnDlzjMOHDxvTpk0zypUrZyQkJLhiF5yqIONR0v+OTJo0ydi+fbuRlJRkHDhwwJg0aZJhsViMTZs2GYZRuo6PbI6OSUk/RvD3XfGrVq1qDBgwwIiPjzcSExON559/3ihXrpwRHx/v6vKKzLPPPmvUrFnTiI6ONn766Sdj+PDhhp+fn3HmzBlXl+YSSUlJpfKu+MePHzfq169vdO3a1Th+/LjdfFpS3SiDlHT5ef+EnAj2N/DWW28ZtWvXNtzd3Y3bb7/d2L17t21Zx44djaFDh9qejxkzxtbX39/f6N27t7Fv3z4XVF04sn+q7Z+P7DEYOnSo0bFjxxzrhISEGO7u7ka9evWMpUuXFnndhcnRMXn99deNW265xfD09DSqVKlidOrUydi6datrii8EuY2FJLv/7//8d2MYhvH5558bDRo0MNzd3Y2mTZsa69evL9rCC0lBxqOk/x157LHHjODgYMPd3d2oXr260bVrV1uANYzSdXxkc3RMSvoxgr999913Ro8ePYwqVaoYlSpVMtq1a2ds2LDB1WUVqYyMDOO5554z/Pz8jEqVKhndunUzfvzxR1eX5TKlNdgvXbo0z/m0JLteBinp8vP+CTlZDMMwCvOKAAAAAAAAUHhK7hdUAAAAAAAoBQj2AAAAAACYGMEeAAAAAAATI9gDAAAAAGBiBHsAAAAAAEyMYA8AAAAAgIkR7AEAAAAAMDGCPQAAAAAAJkawB0q5OnXqaN68ea4uw3SioqLk6+t7U9v4/fffZbFYFB8fn2efbdu2yWKx6Ny5c3n2sVgsWrNmzU3V4iiOGwAwF/5uFwzzPceNWRDsYQqPPvqo+vXr5+oyCkVUVJQsFovtUbFiRYWGhuqLL75wdWn50qlTJ40ZM8Yp25o+fbpCQkJytOdnQgQAmB/zffHFfA8UbwR7oBjw9vbWyZMndfLkSe3fv19hYWG6//77lZiYmOc6GRkZRVghAAC4Wcz3AAoLwR6m1KlTJz3zzDOaMGGCqlSpooCAAE2fPt2uz7lz5/Tkk0/K399fnp6eatasmdatW2dbvmrVKjVt2lQeHh6qU6eO5s6da7d+nTp19Morr2jIkCGqWLGigoOD9eWXX+p///uf+vbtq4oVK6pFixb6/vvv7dbbsWOH7rzzTnl5eSkoKEjPPPOMLl68eN39sVgsCggIUEBAgG699Va98sorcnNz04EDB+zqefnllzVkyBB5e3vriSeekCRNnDhRDRo0UPny5VWvXj29+OKLunLlit32165dqzZt2sjT01PVqlVT//7986zlgw8+kK+vr7Zs2SJJ+vHHH9WrVy9VrFhR/v7+Gjx4sE6fPi3p7zMr27dv1/z5821nIH7//ffr7quzbN++Xbfffrs8PDxUo0YNTZo0SVevXrUtz+3SsZCQENtxYhiGpk+frtq1a8vDw0OBgYF65plnbH3T09P1/PPPq2bNmqpQoYLatm2rbdu25agjOjpajRs3VsWKFdWzZ0+dPHnStiwrK0szZsxQrVq15OHhoZCQEG3cuPG6+7VhwwY1aNBAXl5e6ty5c4HG89ixY7r//vvl6+urKlWqqG/fvrbtbNq0SZ6enjku9Xv22WfVpUsX2/OCHMcA4GzM98z3zPd5Y77HtQj2MK1ly5apQoUK2rNnj2bPnq0ZM2YoJiZG0t9/YHv16qWdO3fqk08+0aFDhzRr1iyVKVNGkhQXF6f7779fDz74oBISEjR9+nS9+OKLioqKsnuNyMhIdejQQfv371d4eLgGDx6sIUOG6JFHHtG+fft0yy23aMiQITIMQ5J05MgR9ezZUwMHDtSBAwe0YsUK7dixQ6NHj873fmVmZmrZsmWSpNatW9stmzNnjlq2bKn9+/frxRdflCRVqlRJUVFROnTokObPn6/3339fkZGRtnXWr1+v/v37q3fv3tq/f7+2bNmi22+/PdfXnj17tiZNmqRNmzapa9euOnfunLp06aJWrVrp+++/18aNG5WSkqL7779fkjR//nxZrVaNGDHCdgYiKCgo3/taUH/++ad69+6tNm3a6IcfftCiRYu0ZMkSvfLKK/nexqpVqxQZGal3331Xv/zyi9asWaPmzZvblo8ePVqxsbH67LPPdODAAd13333q2bOnfvnlF1ufv/76S3PmzNHHH3+sb775RkePHtXzzz9vWz5//nzNnTtXc+bM0YEDBxQWFqZ77rnHbhvXOnbsmAYMGKA+ffooPj5ejz/+uCZNmuTQ2Fy5ckVhYWGqVKmSvv32W+3cudP2JiQjI0Ndu3aVr6+vVq1aZVsnMzNTK1as0KBBgyQ55zgGAGdhvme+Z77PifkeORiACQwdOtTo27ev7XnHjh2NO+64w65PmzZtjIkTJxqGYRjR0dGGm5ubkZiYmOv2Hn74YaN79+52bePHjzeaNGliex4cHGw88sgjtucnT540JBkvvviirS02NtaQZJw8edIwDMMYPny48cQTT9ht99tvvzXc3NyMS5cu5VrL0qVLDUlGhQoVjAoVKhhubm6Gh4eHsXTpUrt+wcHBRr9+/XLdxrXeeOMNIzQ01PbcarUagwYNyrN/cHCwERkZaUyYMMGoUaOG8eOPP9qWvfzyy0aPHj3s+h87dsyQZBvbjh07Gs8+++wN68qPadOmGW5ubraxyH6UL1/ekGTs37/fMAzD+Ne//mU0bNjQyMrKsq27cOFCo2LFikZmZqbdfl2rZcuWxrRp0wzDMIy5c+caDRo0MDIyMnLU8ccffxhlypQx/vzzT7v2rl27GpMnTzYM4//+v/366692Nfj7+9ueBwYGGq+++qrdNtq0aWM89dRThmEYRlJSkt1+TZ482e4YNAzDmDhxoiHJOHv2bJ7jJslYvXq1YRiG8fHHH+cYm/T0dMPLy8uIjo42DMMwnn32WaNLly625dHR0YaHh4ftNfJzHOc2vgBws5jvme+Z78/mOW7M97ieskX9QQLgLC1atLB7XqNGDZ06dUqSFB8fr1q1aqlBgwa5rnv48GH17dvXrq1Dhw6aN2+eMjMzbZ/0X/sa/v7+kmT3KW9226lTpxQQEKAffvhBBw4c0KeffmrrYxiGsrKylJSUpMaNG+daT6VKlbRv3z5Jf38qvHnzZo0cOVJVq1ZVnz59bP1uu+22HOuuWLFCCxYs0JEjR3ThwgVdvXpV3t7etuXx8fEaMWJErq+bbe7cubp48aK+//571atXz9b+ww8/6Ouvv1bFihVzrHPkyJE8x/efXnvtNb322mu254cOHVLt2rVz7duwYUN9+eWXdm1//vmnOnXqZHt++PBhWa1WWSwWW1uHDh104cIFHT9+PM9tX+u+++7TvHnzVK9ePfXs2VO9e/dWnz59VLZsWSUkJCgzMzPH/qWnp6tq1aq25+XLl9ctt9xie37tMZiWlqYTJ06oQ4cOdtvo0KGDfvjhh1xrOnz4sNq2bWvXZrVab7gv1/rhhx/066+/qlKlSnbtly9f1pEjRyRJgwYNUrt27XTixAkFBgbq008/VXh4uO2uvwU9jgGgMDDf/435/m/M939jvsc/EexhWuXKlbN7brFYlJWVJUny8vJy+mtkTyq5tWW/7oULF/Tkk0/afXcr2/UmHzc3N9WvX9/2vEWLFtq0aZNef/11u4m+QoUKduvFxsZq0KBBeumllxQWFiYfHx999tlndt8fzM9Y3HnnnVq/fr0+//xzu0vBLly4oD59+uj111/PsU6NGjVuuN1sI0eOtF3OJ0mBgYF59nV3d7cbC0kqW9bxP1Vubm62SyazXftdxKCgICUmJmrz5s2KiYnRU089pTfeeEPbt2/XhQsXVKZMGcXFxdne9GW79k1PbsfgP1+zqF24cEGhoaF2k3S26tWrS5LatGmjW265RZ999plGjRql1atX212WWtDjGAAKA/M98/31MN8z3+NvBHuUSC1atNDx48f1888/5/opc+PGjbVz5067tp07d6pBgwY5/rA7onXr1jp06FCOiaogypQpo0uXLl23z65duxQcHKwXXnjB1vbHH3/Y9WnRooW2bNmiYcOG5bmd22+/XaNHj1bPnj1VtmxZ2/fGWrdurVWrVqlOnTp5Trbu7u7KzMy8bp1VqlRRlSpVrtvHEY0bN9aqVatkGIbtzdbOnTtVqVIl1apVS9Lfk9q1N7ZJS0tTUlKS3Xa8vLzUp08f9enTRxEREWrUqJESEhLUqlUrZWZm6tSpU7rzzjsLVKO3t7cCAwO1c+dOdezY0da+c+fOPL/z2Lhx4xxnL3bv3u3Q67Zu3VorVqyQn5+f3Zmcfxo0aJA+/fRT1apVS25ubgoPD7fbhrOOYwAoTMz3/4f5/m/M9/aY70sPbp6HEqljx4666667NHDgQMXExCgpKUlfffWV7Q6lzz33nLZs2aKXX35ZP//8s5YtW6a3337b7kYoBTFx4kTt2rVLo0ePVnx8vH755Rf997//veFNSAzDUHJyspKTk5WUlKT33ntP0dHROS4f/Kdbb71VR48e1WeffaYjR45owYIFWr16tV2fadOm6d///remTZumw4cPKyEhIddP5Nu3b68NGzbopZdest1dNiIiQmfOnNFDDz2k7777TkeOHFF0dLSGDRtmm9zr1KmjPXv26Pfff9fp06dtZzMK01NPPaVjx47p6aef1k8//aT//ve/mjZtmsaNGyc3t7//rHXp0kUff/yxvv32WyUkJGjo0KF2b+KioqK0ZMkS/fjjj/rtt9/0ySefyMvLS8HBwWrQoIEGDRqkIUOG6IsvvlBSUpL27t2rmTNnav369fmuc/z48Xr99de1YsUKJSYmatKkSYqPj9ezzz6ba/+RI0fql19+0fjx45WYmKjly5fnuMHTjQwaNEjVqlVT37599e233yopKUnbtm3TM888o+PHj9v127dvn1599VXde++98vDwsC0r6HEMAEWN+f7/MN8z3zPfl3Ku+Wo/4Jjcbqbzzxu49O3b1xg6dKjt+f/7f//PGDZsmFG1alXD09PTaNasmbFu3Trb8v/85z9GkyZNjHLlyhm1a9c23njjDbvt5XazEF1z0xLDyHkzFMMwjL179xrdu3c3KlasaFSoUMFo0aJFjhuqXCv7pizZDw8PD6NBgwbGq6++aly9evW69RjG3zcBqlq1qlGxYkXjgQceMCIjIw0fHx+7PqtWrTJCQkIMd3d3o1q1asaAAQPy3O727duNChUqGAsWLDAMwzB+/vlno3///oavr6/h5eVlNGrUyBgzZoztZi2JiYlGu3btDC8vL0OSkZSUlOe+3si0adOMli1b5mjPbZy3bdtmtGnTxnB3dzcCAgKMiRMnGleuXLEtT01NNR544AHD29vbCAoKMqKiouxuprN69Wqjbdu2hre3t1GhQgWjXbt2xubNm23rZ2RkGFOnTjXq1KljlCtXzqhRo4bRv39/48CBA4Zh/P3/7Z/jvHr1auPaP6uZmZnG9OnTjZo1axrlypUzWrZsaXz11VfX3a+1a9ca9evXNzw8PIw777zT+PDDDx26mY5h/H3jpyFDhhjVqlUzPDw8jHr16hkjRowwUlNT7da7/fbbDUnG1q1bc2zzRscxN9MBUBiY75nvme/P5jluzPe4HothuPgLIgAAAAAAoMC4FB8AAAAAABMj2AMAAAAAYGIEewAAAAAATIxgDwAAAACAiRHsAQAAAAAwMYI9AAAAAAAmRrAHAAAAAMDECPYAAAAAAJgYwR4AAAAAABMj2AMAAAAAYGIEewAAAAAATOz/AwzaZZveD4f3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAIjCAYAAAB/OVoZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ+0lEQVR4nO3deXQUVf7+8acDZAPCFpIARiJEWYVgWAzIgAKGgWFVQQXC5IsoKAJGERiXgBugyKLDiKiAog7BH4ujIFtYRAiggbAoIiJIWMIyIGHRBJL7+4NDj20CdofudJF+v87pc6hbt6o/fS379pPqqrYZY4wAAAAAAIDX+Xm7AAAAAAAAcAkhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkA5Ak7dixQ/fee69q1qypwMBA1ahRQx06dNCbb75p7xMVFSWbzWZ/hIWFqXXr1lq4cGGh+1y4cKH++te/KjQ0VP7+/qpevbp69eqlVatWFdfLAgAAkmbPni2bzabAwEAdOnSowPq2bduqYcOGGjNmjMNcf6VH27Zt7dt+9tlnatOmjcLCwhQcHKxatWqpV69eWrp0aTG+QqDkKO3tAgB434YNG3TnnXfqxhtv1MCBAxUREaHMzExt3LhRU6dO1eOPP27vGxMToyeffFKSdPjwYb399tvq2bOn3nrrLQ0aNEiSZIzR//3f/2n27Nlq0qSJkpKSFBERoSNHjmjhwoVq166d1q9fr5YtW3rl9QIA4KtycnI0fvx4hz/C/17Pnj0VHR1tXz579qwGDx6sHj16qGfPnvb28PBwSdLEiRM1YsQItWnTRqNHj1ZwcLB+/PFHrVy5UnPnzlXHjh09+4KAEshmjDHeLgKAd3Xu3Flff/21fvjhB1WsWNFh3bFjxxQWFibp0pn0hg0b6vPPP7evz8rKUnR0tGrUqKHdu3dL+t+EPXz4cE2aNEk2m81hn3PmzFGdOnXUvHlzz74wAAAg6dKZ9MTERMXExGjXrl366aefVL16dfv6tm3b6sSJE9q5c6fDdidOnFDVqlWVnJysMWPGOKy7ePGiqlSpohYtWmj58uUFnvP3nyEAOI+vuwPQ3r171aBBgwIBXdKfTq4RERGqV6+e9u3bJ0n69ddfNW7cONWtW1cTJ04sENAlqV+/fgR0AAC84B//+Ify8vI0fvz4a97XiRMnlJ2drVatWhW6noAOFA0hHYBq1qyp9PT0An89d8aFCxeUmZmpKlWqSJK++uornTx5Ug8++KBKlSrl7lIBAMA1uOmmm5SQkKB33nlHhw8fvqZ9hYWFKSgoSJ999plOnjzppgoBENIB6KmnntL58+cVExOjli1bauTIkVq+fLkuXLhQoO+FCxd04sQJnThxQtu3b1dCQoKOHj2q++67T5K0a9cuSdKtt95arK8BAAA455lnntHFixc1YcKEa9qPn5+fRowYofT0dN14443q1KmTXnnlFW3ZssVNlQK+iZAOQB06dFBaWpq6du2qbdu26dVXX1V8fLxq1Kih//znPw59ly9frqpVq6pq1apq3LixPvnkE/Xr188+0WdnZ0uSypcvX+yvAwAA/LlatWqpX79+mjFjho4cOXJN+xo7dqw+/vhjNWnSRMuWLdMzzzyj2NhY3XbbbfY/3ANwDSEdgCSpWbNmWrBggU6dOqXNmzdr9OjROnPmjO69915999139n4tWrTQihUrtHLlSm3YsEEnTpzQBx98oKCgIElSSEiIJOnMmTNeeR0AAODPPfvss7p48aJbrk1/4IEHtG7dOp06dUrLly/Xgw8+qK1bt6pLly767bff3FAt4FsI6QAc+Pv7q1mzZnrllVf01ltv6cKFC/rkk0/s60NDQ9W+fXu1a9dOcXFxBW42V7duXUmXfncdAABYU61atdS3b1+3nE2/LCQkRB06dNBHH32k/v37a+/evdq0aZNb9g34EkI6gCtq2rSpJLk0ed9xxx2qVKmS/v3vfysvL89TpQEAgGt0+Wz6tV6bXpiifIYAcAkhHYBWr14tY0yB9iVLlkiS6tSp4/S+goODNXLkSO3atUsjR44sdL8ffvihNm/eXPSCAQDANatdu7b69u2rt99+W1lZWS5vf/78eaWlpRW67osvvpDk2mcIAJeU9nYBALzv8ccf1/nz59WjRw/VrVtXubm52rBhg1JSUhQVFaXExESX9jdixAh9++23ev3117V69Wrde++9ioiIUFZWlhYtWqTNmzdrw4YNHno1AADAWc8884zmzJmj3bt3q0GDBi5te/78ebVs2VK33367OnbsqMjISP3yyy9atGiR1q1bp+7du6tJkyYeqhwouQjpADRx4kR98sknWrJkiWbMmKHc3FzdeOONevTRR/Xss88WuO78z/j5+emDDz5Qt27dNGPGDE2cOFHZ2dmqWrWq/vKXv+jVV19VXFycZ14MAABwWnR0tPr27av333/f5W0rVqyod955R4sXL9asWbOUlZWlUqVKqU6dOnrttdc0dOhQD1QMlHw2U9h3UQEAAAAAQLHjmnQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYhM/9Tnp+fr4OHz6s8uXLy2azebscAABkjNGZM2dUvXp1+fnx93N3YL4HAFiJK3O9z4X0w4cPKzIy0ttlAABQQGZmpm644QZvl1EiMN8DAKzImbne50J6+fLlJV0anJCQEC9XAwCAlJ2drcjISPschWvHfA8AsBJX5nqfC+mXv/IWEhLCpA0AsBS+lu0+zPcAACtyZq7nwjcAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsIjS3i7gehc1arG3S0AR7B/f2dslAAAAAEABnEkHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEuE9GnTpikqKkqBgYFq0aKFNm/e7NR2c+fOlc1mU/fu3T1bIAAAAAAAxcDrIT0lJUVJSUlKTk7Wli1b1LhxY8XHx+vYsWNX3W7//v166qmn1Lp162KqFAAAAAAAz/J6SJ80aZIGDhyoxMRE1a9fX9OnT1dwcLBmzpx5xW3y8vLUp08fjR07VrVq1SrGagEAAAAA8ByvhvTc3Fylp6erffv29jY/Pz+1b99eaWlpV9zuhRdeUFhYmAYMGPCnz5GTk6Ps7GyHBwAAKFmY7wEAJYVXQ/qJEyeUl5en8PBwh/bw8HBlZWUVus1XX32l9957T++8845TzzFu3DhVqFDB/oiMjLzmugEAgLUw3wMASgqvf93dFWfOnFG/fv30zjvvKDQ01KltRo8erdOnT9sfmZmZHq4SAAAUN+Z7AEBJUdqbTx4aGqpSpUrp6NGjDu1Hjx5VREREgf579+7V/v371aVLF3tbfn6+JKl06dLavXu3ateu7bBNQECAAgICPFA9AACwCuZ7AEBJ4dUz6f7+/oqNjVVqaqq9LT8/X6mpqYqLiyvQv27dutqxY4cyMjLsj65du+rOO+9URkYGX20DAAAAAFzXvHomXZKSkpLUv39/NW3aVM2bN9eUKVN07tw5JSYmSpISEhJUo0YNjRs3ToGBgWrYsKHD9hUrVpSkAu0AAAAAAFxvvB7Se/furePHj+v5559XVlaWYmJitHTpUvvN5A4cOCA/v+vq0nkAAAAAAIrE6yFdkoYMGaIhQ4YUum7NmjVX3Xb27NnuLwgAAAAAAC/gFDUAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALCI0t4uAAAAAADgvKhRi4vlefaP71wszwNHnEkHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARZT2dgEAAAAAALgiatTiYnme/eM7F8vz/B5n0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARhHQAAAAAACyitLcLAABIUaMWe7sEFMH+8Z29XQIAAChhXD6TnpmZqYMHD9qXN2/erOHDh2vGjBluLQwAAAAAAF/jckh/8MEHtXr1aklSVlaWOnTooM2bN+uZZ57RCy+84PYCAQAAAADwFS6H9J07d6p58+aSpHnz5qlhw4basGGDPvroI82ePdvd9QEAAAAA4DNcDukXLlxQQECAJGnlypXq2rWrJKlu3bo6cuSIe6sDAAAAAMCHuBzSGzRooOnTp2vdunVasWKFOnbsKEk6fPiwqlSp4vYCAQAAAADwFS6H9AkTJujtt99W27Zt9cADD6hx48aSpP/85z/2r8EDAAAAAADXufwTbG3bttWJEyeUnZ2tSpUq2dsffvhhBQcHu7U4AAAAAAB8SZF+J71UqVIOAV2SoqKi3FEPAAAAAAA+y6mQ3qRJE9lsNqd2uGXLlmsqCAAAAAAAX+VUSO/evbv937/99pv+9a9/qX79+oqLi5Mkbdy4Ud9++60effRRjxQJAAAAAIAvcCqkJycn2//90EMPaejQoXrxxRcL9MnMzHRvdQAAAAAA+BCX7+7+ySefKCEhoUB73759NX/+fLcUBQAAAACAL3I5pAcFBWn9+vUF2tevX6/AwEC3FAUAAAAAgC9y+e7uw4cP1+DBg7Vlyxb776Jv2rRJM2fO1HPPPef2AgEAAAAA8BUun0kfNWqU3n//faWnp2vo0KEaOnSotmzZolmzZmnUqFFFKmLatGmKiopSYGCgWrRooc2bN1+x74IFC9S0aVNVrFhRZcuWVUxMjObMmVOk5wUAAAAAwEqK9DvpvXr1Uq9evdxSQEpKipKSkjR9+nS1aNFCU6ZMUXx8vHbv3q2wsLAC/StXrqxnnnlGdevWlb+/vz7//HMlJiYqLCxM8fHxbqkJAAAAAABvcPlMurtNmjRJAwcOVGJiourXr6/p06crODhYM2fOLLR/27Zt1aNHD9WrV0+1a9fWsGHD1KhRI3311VfFXDkAAAAAAO7l1Jn0SpUqyWazObXDkydPOv3kubm5Sk9P1+jRo+1tfn5+at++vdLS0v50e2OMVq1apd27d2vChAmF9snJyVFOTo59OTs72+n6AADA9YH5HgBQUjgV0qdMmeKRJz9x4oTy8vIUHh7u0B4eHq7vv//+itudPn1aNWrUUE5OjkqVKqV//etf6tChQ6F9x40bp7Fjx7q1bgAAYC3M9wCAksKpkN6/f39P1+GS8uXLKyMjQ2fPnlVqaqqSkpJUq1YttW3btkDf0aNHKykpyb6cnZ2tyMjIYqwWAAB4GvM9AKCkKNKN4/Ly8rRo0SLt2rVLktSgQQN17dpVpUqVcmk/oaGhKlWqlI4ePerQfvToUUVERFxxOz8/P0VHR0uSYmJitGvXLo0bN67QkB4QEKCAgACX6gIAANcX5nsAQEnh8o3jfvzxR9WrV08JCQlasGCBFixYoL59+6pBgwbau3evS/vy9/dXbGysUlNT7W35+flKTU1VXFyc0/vJz893uA4NAAAAAIDrkctn0ocOHaratWtr48aNqly5siTpv//9r/r27auhQ4dq8eLFLu0vKSlJ/fv3V9OmTdW8eXNNmTJF586dU2JioiQpISFBNWrU0Lhx4yRduuasadOmql27tnJycrRkyRLNmTNHb731lqsvBQAAAADgoqhRrmW+oto/vnOxPI/VuBzS165d6xDQJalKlSoaP368WrVq5XIBvXv31vHjx/X8888rKytLMTExWrp0qf1mcgcOHJCf3/9O+J87d06PPvqoDh48qKCgINWtW1cffvihevfu7fJzAwAAAABgJS6H9ICAAJ05c6ZA+9mzZ+Xv71+kIoYMGaIhQ4YUum7NmjUOyy+99JJeeumlIj0PAAAAAABW5vI16X/729/08MMPa9OmTTLGyBijjRs3atCgQeratasnagQAAAAAwCe4HNLfeOMN1a5dW3FxcQoMDFRgYKBatWql6OhoTZ061RM1AgAAAADgE1z+unvFihX16aefas+ePfr+++8lSfXq1bP/JBoAAAAAACiaIv1OuiTdfPPNuvnmm91ZCwAAAAAAPs3lkJ6Xl6fZs2crNTVVx44dU35+vsP6VatWua04AAAAAAB8icshfdiwYZo9e7Y6d+6shg0bymazeaIuAAAAAAB8jsshfe7cuZo3b546derkiXoAAAAAAPBZLt/d3d/fn5vEAQAAAADgAS6H9CeffFJTp06VMcYT9QAAAAAA4LOc+rp7z549HZZXrVqlL774Qg0aNFCZMmUc1i1YsMB91QEAAAAA4EOcCukVKlRwWO7Ro4dHigEAAAAAwJc5FdJnzZrl6ToAAAAAAPB5Ll+TLkkXL17UypUr9fbbb+vMmTOSpMOHD+vs2bNuLQ4AAAAAAF/i8k+w/fzzz+rYsaMOHDignJwcdejQQeXLl9eECROUk5Oj6dOne6JOAAAAAABKPJfPpA8bNkxNmzbVqVOnFBQUZG/v0aOHUlNT3VocAAAAAAC+xOUz6evWrdOGDRvk7+/v0B4VFaVDhw65rTAAAAAAAHyNy2fS8/PzlZeXV6D94MGDKl++vFuKAgAAAADAF7kc0u+++25NmTLFvmyz2XT27FklJyerU6dO7qwNAAAAAACf4vLX3V9//XXFx8erfv36+u233/Tggw9qz549Cg0N1b///W9P1AgAAAAAgE9wOaTfcMMN2rZtm1JSUrRt2zadPXtWAwYMUJ8+fRxuJAcAAAAAAFzjckiXpNKlS6tPnz7q06ePu+sBAAAAAMBnuXxN+vvvv6/Fixfbl59++mlVrFhRLVu21M8//+zW4gAAAAAA8CUuh/RXXnnF/rX2tLQ0/fOf/9Srr76q0NBQPfHEE24vEAAAAAAAX+Hy190zMzMVHR0tSVq0aJHuvfdePfzww2rVqpXatm3r7voAAAAAAPAZLp9JL1eunP773/9KkpYvX64OHTpIkgIDA/Xrr7+6tzoAAAAAAHyIy2fSO3TooIceekhNmjTRDz/8YP9t9G+//VZRUVHurg8AAAAAAJ/h8pn0adOmKS4uTsePH9f8+fNVpUoVSVJ6eroeeOABtxcIAAAAAICvcPlMesWKFfXPf/6zQPvYsWPdUhAAAAAAAL7K5ZD+5ZdfXnX9X/7ylyIXAwAAAACAL3M5pBd2B3ebzWb/d15e3jUVBAAAAACAr3L5mvRTp045PI4dO6alS5eqWbNmWr58uSdqBAAAAADAJ7h8Jr1ChQoF2jp06CB/f38lJSUpPT3dLYUBAAAAAOBrXD6TfiXh4eHavXu3u3YHAAAAAIDPcflM+vbt2x2WjTE6cuSIxo8fr5iYGHfVBQAAAACAz3E5pMfExMhms8kY49B+++23a+bMmW4rDAAAAAAAX+NySN+3b5/Dsp+fn6pWrarAwEC3FQUAAAAAgC9yOaTXrFnTE3UAAAAAAODzinTjuLVr16pLly6Kjo5WdHS0unbtqnXr1rm7NgAAAAAAfIrLIf3DDz9U+/btFRwcrKFDh2ro0KEKCgpSu3bt9PHHH3uiRgAAAAAAfILLX3d/+eWX9eqrr+qJJ56wtw0dOlSTJk3Siy++qAcffNCtBQIAAAAA4CtcPpP+008/qUuXLgXau3btWuCmcgAAAAAAwHkuh/TIyEilpqYWaF+5cqUiIyPdUhQAAAAAAL7I5a+7P/nkkxo6dKgyMjLUsmVLSdL69es1e/ZsTZ061e0FAgAAAADgK1wO6YMHD1ZERIRef/11zZs3T5JUr149paSkqFu3bm4vEAAAAAAAX+FySJekHj16qEePHu6uBQAAAAAAn1ak30kHAAAAAADu5/SZ9EqVKslms/1pv5MnT15TQQAAAAAA+CqnQ/qUKVPs/zbGaPDgwXrhhRcUFhbmiboAAAAAAPA5Tof0/v37Oyw//vjjuueee1SrVi23FwUAAAAAgC/imnQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAinr0lPSkpyWM7NzdXLL7+sChUqOLRPmjTJPZUBAAAAAOBjnA7pW7dudVhu2bKlfvrpJ4c2Z36iDQAAAAAAFM7pkL569WpP1gEAAAAAgM/jmnQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFuFUSO/Zs6eys7MlSR988IFycnI8WhQAAAAAAL7IqZD++eef69y5c5KkxMREnT592qNFAQAAAADgi5z6Cba6detq9OjRuvPOO2WM0bx58xQSElJo34SEBLcWCAAAAACAr3AqpE+fPl1JSUlavHixbDabnn32WdlstgL9bDYbIR0AAAAAgCJyKqS3bNlSGzdulCT5+fnphx9+UFhYmEcLAwAAAADA1zgV0n9v3759qlq1qidqAUqsqFGLvV0CimD/+M7eLgEAAAA+xuWQXrNmTf3yyy967733tGvXLklS/fr1NWDAAFWoUMHtBQIAAAAA4Ctc/p30b775RrVr19bkyZN18uRJnTx5UpMnT1bt2rW1ZcsWT9QIAAAAAIBPcPlM+hNPPKGuXbvqnXfeUenSlza/ePGiHnroIQ0fPlxffvml24sEAAAAAMAXuBzSv/nmG4eALkmlS5fW008/raZNm7q1OAAAAAAAfInLX3cPCQnRgQMHCrRnZmaqfPnybikKAAAAAABf5HJI7927twYMGKCUlBRlZmYqMzNTc+fO1UMPPaQHHnjAEzUCAAAAAOATXP66+8SJE2Wz2ZSQkKCLFy9KksqUKaPBgwdr/Pjxbi8QAAAAAABf4XJI9/f319SpUzVu3Djt3btXklS7dm0FBwe7vTgAAAAAAHyJyyH9suDgYN16663urAUAAAAAAJ/m8jXpAAAAAADAMwjpAAAAAABYBCEdAAAAAACLIKQDAAAAAGARRbpx3J49e7R69WodO3ZM+fn5Duuef/55txQGAAAAAICvcTmkv/POOxo8eLBCQ0MVEREhm81mX2ez2QjpAAAAAAAUkcsh/aWXXtLLL7+skSNHeqIeAAAAAAB8lsvXpJ86dUr33XefJ2oBAAAAAMCnuRzS77vvPi1fvtwTtQAAAAAA4NNc/rp7dHS0nnvuOW3cuFG33nqrypQp47B+6NChbisOAAAAAABf4nJInzFjhsqVK6e1a9dq7dq1DutsNhshHQAAAACAInI5pO/bt88TdQAAAAAA4PNcvib994wxMsZccxHTpk1TVFSUAgMD1aJFC23evPmKfd955x21bt1alSpVUqVKldS+ffur9gcAAAAA4HpRpJD+wQcf6NZbb1VQUJCCgoLUqFEjzZkzp0gFpKSkKCkpScnJydqyZYsaN26s+Ph4HTt2rND+a9as0QMPPKDVq1crLS1NkZGRuvvuu3Xo0KEiPT8AAAAAAFbhckifNGmSBg8erE6dOmnevHmaN2+eOnbsqEGDBmny5MkuFzBp0iQNHDhQiYmJql+/vqZPn67g4GDNnDmz0P4fffSRHn30UcXExKhu3bp69913lZ+fr9TUVJefGwAAAAAAK3H5mvQ333xTb731lhISEuxtXbt2VYMGDTRmzBg98cQTTu8rNzdX6enpGj16tL3Nz89P7du3V1pamlP7OH/+vC5cuKDKlSsXuj4nJ0c5OTn25ezsbKfrAwAA1wfmewBASeHymfQjR46oZcuWBdpbtmypI0eOuLSvEydOKC8vT+Hh4Q7t4eHhysrKcmofI0eOVPXq1dW+fftC148bN04VKlSwPyIjI12qEQAAWB/zPQCgpHA5pEdHR2vevHkF2lNSUnTzzTe7pShnjR8/XnPnztXChQsVGBhYaJ/Ro0fr9OnT9kdmZmax1ggAADyP+R4AUFK4/HX3sWPHqnfv3vryyy/VqlUrSdL69euVmppaaHi/mtDQUJUqVUpHjx51aD969KgiIiKuuu3EiRM1fvx4rVy5Uo0aNbpiv4CAAAUEBLhUFwAAuL4w3wMASgqXz6Tfc8892rRpk0JDQ7Vo0SItWrRIoaGh2rx5s3r06OHSvvz9/RUbG+tw07fLN4GLi4u74navvvqqXnzxRS1dulRNmzZ19SUAAAAAAGBJLp9Jl6TY2Fh9+OGHbikgKSlJ/fv3V9OmTdW8eXNNmTJF586dU2JioiQpISFBNWrU0Lhx4yRJEyZM0PPPP6+PP/5YUVFR9mvXy5Urp3LlyrmlJgAAAAAAvMGpkJ6dna2QkBD7v6/mcj9n9e7dW8ePH9fzzz+vrKwsxcTEaOnSpfabyR04cEB+fv874f/WW28pNzdX9957r8N+kpOTNWbMGJeeGwAAAAAAK3EqpFeqVElHjhxRWFiYKlasKJvNVqCPMUY2m015eXkuFzFkyBANGTKk0HVr1qxxWN6/f7/L+wcAAAAA4HrgVEhftWqV/XfIV69e7dGCAAAAAADwVU6F9DZt2tj/fdNNNykyMrLA2XRjDD93AgAAAADANXD57u433XSTjh8/XqD95MmTuummm9xSFAAAAAAAvsjlkH752vM/Onv2rAIDA91SFAAAAAAAvsjpn2BLSkqSJNlsNj333HMKDg62r8vLy9OmTZsUExPj9gIBAAAAAPAVTof0rVu3Srp0Jn3Hjh3y9/e3r/P391fjxo311FNPub9CAAAAAAB8hNMh/fJd3RMTEzV16lSXfw8dAAAAAABcncvXpE+ZMkUXL14s0H7y5EllZ2e7pSgAAAAAAHyRyyH9/vvv19y5cwu0z5s3T/fff79bigIAAAAAwBe5HNI3bdqkO++8s0B727ZttWnTJrcUBQAAAACAL3I5pOfk5BT6dfcLFy7o119/dUtRAAAAAAD4IpdDevPmzTVjxowC7dOnT1dsbKxbigIAAAAAwBc5fXf3y1566SW1b99e27ZtU7t27SRJqamp+vrrr7V8+XK3FwgAAAAAgK9w+Ux6q1atlJaWpsjISM2bN0+fffaZoqOjtX37drVu3doTNQIAAAAA4BNcPpMuSTExMfroo4/cXQsAAAAAAD6tSCH9st9++025ubkObSEhIddUEAAAAAAAvsrlr7ufP39eQ4YMUVhYmMqWLatKlSo5PAAAAAAAQNG4HNJHjBihVatW6a233lJAQIDeffddjR07VtWrV9cHH3zgiRoBAAAAAPAJLn/d/bPPPtMHH3ygtm3bKjExUa1bt1Z0dLRq1qypjz76SH369PFEnQAAAAAAlHgun0k/efKkatWqJenS9ecnT56UJN1xxx368ssv3VsdAAAAAAA+xOWQXqtWLe3bt0+SVLduXc2bN0/SpTPsFStWdGtxAAAAAAD4EpdDemJiorZt2yZJGjVqlKZNm6bAwEA98cQTGjFihNsLBAAAAADAV7h8TfoTTzxh/3f79u31/fffKz09XdHR0WrUqJFbiwMAAAAAwJe4dCb9woULateunfbs2WNvq1mzpnr27ElABwAAAADgGrkU0suUKaPt27d7qhYAAAAAAHyay9ek9+3bV++9954nagEAAAAAwKe5fE36xYsXNXPmTK1cuVKxsbEqW7asw/pJkya5rTgAAAAAAHyJyyF9586duu222yRJP/zwg8M6m83mnqoAAAAAAPBBTof0n376STfddJNWr17tyXoAAAAAAPBZTl+TfvPNN+v48eP25d69e+vo0aMeKQoAAAAAAF/kdEg3xjgsL1myROfOnXN7QQAAAAAA+CqX7+4OAAAAAAA8w+mQbrPZCtwYjhvFAQAAAADgPk7fOM4Yo7///e8KCAiQJP32228aNGhQgZ9gW7BggXsrBAAAAADARzgd0vv37++w3LdvX7cXAwAAAACAL3M6pM+aNcuTdQAAAAAA4PO4cRwAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCK8HtKnTZumqKgoBQYGqkWLFtq8efMV+3777be65557FBUVJZvNpilTphRfoQAAAAAAeJhXQ3pKSoqSkpKUnJysLVu2qHHjxoqPj9exY8cK7X/+/HnVqlVL48ePV0RERDFXCwAAAACAZ3k1pE+aNEkDBw5UYmKi6tevr+nTpys4OFgzZ84stH+zZs302muv6f7771dAQEAxVwsAAAAAgGeV9tYT5+bmKj09XaNHj7a3+fn5qX379kpLS3Pb8+Tk5CgnJ8e+nJ2d7bZ9AwAAa2C+BwCUFF47k37ixAnl5eUpPDzcoT08PFxZWVlue55x48apQoUK9kdkZKTb9g0AAKyB+R4AUFJ4/cZxnjZ69GidPn3a/sjMzPR2SQAAwM2Y7wEAJYXXvu4eGhqqUqVK6ejRow7tR48edetN4QICArh+HQCAEo75HgBQUnjtTLq/v79iY2OVmppqb8vPz1dqaqri4uK8VRYAAAAAAF7jtTPpkpSUlKT+/furadOmat68uaZMmaJz584pMTFRkpSQkKAaNWpo3Lhxki7dbO67776z//vQoUPKyMhQuXLlFB0d7bXXAQAAAACAO3g1pPfu3VvHjx/X888/r6ysLMXExGjp0qX2m8kdOHBAfn7/O9l/+PBhNWnSxL48ceJETZw4UW3atNGaNWuKu3wAAAAAANzKqyFdkoYMGaIhQ4YUuu6PwTsqKkrGmGKoCgAAAACA4lfi7+4OAAAAAMD1gpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWAQhHQAAAAAAiyCkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBFENIBAAAAALAIQjoAAAAAABZBSAcAAAAAwCII6QAAAAAAWIQlQvq0adMUFRWlwMBAtWjRQps3b75q/08++UR169ZVYGCgbr31Vi1ZsqSYKgUAAAAAwHO8HtJTUlKUlJSk5ORkbdmyRY0bN1Z8fLyOHTtWaP8NGzbogQce0IABA7R161Z1795d3bt3186dO4u5cgAAAAAA3MvrIX3SpEkaOHCgEhMTVb9+fU2fPl3BwcGaOXNmof2nTp2qjh07asSIEapXr55efPFF3XbbbfrnP/9ZzJUDAAAAAOBepb355Lm5uUpPT9fo0aPtbX5+fmrfvr3S0tIK3SYtLU1JSUkObfHx8Vq0aFGh/XNycpSTk2NfPn36tCQpOzv7Gqu/JD/nvFv2g+Llrv/+zuI4uT4V53HCMXJ9ctcxcnk/xhi37M8XeXq+b5i8zC37+TM7x8YXy/MAuL4V1+eGK72Hevv5rVJDUfbjzFzv1ZB+4sQJ5eXlKTw83KE9PDxc33//faHbZGVlFdo/Kyur0P7jxo3T2LFjC7RHRkYWsWqUBBWmeLsCXA84TvBn3H2MnDlzRhUqVHDvTn1ESZnved8BYCXefk/y9vNL3pnrvRrSi8Po0aMdzrzn5+fr5MmTqlKlimw2m709OztbkZGRyszMVEhIiDdKtRTGoyDGpCDGxBHjURBjUlBhY2KM0ZkzZ1S9enUvV3f9cna+Ly4c+4yBxBhIjIHEGEiMgeTaXO/VkB4aGqpSpUrp6NGjDu1Hjx5VREREodtERES41D8gIEABAQEObRUrVrxiTSEhIT574BSG8SiIMSmIMXHEeBTEmBT0xzHhDPq1cXW+Ly4c+4yBxBhIjIHEGEiMgbNzvVdvHOfv76/Y2Filpqba2/Lz85Wamqq4uLhCt4mLi3PoL0krVqy4Yn8AAAAAAK4XXv+6e1JSkvr376+mTZuqefPmmjJlis6dO6fExERJUkJCgmrUqKFx48ZJkoYNG6Y2bdro9ddfV+fOnTV37lx98803mjFjhjdfBgAAAAAA18zrIb137946fvy4nn/+eWVlZSkmJkZLly613xzuwIED8vP73wn/li1b6uOPP9azzz6rf/zjH7r55pu1aNEiNWzY8JrqCAgIUHJycoGvyvkqxqMgxqQgxsQR41EQY1IQY+Ib+O/MGEiMgcQYSIyBxBi4ymb4vRcAAAAAACzBq9ekAwAAAACA/yGkAwAAAABgEYR0AAAAAAAsgpAOAAAAAIBF+FRInzZtmqKiohQYGKgWLVpo8+bNV+w7e/Zs2Ww2h0dgYGAxVutZX375pbp06aLq1avLZrNp0aJFf7rNmjVrdNtttykgIEDR0dGaPXu2x+ssTq6OyZo1awocIzabTVlZWcVTsIeNGzdOzZo1U/ny5RUWFqbu3btr9+7df7rdJ598orp16yowMFC33nqrlixZUgzVel5RxqOkv4+89dZbatSokUJCQhQSEqK4uDh98cUXV92mpB4fl7k6JiX9GMElP/zwg7p166bQ0FCFhITojjvu0OrVq71dVrFbvHixWrRooaCgIFWqVEndu3f3dklekZOTo5iYGNlsNmVkZHi7nGKzf/9+DRgwQDfddJOCgoJUu3ZtJScnKzc319uleZwrGaSkKernSV/nMyE9JSVFSUlJSk5O1pYtW9S4cWPFx8fr2LFjV9wmJCRER44csT9+/vnnYqzYs86dO6fGjRtr2rRpTvXft2+fOnfurDvvvFMZGRkaPny4HnroIS1btszDlRYfV8fkst27dzscJ2FhYR6qsHitXbtWjz32mDZu3KgVK1bowoULuvvuu3Xu3LkrbrNhwwY98MADGjBggLZu3aru3bure/fu2rlzZzFW7hlFGQ+pZL+P3HDDDRo/frzS09P1zTff6K677lK3bt307bffFtq/JB8fl7k6JlLJPkZwyd/+9jddvHhRq1atUnp6uho3bqy//e1vJeaPus6YP3+++vXrp8TERG3btk3r16/Xgw8+6O2yvOLpp59W9erVvV1Gsfv++++Vn5+vt99+W99++60mT56s6dOn6x//+Ie3S/OoomSQkqSon598nvERzZs3N4899ph9OS8vz1SvXt2MGzeu0P6zZs0yFSpUKKbqvEuSWbhw4VX7PP3006ZBgwYObb179zbx8fEerMx7nBmT1atXG0nm1KlTxVKTtx07dsxIMmvXrr1in169epnOnTs7tLVo0cI88sgjni6v2DkzHr70PnJZpUqVzLvvvlvoOl86Pn7vamPii8eIrzl+/LiRZL788kt7W3Z2tpFkVqxY4cXKis+FCxdMjRo1rvj/gS9ZsmSJqVu3rvn222+NJLN161Zvl+RVr776qrnpppu8XYZHuZpBSjpnPj/BGJ84k56bm6v09HS1b9/e3ubn56f27dsrLS3titudPXtWNWvWVGRk5J+eCSnp0tLSHMZPkuLj4686fr4iJiZG1apVU4cOHbR+/Xpvl+Mxp0+fliRVrlz5in186ThxZjwk33kfycvL09y5c3Xu3DnFxcUV2seXjg/JuTGRfOcY8VVVqlRRnTp19MEHH+jcuXO6ePGi3n77bYWFhSk2Ntbb5RWLLVu26NChQ/Lz81OTJk1UrVo1/fWvfy1R36JxxtGjRzVw4EDNmTNHwcHB3i7HEk6fPv2n8+j1rKgZpCRz9vOTr/OJkH7ixAnl5eUpPDzcoT08PPyKXzWrU6eOZs6cqU8//VQffvih8vPz1bJlSx08eLA4SracrKysQscvOztbv/76q5eq8q5q1app+vTpmj9/vubPn6/IyEi1bdtWW7Zs8XZpbpefn6/hw4erVatWatiw4RX7Xek4KWlf6XR2PHzhfWTHjh0qV66cAgICNGjQIC1cuFD169cvtK+vHB+ujIkvHCO+zmazaeXKldq6davKly+vwMBATZo0SUuXLlWlSpW8XV6x+OmnnyRJY8aM0bPPPqvPP/9clSpVUtu2bXXy5EkvV1c8jDH6+9//rkGDBqlp06beLscSfvzxR7355pt65JFHvF2KxxQlg5Rkzn5+go+E9KKIi4tTQkKCYmJi1KZNGy1YsEBVq1bV22+/7e3SYBF16tTRI488otjYWLVs2VIzZ85Uy5YtNXnyZG+X5naPPfaYdu7cqblz53q7FEtwdjx84X2kTp06ysjI0KZNmzR48GD1799f3333nbfL8ipXxsQXjpGSatSoUYXePPT3j++//17GGD322GMKCwvTunXrtHnzZnXv3l1dunTRkSNHvP0yromzY5Cfny9JeuaZZ3TPPfcoNjZWs2bNks1m0yeffOLlV3FtnB2DN998U2fOnNHo0aO9XbLbOTsGv3fo0CF17NhR9913nwYOHOilylHc+DzpvNLeLqA4hIaGqlSpUjp69KhD+9GjRxUREeHUPsqUKaMmTZroxx9/9ESJlhcREVHo+IWEhCgoKMhLVVlP8+bN9dVXX3m7DLcaMmSIPv/8c3355Ze64YYbrtr3SseJs/+fXQ9cGY8/KonvI/7+/oqOjpYkxcbG6uuvv9bUqVMLDZm+cHxIro3JH5XEY6SkevLJJ/X3v//9qn1q1aqlVatW6fPPP9epU6cUEhIiSfrXv/6lFStW6P3339eoUaOKoVrPcHYMLv8x4vffKAkICFCtWrV04MABT5boca4cB2lpaQoICHBY17RpU/Xp00fvv/++B6v0LGfH4LLDhw/rzjvvVMuWLTVjxgwPV+dd7sggJcW1fH7yRT4R0v39/RUbG6vU1FT7z33k5+crNTVVQ4YMcWofeXl52rFjhzp16uTBSq0rLi6uwE8lrVix4qrXWfqijIwMVatWzdtluIUxRo8//rgWLlyoNWvW6KabbvrTbeLi4pSamqrhw4fb20rKcVKU8fgjX3gfyc/PV05OTqHrSvLxcTVXG5M/8oVjpKSoWrWqqlat+qf9zp8/L+nSdai/5+fnZz/DfL1ydgxiY2MVEBCg3bt364477pAkXbhwQfv371fNmjU9XaZHOTsGb7zxhl566SX78uHDhxUfH6+UlBS1aNHCkyV6nLNjIF06g37nnXfav03xx/8vShp3ZJDrnTs+P/kkr962rhjNnTvXBAQEmNmzZ5vvvvvOPPzww6ZixYomKyvLGGNMv379zKhRo+z9x44da5YtW2b27t1r0tPTzf33328CAwPNt99+662X4FZnzpwxW7duNVu3bjWSzKRJk8zWrVvNzz//bIwxZtSoUaZfv372/j/99JMJDg42I0aMMLt27TLTpk0zpUqVMkuXLvXWS3A7V8dk8uTJZtGiRWbPnj1mx44dZtiwYcbPz8+sXLnSWy/BrQYPHmwqVKhg1qxZY44cOWJ/nD9/3t7nj//frF+/3pQuXdpMnDjR7Nq1yyQnJ5syZcqYHTt2eOMluFVRxqOkv4+MGjXKrF271uzbt89s377djBo1ythsNrN8+XJjjG8dH5e5OiYl/RjBpbu7V6lSxfTs2dNkZGSY3bt3m6eeesqUKVPGZGRkeLu8YjNs2DBTo0YNs2zZMvP999+bAQMGmLCwMHPy5Elvl+YV+/bt87m7ux88eNBER0ebdu3amYMHDzrMpSXZn2WQks6Zz08oyGdCujHGvPnmm+bGG280/v7+pnnz5mbjxo32dW3atDH9+/e3Lw8fPtzeNzw83HTq1Mls2bLFC1V7xuWfD/vj4/IY9O/f37Rp06bANjExMcbf39/UqlXLzJo1q9jr9iRXx2TChAmmdu3aJjAw0FSuXNm0bdvWrFq1yjvFe0BhYyHJ4b/7H/+/McaYefPmmVtuucX4+/ubBg0amMWLFxdv4R5SlPEo6e8j//d//2dq1qxp/P39TdWqVU27du3sYdQY3zo+LnN1TEr6MYJLvv76a3P33XebypUrm/Lly5vbb7/dLFmyxNtlFavc3Fzz5JNPmrCwMFO+fHnTvn17s3PnTm+X5TW+GNJnzZp1xbm0pLtaBinpnPn8hIJsxhjjyTP1AAAAAADAOSX7QhAAAAAAAK4jhHQAAAAAACyCkA4AAAAAgEUQ0gEAAAAAsAhCOgAAAAAAFkFIBwAAAADAIgjpAAAAAABYBCEdAAAAAACLIKQDJUhUVJSmTJni7TKuO7Nnz1bFihWvaR/79++XzWZTRkbGFfusWbNGNptNv/zyyxX72Gw2LVq06JpqcRXHDQBcX3jfLhrme46b6wUhHcXu73//u7p37+7tMjxi9uzZstls9ke5cuUUGxurBQsWeLs0p7Rt21bDhw93y77GjBmjmJiYAu3OTG4AgOsf8711Md8D1kZIB9wsJCRER44c0ZEjR7R161bFx8erV69e2r179xW3yc3NLcYKAQDAtWK+B+AphHR4Xdu2bTV06FA9/fTTqly5siIiIjRmzBiHPr/88oseeeQRhYeHKzAwUA0bNtTnn39uXz9//nw1aNBAAQEBioqK0uuvv+6wfVRUlF566SUlJCSoXLlyqlmzpv7zn//o+PHj6tatm8qVK6dGjRrpm2++cdjuq6++UuvWrRUUFKTIyEgNHTpU586du+rrsdlsioiIUEREhG6++Wa99NJL8vPz0/bt2x3qefHFF5WQkKCQkBA9/PDDkqSRI0fqlltuUXBwsGrVqqXnnntOFy5ccNj/Z599pmbNmikwMFChoaHq0aPHFWt59913VbFiRaWmpkqSdu7cqb/+9a8qV66cwsPD1a9fP504cULSpTMea9eu1dSpU+1nBvbv33/V1+oua9euVfPmzRUQEKBq1app1KhRunjxon19YV/PiomJsR8nxhiNGTNGN954owICAlS9enUNHTrU3jcnJ0dPPfWUatSoobJly6pFixZas2ZNgTqWLVumevXqqVy5curYsaOOHDliX5efn68XXnhBN9xwgwICAhQTE6OlS5de9XUtWbJEt9xyi4KCgnTnnXcWaTwzMzPVq1cvVaxYUZUrV1a3bt3s+1m+fLkCAwMLfJ1u2LBhuuuuu+zLRTmOAcDdmO+Z75nvr4z5Hr9HSIclvP/++ypbtqw2bdqkV199VS+88IJWrFgh6dKb5V//+letX79eH374ob777juNHz9epUqVkiSlp6erV69euv/++7Vjxw6NGTNGzz33nGbPnu3wHJMnT1arVq20detWde7cWf369VNCQoL69u2rLVu2qHbt2kpISJAxRpK0d+9edezYUffcc4+2b9+ulJQUffXVVxoyZIjTrysvL0/vv/++JOm2225zWDdx4kQ1btxYW7du1XPPPSdJKl++vGbPnq3vvvtOU6dO1TvvvKPJkyfbt1m8eLF69OihTp06aevWrUpNTVXz5s0Lfe5XX31Vo0aN0vLly9WuXTv98ssvuuuuu9SkSRN98803Wrp0qY4ePapevXpJkqZOnaq4uDgNHDjQfmYgMjLS6ddaVIcOHVKnTp3UrFkzbdu2TW+99Zbee+89vfTSS07vY/78+Zo8ebLefvtt7dmzR4sWLdKtt95qXz9kyBClpaVp7ty52r59u+677z517NhRe/bssfc5f/68Jk6cqDlz5ujLL7/UgQMH9NRTT9nXT506Va+//romTpyo7du3Kz4+Xl27dnXYx+9lZmaqZ8+e6tKlizIyMvTQQw9p1KhRLo3NhQsXFB8fr/Lly2vdunVav369/QNFbm6u2rVrp4oVK2r+/Pn2bfLy8pSSkqI+ffpIcs9xDADuwnzPfM98XxDzPQowQDHr37+/6datm325TZs25o477nDo06xZMzNy5EhjjDHLli0zfn5+Zvfu3YXu78EHHzQdOnRwaBsxYoSpX7++fblmzZqmb9++9uUjR44YSea5556zt6WlpRlJ5siRI8YYYwYMGGAefvhhh/2uW7fO+Pn5mV9//bXQWmbNmmUkmbJly5qyZcsaPz8/ExAQYGbNmuXQr2bNmqZ79+6F7uP3XnvtNRMbG2tfjouLM3369Lli/5o1a5rJkyebp59+2lSrVs3s3LnTvu7FF180d999t0P/zMxMI8k+tm3atDHDhg3707qckZycbPz8/OxjcfkRHBxsJJmtW7caY4z5xz/+YerUqWPy8/Pt206bNs2UK1fO5OXlObyu32vcuLFJTk42xhjz+uuvm1tuucXk5uYWqOPnn382pUqVMocOHXJob9eunRk9erQx5n//3X788UeHGsLDw+3L1atXNy+//LLDPpo1a2YeffRRY4wx+/btc3hdo0ePdjgGjTFm5MiRRpI5derUFcdNklm4cKExxpg5c+YUGJucnBwTFBRkli1bZowxZtiwYeauu+6yr1+2bJkJCAiwP4czx3Fh4wsA14r5nvme+f7UFceN+R5XU7q4/ygAFKZRo0YOy9WqVdOxY8ckSRkZGbrhhht0yy23FLrtrl271K1bN4e2Vq1aacqUKcrLy7P/Bf73zxEeHi5JDn99vdx27NgxRUREaNu2bdq+fbs++ugjex9jjPLz87Vv3z7Vq1ev0HrKly+vLVu2SLr019qVK1dq0KBBqlKlirp06WLv17Rp0wLbpqSk6I033tDevXt19uxZXbx4USEhIfb1GRkZGjhwYKHPe9nrr7+uc+fO6ZtvvlGtWrXs7du2bdPq1atVrly5Atvs3bv3iuP7R6+88opeeeUV+/J3332nG2+8sdC+derU0X/+8x+HtkOHDqlt27b25V27dikuLk42m83e1qpVK509e1YHDx684r5/77777tOUKVNUq1YtdezYUZ06dVKXLl1UunRp7dixQ3l5eQVeX05OjqpUqWJfDg4OVu3ate3Lvz8Gs7OzdfjwYbVq1cphH61atdK2bdsKrWnXrl1q0aKFQ1tcXNyfvpbf27Ztm3788UeVL1/eof23337T3r17JUl9+vTR7bffrsOHD6t69er66KOP1LlzZ/vda4t6HAOAJzDfX8J8fwnz/SXM9/gjQjosoUyZMg7LNptN+fn5kqSgoCC3P8flCaKwtsvPe/bsWT3yyCMO1zpddrWJxM/PT9HR0fblRo0aafny5ZowYYLDpF22bFmH7dLS0tSnTx+NHTtW8fHxqlChgubOnetwvZ0zY9G6dWstXrxY8+bNc/i61dmzZ9WlSxdNmDChwDbVqlX70/1eNmjQIPtX5iSpevXqV+zr7+/vMBaSVLq06287fn5+9q8lXvb7a/ciIyO1e/durVy5UitWrNCjjz6q1157TWvXrtXZs2dVqlQppaen2z/AXfb7DzCFHYN/fM7idvbsWcXGxjpMuJdVrVpVktSsWTPVrl1bc+fO1eDBg7Vw4UKHr34W9TgGAE9gvme+vxrme+Z7XEJIh+U1atRIBw8e1A8//FDoX3/r1aun9evXO7StX79et9xyS4E3aVfcdttt+u677wpMOkVRqlQp/frrr1fts2HDBtWsWVPPPPOMve3nn3926NOoUSOlpqYqMTHxivtp3ry5hgwZoo4dO6p06dL266xuu+02zZ8/X1FRUVecOP39/ZWXl3fVOitXrqzKlStftY8r6tWrp/nz58sYY//gtH79epUvX1433HCDpEsT1O9v6pKdna19+/Y57CcoKEhdunRRly5d9Nhjj6lu3brasWOHmjRpory8PB07dkytW7cuUo0hISGqXr261q9frzZt2tjb169ff8VrBOvVq1fgrMLGjRtdet7bbrtNKSkpCgsLczjD8kd9+vTRRx99pBtuuEF+fn7q3Lmzwz7cdRwDgCcx3/8P8/0lzPeOmO99BzeOg+W1adNGf/nLX3TPPfdoxYoV2rdvn7744gv7nTaffPJJpaam6sUXX9QPP/yg999/X//85z8dbgJSFCNHjtSGDRs0ZMgQZWRkaM+ePfr000//9AYcxhhlZWUpKytL+/bt04wZM7Rs2bICX9H7o5tvvlkHDhzQ3LlztXfvXr3xxhtauHChQ5/k5GT9+9//VnJysnbt2qUdO3YU+pfyli1basmSJRo7dqz9LqmPPfaYTp48qQceeEBff/219u7dq2XLlikxMdE+UUdFRWnTpk3av3+/Tpw4YT/L4EmPPvqoMjMz9fjjj+v777/Xp59+quTkZCUlJcnP79Jb1F133aU5c+Zo3bp12rFjh/r37+/wgWz27Nl67733tHPnTv3000/68MMPFRQUpJo1a+qWW25Rnz59lJCQoAULFmjfvn3avHmzxo0bp8WLFztd54gRIzRhwgSlpKRo9+7dGjVqlDIyMjRs2LBC+w8aNEh79uzRiBEjtHv3bn388ccFbm70Z/r06aPQ0FB169ZN69at0759+7RmzRoNHTpUBw8edOi3ZcsWvfzyy7r33nsVEBBgX1fU4xgAihvz/f8w3zPfM9/7OO9cCg9fVtiNZP5485Ju3bqZ/v3725f/+9//msTERFOlShUTGBhoGjZsaD7//HP7+v/3//6fqV+/vilTpoy58cYbzWuvveawv8JulKHf3bDDmII3AjHGmM2bN5sOHTqYcuXKmbJly5pGjRoVuJnI712+IcnlR0BAgLnlllvMyy+/bC5evHjVeoy5dAOcKlWqmHLlypnevXubyZMnmwoVKjj0mT9/vomJiTH+/v4mNDTU9OzZ84r7Xbt2rSlbtqx54403jDHG/PDDD6ZHjx6mYsWKJigoyNStW9cMHz7cfqOS3bt3m9tvv90EBQUZSWbfvn1XfK1/Jjk52TRu3LhAe2HjvGbNGtOsWTPj7+9vIiIizMiRI82FCxfs60+fPm169+5tQkJCTGRkpJk9e7bDjWQWLlxoWrRoYUJCQkzZsmXN7bffblauXGnfPjc31zz//PMmKirKlClTxlSrVs306NHDbN++3Rhz6b/bH8d54cKF5vdvkXl5eWbMmDGmRo0apkyZMqZx48bmiy++uOrr+uyzz0x0dLQJCAgwrVu3NjNnznTpRjLGXLrpUUJCggkNDTUBAQGmVq1aZuDAgeb06dMO2zVv3txIMqtWrSqwzz87jrmRDABPYL5nvme+P3XFcWO+x9XYjPHyRRgAAAAAAEASX3cHAAAAAMAyCOkAAAAAAFgEIR0AAAAAAIsgpAMAAAAAYBGEdAAAAAAALIKQDgAAAACARRDSAQAAAACwCEI6AAAAAAAWQUgHAAAAAMAiCOkAAAAAAFgEIR0AAAAAAIv4/5ZEcP6NILaZAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# bar plot showing spc_edited.salary_yearly_hh_cat and nts_households.HHIncome2002_B02ID side by side\n", "fig, ax = plt.subplots(1, 2, figsize=(12, 6), sharey=True)\n", @@ -998,25 +597,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "HHIncome2002_B02ID\n", - " 1.0 35.969773\n", - " 3.0 34.382872\n", - " 2.0 29.559194\n", - "-8.0 0.088161\n", - "Name: proportion, dtype: float64" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# get the % of households in each income bracket for the nts\n", "nts_households['HHIncome2002_B02ID'].value_counts(normalize=True) * 100" @@ -1031,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1051,43 +634,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "({'0': 'Not applicable (age < 16)',\n", - " '1': 'Employee FT',\n", - " '2': 'Employee PT',\n", - " '3': 'Employee unspecified',\n", - " '4': 'Self-employed',\n", - " '5': 'Unemployed',\n", - " '6': 'Retired',\n", - " '7': 'Homemaker/Maternal leave',\n", - " '8': 'Student',\n", - " '9': 'Long term sickness/disability',\n", - " '10': 'Other'},\n", - " {'1': 'None',\n", - " '2': '0 FT, 1 PT',\n", - " '3': '1 FT, 0 PT',\n", - " '4': '0 FT, 2 PT',\n", - " '5': '1 FT, 1 PT',\n", - " '6': '2 FT, 0 PT',\n", - " '7': '1 FT, 2+ PT',\n", - " '8': '2 FT, 1+ PT',\n", - " '9': '0 FT, 3+ PT',\n", - " '10': '3+ FT, 0 PT',\n", - " '11': '3+ FT, 1+ PT',\n", - " '-8': 'NA',\n", - " '-10': 'DEAD'})" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Employment status\n", "\n", @@ -1106,114 +655,9 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
pwkstat_FT_hhpwkstat_PT_hh
household
000
100
220
310
400
510
600
710
810
901
\n", - "
" - ], - "text/plain": [ - " pwkstat_FT_hh pwkstat_PT_hh\n", - "household \n", - "0 0 0\n", - "1 0 0\n", - "2 2 0\n", - "3 1 0\n", - "4 0 0\n", - "5 1 0\n", - "6 0 0\n", - "7 1 0\n", - "8 1 0\n", - "9 0 1" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# We will only use '1' and '2' for the employment status\n", "\n", @@ -1235,141 +679,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
householdpwkstatpwkstat_FT_hhpwkstat_PT_hhpwkstat_NTS_match
006001
116001
216001
321206
421206
531103
6410001
744001
840001
951103
\n", - "
" - ], - "text/plain": [ - " household pwkstat pwkstat_FT_hh pwkstat_PT_hh pwkstat_NTS_match\n", - "0 0 6 0 0 1\n", - "1 1 6 0 0 1\n", - "2 1 6 0 0 1\n", - "3 2 1 2 0 6\n", - "4 2 1 2 0 6\n", - "5 3 1 1 0 3\n", - "6 4 10 0 0 1\n", - "7 4 4 0 0 1\n", - "8 4 0 0 0 1\n", - "9 5 1 1 0 3" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# We want to match the SPC values to the NTS\n", "dict_nts['HHoldEmploy_B01ID']\n", @@ -1427,30 +739,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAIjCAYAAACpnIB8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABcDUlEQVR4nO3deVhWdf7/8ReLLKKAqHBLIpKWYmpupeSSJolKfnOpxkKlpJoczJQyczI1rShKzcoly8QmHdPfZFNqKu4bbiS5NVRmg6Vg5XKLJSCc3x9enPEOMEXg5ujzcV3nujzn87k/531u1A+v+yy3i2EYhgAAAAAAgCW5OrsAAAAAAABQdgR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPoMz27dun++67T6GhofLy8tINN9ygu+++W2+//bbZp2HDhnJxcTGXwMBAde7cWUuXLi1xzKVLl6pXr16qU6eOPDw8FBwcrAceeEDr1q2rrMMCAACSkpOT5eLiIi8vL/3000/F2rt27armzZtr4sSJDnN9aUvXrl3N137++ee68847FRgYqOrVq+vGG2/UAw88oJUrV1biEQLXDndnFwDAmrZt26Zu3bqpQYMGeuyxx2Sz2XTkyBFt375d06dP15NPPmn2bdWqlZ5++mlJ0tGjR/Xuu++qf//+mjVrlp544glJkmEYGjp0qJKTk9W6dWslJCTIZrPp2LFjWrp0qbp3766tW7fqjjvucMrxAgBwvcrNzdWrr77q8MH9xfr376/GjRub6zk5ORo2bJj69eun/v37m9uDgoIkSW+88YZGjx6tO++8U2PHjlX16tX13Xffac2aNVq0aJF69uxZsQcEXINcDMMwnF0EAOuJjo7Wrl279M0338jf39+h7fjx4woMDJR04Yx98+bNtWzZMrM9KytLjRs31g033KCMjAxJ/5vkR44cqalTp8rFxcVhzH/84x9q0qSJbr/99oo9MAAAIOnCGftHHnlErVq10tdff63vv/9ewcHBZnvXrl31yy+/aP/+/Q6v++WXX1S3bl1NmDBBEydOdGg7f/68ateurfbt22v16tXF9nnx7xAALh+X4gMok0OHDumWW24pFuol/emEbLPZFB4ersOHD0uSfv/9dyUmJqpp06Z64403ioV6SRo8eDChHgAAJ/j73/+ugoICvfrqq1c91i+//CK73a6OHTuW2E6oB8qGYA+gTEJDQ5WWllbsU/rLkZ+fryNHjqh27dqSpC1btujEiRN66KGH5ObmVt6lAgCAqxAWFqYhQ4bovffe09GjR69qrMDAQHl7e+vzzz/XiRMnyqlCAAR7AGXyzDPP6LffflOrVq10xx13aMyYMVq9erXy8/OL9c3Pz9cvv/yiX375RXv37tWQIUOUnZ2t+++/X5L09ddfS5JatGhRqccAAAAuz/PPP6/z58/rtddeu6pxXF1dNXr0aKWlpalBgwbq3bu3XnnlFX355ZflVClwfSLYAyiTu+++W6mpqfq///s/ffXVV0pKSlJUVJRuuOEGffbZZw59V69erbp166pu3bq69dZbtWTJEg0ePNj85cBut0uSatasWenHAQAA/tyNN96owYMHa86cOTp27NhVjfXiiy9q4cKFat26tVatWqXnn39ebdu2VZs2bcwP+wFcGYI9gDK77bbb9Mknn+jkyZPauXOnxo4dqzNnzui+++7TwYMHzX7t27dXSkqK1qxZo23btumXX37Rhx9+KG9vb0mSr6+vJOnMmTNOOQ4AAPDnxo0bp/Pnz5fLvfYPPvigNm/erJMnT2r16tV66KGHtGfPHvXp00fnzp0rh2qB6wvBHsBV8/Dw0G233aZXXnlFs2bNUn5+vpYsWWK216lTR5GRkerevbsiIiKKPXCvadOmkqR9+/ZVZtkAAOAK3HjjjRo0aFC5nLUv4uvrq7vvvlsLFixQbGysDh06pB07dpTL2MD1hGAPoFy1a9dOkq5owu/UqZNq1aqlf/7znyooKKio0gAAwFUqOmt/tffal6Qsv0MAuIBgD6BM1q9fL8Mwim1fsWKFJKlJkyaXPVb16tU1ZswYff311xozZkyJ43700UfauXNn2QsGAABXrVGjRho0aJDeffddZWVlXfHrf/vtN6WmppbY9sUXX0i6st8hAFzg7uwCAFjTk08+qd9++039+vVT06ZNlZeXp23btunjjz9Ww4YN9cgjj1zReKNHj9aBAwc0ZcoUrV+/Xvfdd59sNpuysrL06aefaufOndq2bVsFHQ0AALhczz//vP7xj38oIyNDt9xyyxW99rffftMdd9yhDh06qGfPngoJCdGpU6f06aefavPmzerbt69at25dQZUD1y6CPYAyeeONN7RkyRKtWLFCc+bMUV5enho0aKC//e1vGjduXLH76P+Mq6urPvzwQ917772aM2eO3njjDdntdtWtW1ddunRRUlKSIiIiKuZgAADAZWvcuLEGDRqk+fPnX/Fr/f399d5772n58uWaN2+esrKy5ObmpiZNmuj111/XiBEjKqBi4NrnYpR0zSsAAAAAALAE7rEHAAAAAMDCCPYAAAAAAFgYwR4AAAAAAAsj2AMAAAAAYGEEewAAAAAALIxgDwAAKtRPP/2kQYMGqXbt2vL29laLFi20e/dus90wDI0fP1716tWTt7e3IiMj9e233zqMceLECcXExMjX11f+/v6Ki4tTTk6OQ5+9e/eqc+fO8vLyUkhIiJKSkirl+AAAcDa+x/4yFBYW6ujRo6pZs6ZcXFycXQ4AADIMQ2fOnFFwcLBcXavu5/QnT55Ux44d1a1bN33xxReqW7euvv32W9WqVcvsk5SUpLfeekvz589XWFiYXnjhBUVFRengwYPy8vKSJMXExOjYsWNKSUlRfn6+HnnkET3++ONauHChJMlut6tHjx6KjIzU7NmztW/fPg0dOlT+/v56/PHHL6tW5nsAQFVyRXO9gT915MgRQxILCwsLC0uVW44cOeLsafKSxowZY3Tq1KnU9sLCQsNmsxmvv/66ue3UqVOGp6en8c9//tMwDMM4ePCgIcnYtWuX2eeLL74wXFxcjJ9++skwDMOYOXOmUatWLSM3N9dh302aNLnsWpnvWVhYWFiq4nI5c71Tz9gnJibqk08+0X/+8x95e3vrjjvu0GuvvaYmTZqYfbp27aqNGzc6vO6vf/2rZs+eba5nZmZq2LBhWr9+vWrUqKHY2FglJibK3f1/h7dhwwYlJCTowIEDCgkJ0bhx4/Twww9fVp01a9aUJB05ckS+vr5XccQAAJQPu92ukJAQc46qqj777DNFRUXp/vvv18aNG3XDDTfob3/7mx577DFJ0uHDh5WVlaXIyEjzNX5+fmrfvr1SU1M1cOBApaamyt/fX+3atTP7REZGytXVVTt27FC/fv2UmpqqLl26yMPDw+wTFRWl1157TSdPnnS4QqBIbm6ucnNzzXXDMCQx3wMAqoYrmeudGuw3btyo+Ph43XbbbTp//rz+/ve/q0ePHjp48KB8fHzMfo899pgmTZpkrlevXt38c0FBgaKjo2Wz2bRt2zYdO3ZMQ4YMUbVq1fTKK69IuvBLQ3R0tJ544gktWLBAa9eu1aOPPqp69eopKirqT+ssuhzP19eXiR4AUKVU9UvGv//+e82aNUsJCQn6+9//rl27dmnEiBHy8PBQbGyssrKyJElBQUEOrwsKCjLbsrKyFBgY6NDu7u6ugIAAhz5hYWHFxihqKynYJyYm6sUXXyy2nfkeAFCVXM5c79Rgv3LlSof15ORkBQYGKi0tTV26dDG3V69eXTabrcQxVq9erYMHD2rNmjUKCgpSq1atNHnyZI0ZM0YTJ06Uh4eHZs+erbCwME2ZMkWSFB4eri1btmjatGmXFewBAEDZFBYWql27duaH7a1bt9b+/fs1e/ZsxcbGOrW2sWPHKiEhwVwvOjMCAIDVVKmn7Zw+fVqSFBAQ4LB9wYIFqlOnjpo3b66xY8fqt99+M9tSU1PVokULh0/6o6KiZLfbdeDAAbPPxZf4FfVJTU0tsY7c3FzZ7XaHBQAAXLl69eqpWbNmDtvCw8OVmZkpSeYH99nZ2Q59srOzzTabzabjx487tJ8/f14nTpxw6FPSGBfv4488PT3Ns/OcpQcAWFmVCfaFhYUaOXKkOnbsqObNm5vbH3roIX300Udav369xo4dq3/84x8aNGiQ2Z6VlVXi5XtFbZfqY7fb9fvvvxerJTExUX5+fubCp/cAAJRNx44dlZGR4bDtm2++UWhoqCQpLCxMNptNa9euNdvtdrt27NihiIgISVJERIROnTqltLQ0s8+6detUWFio9u3bm302bdqk/Px8s09KSoqaNGlS4mX4AABcS6rM193Fx8dr//792rJli8P2i7+ipkWLFqpXr566d++uQ4cOqVGjRhVSC5fmAQBQPkaNGqU77rhDr7zyih544AHt3LlTc+bM0Zw5cyRduG9w5MiReumll3TTTTeZX3cXHBysvn37Srpwhr9nz5567LHHNHv2bOXn52v48OEaOHCggoODJV04EfDiiy8qLi5OY8aM0f79+zV9+nRNmzbNWYcOAEClqRLBfvjw4Vq2bJk2bdqk+vXrX7Jv0Sfz3333nRo1aiSbzaadO3c69PnjpXelXZ7n6+srb2/vYvvw9PSUp6dnmY8HAABccNttt2np0qUaO3asJk2apLCwML355puKiYkx+zz77LM6e/asHn/8cZ06dUqdOnXSypUrze+wly7cljd8+HB1795drq6uGjBggN566y2z3c/PT6tXr1Z8fLzatm2rOnXqaPz48Zf9HfYAAFiZU4O9YRh68skntXTpUm3YsKHY02xLkp6eLunCPXvShUvvXn75ZR0/ftx8Ym5KSop8fX3Ne/oiIiK0YsUKh3FSUlLMS/wAAEDFueeee3TPPfeU2u7i4qJJkyY5fAPOHwUEBGjhwoWX3E/Lli21efPmMtcJAIBVOfUe+/j4eH300UdauHChatasqaysLGVlZZn3vR86dEiTJ09WWlqafvjhB3322WcaMmSIunTpopYtW0qSevTooWbNmmnw4MH66quvtGrVKo0bN07x8fHmWfcnnnhC33//vZ599ln95z//0cyZM7V48WKNGjXKaccOAAAAAEB5cDEMw3Dazkv5Pr558+bp4Ycf1pEjRzRo0CDt379fZ8+eVUhIiPr166dx48Y5PLn2v//9r4YNG6YNGzbIx8dHsbGxevXVV+Xu/r8LEjZs2KBRo0bp4MGDql+/vl544QU9/PDDl1Wn3W6Xn5+fTp8+zRNzAQBVAnNT+eM9BQBUJVcyLzk12FsFEz0AoKphbip/vKcAgKrkSualKvN1dwAAAAAA4MoR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDB3ZxdwvWr43PJK3d8Pr0ZX6v4AALjeMdcDACoLZ+wBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMLcnV0A8EcNn1teqfv74dXoSt0fAAAAAJQnztgDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAABUmIkTJ8rFxcVhadq0qdl+7tw5xcfHq3bt2qpRo4YGDBig7OxshzEyMzMVHR2t6tWrKzAwUKNHj9b58+cd+mzYsEFt2rSRp6enGjdurOTk5Mo4PAAAqgSCPQAAqFC33HKLjh07Zi5btmwx20aNGqXPP/9cS5Ys0caNG3X06FH179/fbC8oKFB0dLTy8vK0bds2zZ8/X8nJyRo/frzZ5/Dhw4qOjla3bt2Unp6ukSNH6tFHH9WqVasq9TgBAHAWd2cXAAAArm3u7u6y2WzFtp8+fVpz587VwoULddddd0mS5s2bp/DwcG3fvl0dOnTQ6tWrdfDgQa1Zs0ZBQUFq1aqVJk+erDFjxmjixIny8PDQ7NmzFRYWpilTpkiSwsPDtWXLFk2bNk1RUVGVeqwAADgDZ+wBAECF+vbbbxUcHKwbb7xRMTExyszMlCSlpaUpPz9fkZGRZt+mTZuqQYMGSk1NlSSlpqaqRYsWCgoKMvtERUXJbrfrwIEDZp+LxyjqUzRGaXJzc2W32x0WAACsiGAPAAAqTPv27ZWcnKyVK1dq1qxZOnz4sDp37qwzZ84oKytLHh4e8vf3d3hNUFCQsrKyJElZWVkOob6ovajtUn3sdrt+//33UmtLTEyUn5+fuYSEhFzt4QIA4BRcig8AACpMr169zD+3bNlS7du3V2hoqBYvXixvb28nViaNHTtWCQkJ5rrdbifcAwAsiTP2AACg0vj7++vmm2/Wd999J5vNpry8PJ06dcqhT3Z2tnlPvs1mK/aU/KL1P+vj6+t7yQ8PPD095evr67AAAGBFBHsAAFBpcnJydOjQIdWrV09t27ZVtWrVtHbtWrM9IyNDmZmZioiIkCRFRERo3759On78uNknJSVFvr6+atasmdnn4jGK+hSNAQDAtY5gDwAAKswzzzyjjRs36ocfftC2bdvUr18/ubm56cEHH5Sfn5/i4uKUkJCg9evXKy0tTY888ogiIiLUoUMHSVKPHj3UrFkzDR48WF999ZVWrVqlcePGKT4+Xp6enpKkJ554Qt9//72effZZ/ec//9HMmTO1ePFijRo1ypmHDgBApeEeewAAUGF+/PFHPfjgg/r1119Vt25dderUSdu3b1fdunUlSdOmTZOrq6sGDBig3NxcRUVFaebMmebr3dzctGzZMg0bNkwRERHy8fFRbGysJk2aZPYJCwvT8uXLNWrUKE2fPl3169fX+++/z1fdAQCuGwR7AABQYRYtWnTJdi8vL82YMUMzZswotU9oaKhWrFhxyXG6du2qPXv2lKlGAACsjkvxAQAAAACwMII9AAAAAAAWRrAHAAAAAMDCCPYAAAAAAFgYwR4AAAAAAAsj2AMAAAAAYGEEewAAAAAALMypwT4xMVG33XabatasqcDAQPXt21cZGRkOfc6dO6f4+HjVrl1bNWrU0IABA5Sdne3QJzMzU9HR0apevboCAwM1evRonT9/3qHPhg0b1KZNG3l6eqpx48ZKTk6u6MMDAAAAAKDCOTXYb9y4UfHx8dq+fbtSUlKUn5+vHj166OzZs2afUaNG6fPPP9eSJUu0ceNGHT16VP379zfbCwoKFB0drby8PG3btk3z589XcnKyxo8fb/Y5fPiwoqOj1a1bN6Wnp2vkyJF69NFHtWrVqko9XgAAAAAAypu7M3e+cuVKh/Xk5GQFBgYqLS1NXbp00enTpzV37lwtXLhQd911lyRp3rx5Cg8P1/bt29WhQwetXr1aBw8e1Jo1axQUFKRWrVpp8uTJGjNmjCZOnCgPDw/Nnj1bYWFhmjJliiQpPDxcW7Zs0bRp0xQVFVXpxw0AAAAAQHmpUvfYnz59WpIUEBAgSUpLS1N+fr4iIyPNPk2bNlWDBg2UmpoqSUpNTVWLFi0UFBRk9omKipLdbteBAwfMPhePUdSnaIw/ys3Nld1ud1gAAAAAAKiKqkywLyws1MiRI9WxY0c1b95ckpSVlSUPDw/5+/s79A0KClJWVpbZ5+JQX9Re1HapPna7Xb///nuxWhITE+Xn52cuISEh5XKMAAAAAACUtyoT7OPj47V//34tWrTI2aVo7NixOn36tLkcOXLE2SUBAAAAAFAip95jX2T48OFatmyZNm3apPr165vbbTab8vLydOrUKYez9tnZ2bLZbGafnTt3OoxX9NT8i/v88Un62dnZ8vX1lbe3d7F6PD095enpWS7HBgAAAABARXLqGXvDMDR8+HAtXbpU69atU1hYmEN727ZtVa1aNa1du9bclpGRoczMTEVEREiSIiIitG/fPh0/ftzsk5KSIl9fXzVr1szsc/EYRX2KxgAAAAAAwKqcesY+Pj5eCxcu1L///W/VrFnTvCfez89P3t7e8vPzU1xcnBISEhQQECBfX189+eSTioiIUIcOHSRJPXr0ULNmzTR48GAlJSUpKytL48aNU3x8vHnW/YknntA777yjZ599VkOHDtW6deu0ePFiLV++3GnHDgAAAABAeXDqGftZs2bp9OnT6tq1q+rVq2cuH3/8sdln2rRpuueeezRgwAB16dJFNptNn3zyidnu5uamZcuWyc3NTRERERo0aJCGDBmiSZMmmX3CwsK0fPlypaSk6NZbb9WUKVP0/vvv81V3AAAAAADLc+oZe8Mw/rSPl5eXZsyYoRkzZpTaJzQ0VCtWrLjkOF27dtWePXuuuEYAAAAAAKqyKvNUfAAAAAAAcOUI9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAJXm1VdflYuLi0aOHGluO3funOLj41W7dm3VqFFDAwYMUHZ2tsPrMjMzFR0drerVqyswMFCjR4/W+fPnHfps2LBBbdq0kaenpxo3bqzk5ORKOCIAAJyPYA8AACrFrl279O6776ply5YO20eNGqXPP/9cS5Ys0caNG3X06FH179/fbC8oKFB0dLTy8vK0bds2zZ8/X8nJyRo/frzZ5/Dhw4qOjla3bt2Unp6ukSNH6tFHH9WqVasq7fgAAHAWgj0AAKhwOTk5iomJ0XvvvadatWqZ20+fPq25c+dq6tSpuuuuu9S2bVvNmzdP27Zt0/bt2yVJq1ev1sGDB/XRRx+pVatW6tWrlyZPnqwZM2YoLy9PkjR79myFhYVpypQpCg8P1/Dhw3Xfffdp2rRpTjleAAAqE8EeAABUuPj4eEVHRysyMtJhe1pamvLz8x22N23aVA0aNFBqaqokKTU1VS1atFBQUJDZJyoqSna7XQcOHDD7/HHsqKgoc4yS5Obmym63OywAAFiRu7MLAAAA17ZFixbpyy+/1K5du4q1ZWVlycPDQ/7+/g7bg4KClJWVZfa5ONQXtRe1XaqP3W7X77//Lm9v72L7TkxM1Isvvljm4wIAoKrgjD0AAKgwR44c0VNPPaUFCxbIy8vL2eU4GDt2rE6fPm0uR44ccXZJAACUCcEeAABUmLS0NB0/flxt2rSRu7u73N3dtXHjRr311ltyd3dXUFCQ8vLydOrUKYfXZWdny2azSZJsNluxp+QXrf9ZH19f3xLP1kuSp6enfH19HRYAAKyIYA8AACpM9+7dtW/fPqWnp5tLu3btFBMTY/65WrVqWrt2rfmajIwMZWZmKiIiQpIUERGhffv26fjx42aflJQU+fr6qlmzZmafi8co6lM0BgAA1zLusQcAABWmZs2aat68ucM2Hx8f1a5d29weFxenhIQEBQQEyNfXV08++aQiIiLUoUMHSVKPHj3UrFkzDR48WElJScrKytK4ceMUHx8vT09PSdITTzyhd955R88++6yGDh2qdevWafHixVq+fHnlHjAAAE5AsAcAAE41bdo0ubq6asCAAcrNzVVUVJRmzpxptru5uWnZsmUaNmyYIiIi5OPjo9jYWE2aNMnsExYWpuXLl2vUqFGaPn266tevr/fff19RUVHOOCQAACoVwR4AAFSqDRs2OKx7eXlpxowZmjFjRqmvCQ0N1YoVKy45bteuXbVnz57yKBEAAEvhHnsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYmFOD/aZNm9SnTx8FBwfLxcVFn376qUP7ww8/LBcXF4elZ8+eDn1OnDihmJgY+fr6yt/fX3FxccrJyXHos3fvXnXu3FleXl4KCQlRUlJSRR8aAAAAAACVwqnB/uzZs7r11ls1Y8aMUvv07NlTx44dM5d//vOfDu0xMTE6cOCAUlJStGzZMm3atEmPP/642W6329WjRw+FhoYqLS1Nr7/+uiZOnKg5c+ZU2HEBAAAAAFBZ3J258169eqlXr16X7OPp6SmbzVZi29dff62VK1dq165dateunSTp7bffVu/evfXGG28oODhYCxYsUF5enj744AN5eHjolltuUXp6uqZOnerwAQAAAAAAAFZU5e+x37BhgwIDA9WkSRMNGzZMv/76q9mWmpoqf39/M9RLUmRkpFxdXbVjxw6zT5cuXeTh4WH2iYqKUkZGhk6ePFniPnNzc2W32x0WAAAAAACqoiod7Hv27KkPP/xQa9eu1WuvvaaNGzeqV69eKigokCRlZWUpMDDQ4TXu7u4KCAhQVlaW2ScoKMihT9F6UZ8/SkxMlJ+fn7mEhISU96EBAAAAAFAunHop/p8ZOHCg+ecWLVqoZcuWatSokTZs2KDu3btX2H7Hjh2rhIQEc91utxPuAQAAAABVUpU+Y/9HN954o+rUqaPvvvtOkmSz2XT8+HGHPufPn9eJEyfM+/JtNpuys7Md+hStl3bvvqenp3x9fR0WAAAAAACqIksF+x9//FG//vqr6tWrJ0mKiIjQqVOnlJaWZvZZt26dCgsL1b59e7PPpk2blJ+fb/ZJSUlRkyZNVKtWrco9AAAAAAAAyplTg31OTo7S09OVnp4uSTp8+LDS09OVmZmpnJwcjR49Wtu3b9cPP/ygtWvX6t5771Xjxo0VFRUlSQoPD1fPnj312GOPaefOndq6dauGDx+ugQMHKjg4WJL00EMPycPDQ3FxcTpw4IA+/vhjTZ8+3eFSewAAAAAArMqpwX737t1q3bq1WrduLUlKSEhQ69atNX78eLm5uWnv3r36v//7P918882Ki4tT27ZttXnzZnl6eppjLFiwQE2bNlX37t3Vu3dvderUyeE76v38/LR69WodPnxYbdu21dNPP63x48fzVXcAAAAAgGuCUx+e17VrVxmGUWr7qlWr/nSMgIAALVy48JJ9WrZsqc2bN19xfQAAAAAAVHWWusceAAAAAAA4ItgDAAAAAGBhBHsAAAAAACysTMH++++/L+86AAAAAABAGZQp2Ddu3FjdunXTRx99pHPnzpV3TQAAAAAA4DKVKdh/+eWXatmypRISEmSz2fTXv/5VO3fuLO/aAAAAAADAnyhTsG/VqpWmT5+uo0eP6oMPPtCxY8fUqVMnNW/eXFOnTtXPP/9c3nUCAAAAAIASXNXD89zd3dW/f38tWbJEr732mr777js988wzCgkJ0ZAhQ3Ts2LHyqhMAAAAAAJTgqoL97t279be//U316tXT1KlT9cwzz+jQoUNKSUnR0aNHde+995ZXnQAAAAAAoATuZXnR1KlTNW/ePGVkZKh379768MMP1bt3b7m6XvicICwsTMnJyWrYsGF51goAAAAAAP6gTMF+1qxZGjp0qB5++GHVq1evxD6BgYGaO3fuVRUHAAAAAAAurUzB/ttvv/3TPh4eHoqNjS3L8AAAAAAA4DKV6R77efPmacmSJcW2L1myRPPnz7/qogAAAAAAwOUpU7BPTExUnTp1im0PDAzUK6+8ctVFAQAAAACAy1OmYJ+ZmamwsLBi20NDQ5WZmXnVRQEAAAAAgMtTpmAfGBiovXv3Ftv+1VdfqXbt2lddFAAAAAAAuDxlCvYPPvigRowYofXr16ugoEAFBQVat26dnnrqKQ0cOLC8awQAAAAAAKUo01PxJ0+erB9++EHdu3eXu/uFIQoLCzVkyBDusQcAAAAAoBKVKdh7eHjo448/1uTJk/XVV1/J29tbLVq0UGhoaHnXBwAAAAAALqFMwb7IzTffrJtvvrm8agEAAAAAAFeoTMG+oKBAycnJWrt2rY4fP67CwkKH9nXr1pVLcQAAAAAA4NLKFOyfeuopJScnKzo6Ws2bN5eLi0t51wUAAAAAAC5DmYL9okWLtHjxYvXu3bu86wEAAAAAAFegzA/Pa9y4cXnXAgAAgOtAw+eWV/o+f3g1utL3CQCVpUzfY//0009r+vTpMgyjvOsBAAAAAABXoExn7Lds2aL169friy++0C233KJq1ao5tH/yySflUhwAAAAAALi0MgV7f39/9evXr7xrAQAAAAAAV6hMwX7evHnlXQcAAAAAACiDMt1jL0nnz5/XmjVr9O677+rMmTOSpKNHjyonJ6fcigMAAAAAAJdWpjP2//3vf9WzZ09lZmYqNzdXd999t2rWrKnXXntNubm5mj17dnnXCQAAAAAASlCmM/ZPPfWU2rVrp5MnT8rb29vc3q9fP61du7bcigMAAAAAAJdWpjP2mzdv1rZt2+Th4eGwvWHDhvrpp5/KpTAAAAAAAPDnynTGvrCwUAUFBcW2//jjj6pZs+ZVFwUAAAAAAC5PmYJ9jx499Oabb5rrLi4uysnJ0YQJE9S7d+/yqg0AAFjcrFmz1LJlS/n6+srX11cRERH64osvzPZz584pPj5etWvXVo0aNTRgwABlZ2c7jJGZmano6GhVr15dgYGBGj16tM6fP+/QZ8OGDWrTpo08PT3VuHFjJScnV8bhAQBQJZQp2E+ZMkVbt25Vs2bNdO7cOT300EPmZfivvfZaedcIAAAsqn79+nr11VeVlpam3bt366677tK9996rAwcOSJJGjRqlzz//XEuWLNHGjRt19OhR9e/f33x9QUGBoqOjlZeXp23btmn+/PlKTk7W+PHjzT6HDx9WdHS0unXrpvT0dI0cOVKPPvqoVq1aVenHCwCAM5TpHvv69evrq6++0qJFi7R3717l5OQoLi5OMTExDg/TAwAA17c+ffo4rL/88suaNWuWtm/frvr162vu3LlauHCh7rrrLknSvHnzFB4eru3bt6tDhw5avXq1Dh48qDVr1igoKEitWrXS5MmTNWbMGE2cOFEeHh6aPXu2wsLCNGXKFElSeHi4tmzZomnTpikqKqrSjxkAgMpWpmAvSe7u7ho0aFB51gIAAK5hBQUFWrJkic6ePauIiAilpaUpPz9fkZGRZp+mTZuqQYMGSk1NVYcOHZSamqoWLVooKCjI7BMVFaVhw4bpwIEDat26tVJTUx3GKOozcuTIS9aTm5ur3Nxcc91ut5fPgQIAUMnKFOw//PDDS7YPGTKkTMUAAIBrz759+xQREaFz586pRo0aWrp0qZo1a6b09HR5eHjI39/foX9QUJCysrIkSVlZWQ6hvqi9qO1Sfex2u37//fdSryZMTEzUiy++WB6HCACAU5Up2D/11FMO6/n5+frtt9/k4eGh6tWrE+wBAICpSZMmSk9P1+nTp/X//t//U2xsrDZu3OjssjR27FglJCSY63a7XSEhIU6sCKh6Gj63vFL398Or0ZW6P+BaUaZgf/LkyWLbvv32Ww0bNkyjR4++6qIAAMC1w8PDQ40bN5YktW3bVrt27dL06dP1l7/8RXl5eTp16pTDWfvs7GzZbDZJks1m086dOx3GK3pq/sV9/vgk/ezsbPn6+l7y2T+enp7y9PS86uMDAMDZyvRU/JLcdNNNevXVV4udzQcAALhYYWGhcnNz1bZtW1WrVk1r16412zIyMpSZmamIiAhJUkREhPbt26fjx4+bfVJSUuTr66tmzZqZfS4eo6hP0RgAAFzryvzwvBIHc3fX0aNHy3NIAABgYWPHjlWvXr3UoEEDnTlzRgsXLtSGDRu0atUq+fn5KS4uTgkJCQoICJCvr6+efPJJRUREqEOHDpKkHj16qFmzZho8eLCSkpKUlZWlcePGKT4+3jzb/sQTT+idd97Rs88+q6FDh2rdunVavHixli+v3EuIAQBwljIF+88++8xh3TAMHTt2TO+88446duxYLoUBAADrO378uIYMGaJjx47Jz89PLVu21KpVq3T33XdLkqZNmyZXV1cNGDBAubm5ioqK0syZM83Xu7m5admyZRo2bJgiIiLk4+Oj2NhYTZo0yewTFham5cuXa9SoUZo+fbrq16+v999/n6+6AwBcN8oU7Pv27euw7uLiorp16+quu+4yv0MWAABg7ty5l2z38vLSjBkzNGPGjFL7hIaGasWKFZccp2vXrtqzZ0+ZagQAwOrKFOwLCwvLuw4AAAAAAFAG5fbwPAAAAAAAUPnKdMb+4u98/TNTp04tyy4AAAAAAMBlKFOw37Nnj/bs2aP8/Hw1adJEkvTNN9/Izc1Nbdq0Mfu5uLiUT5UAAAAAAKBEZQr2ffr0Uc2aNTV//nzVqlVLknTy5Ek98sgj6ty5s55++ulyLRIAAAAAAJSsTPfYT5kyRYmJiWaol6RatWrppZde4qn4AAAAAABUojIFe7vdrp9//rnY9p9//llnzpy56qIAAAAAAMDlKVOw79evnx555BF98skn+vHHH/Xjjz/qX//6l+Li4tS/f//yrhEAAAAAAJSiTPfYz549W88884weeugh5efnXxjI3V1xcXF6/fXXy7VAAAAAAABQujIF++rVq2vmzJl6/fXXdejQIUlSo0aN5OPjU67FAQAAAACASyvTpfhFjh07pmPHjummm26Sj4+PDMMor7oAAAAAAMBlKFOw//XXX9W9e3fdfPPN6t27t44dOyZJiouL46vuAAAAAACoRGUK9qNGjVK1atWUmZmp6tWrm9v/8pe/aOXKleVWHAAAAAAAuLQy3WO/evVqrVq1SvXr13fYftNNN+m///1vuRQGAAAAAAD+XJnO2J89e9bhTH2REydOyNPT86qLAgAAAAAAl6dMwb5z58768MMPzXUXFxcVFhYqKSlJ3bp1K7fiAAAAAADApZXpUvykpCR1795du3fvVl5enp599lkdOHBAJ06c0NatW8u7RgAAAAAAUIoynbFv3ry5vvnmG3Xq1En33nuvzp49q/79+2vPnj1q1KhRedcIAAAAAABKccVn7PPz89WzZ0/Nnj1bzz//fEXUBAAAAAAALtMVn7GvVq2a9u7dWxG1AAAAAACAK1SmS/EHDRqkuXPnlnctAAAAAADgCpXp4Xnnz5/XBx98oDVr1qht27by8fFxaJ86dWq5FAcAAAAAAC7tioL9999/r4YNG2r//v1q06aNJOmbb75x6OPi4lJ+1QEAAAAAgEu6omB/00036dixY1q/fr0k6S9/+YveeustBQUFVUhxAAAAAADg0q7oHnvDMBzWv/jiC509e7ZcCwIAAAAAAJevTA/PK/LHoA8AAAAAACrXFQV7FxeXYvfQc089AAAAAADOc0X32BuGoYcfflienp6SpHPnzumJJ54o9lT8Tz75pPwqBAAAAAAApbqiYB8bG+uwPmjQoHItBgAAAAAAXJkrCvbz5s2rqDoAAAAAAEAZXNXD8wAAAAAAgHMR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALc2qw37Rpk/r06aPg4GC5uLjo008/dWg3DEPjx49XvXr15O3trcjISH377bcOfU6cOKGYmBj5+vrK399fcXFxysnJceizd+9ede7cWV5eXgoJCVFSUlJFHxoAAAAAAJXCqcH+7NmzuvXWWzVjxowS25OSkvTWW29p9uzZ2rFjh3x8fBQVFaVz586ZfWJiYnTgwAGlpKRo2bJl2rRpkx5//HGz3W63q0ePHgoNDVVaWppef/11TZw4UXPmzKnw4wMAAAAAoKK5O3PnvXr1Uq9evUpsMwxDb775psaNG6d7771XkvThhx8qKChIn376qQYOHKivv/5aK1eu1K5du9SuXTtJ0ttvv63evXvrjTfeUHBwsBYsWKC8vDx98MEH8vDw0C233KL09HRNnTrV4QMAAAAAAACsqMreY3/48GFlZWUpMjLS3Obn56f27dsrNTVVkpSamip/f38z1EtSZGSkXF1dtWPHDrNPly5d5OHhYfaJiopSRkaGTp48WeK+c3NzZbfbHRYAAAAAAKqiKhvss7KyJElBQUEO24OCgsy2rKwsBQYGOrS7u7srICDAoU9JY1y8jz9KTEyUn5+fuYSEhFz9AQEAAAAAUAGqbLB3prFjx+r06dPmcuTIEWeXBAAAAABAiapssLfZbJKk7Oxsh+3Z2dlmm81m0/Hjxx3az58/rxMnTjj0KWmMi/fxR56envL19XVYAAAAAACoiqpssA8LC5PNZtPatWvNbXa7XTt27FBERIQkKSIiQqdOnVJaWprZZ926dSosLFT79u3NPps2bVJ+fr7ZJyUlRU2aNFGtWrUq6WgAAAAAAKgYTg32OTk5Sk9PV3p6uqQLD8xLT09XZmamXFxcNHLkSL300kv67LPPtG/fPg0ZMkTBwcHq27evJCk8PFw9e/bUY489pp07d2rr1q0aPny4Bg4cqODgYEnSQw89JA8PD8XFxenAgQP6+OOPNX36dCUkJDjpqAEAAAAAKD9O/bq73bt3q1u3buZ6UdiOjY1VcnKynn32WZ09e1aPP/64Tp06pU6dOmnlypXy8vIyX7NgwQINHz5c3bt3l6urqwYMGKC33nrLbPfz89Pq1asVHx+vtm3bqk6dOho/fjxfdQcAAAAAuCY4Ndh37dpVhmGU2u7i4qJJkyZp0qRJpfYJCAjQwoULL7mfli1bavPmzWWuEwAAAACAqqrK3mMPAAAAAAD+HMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBh7s4uAIB1NXxueaXu74dXoyt1fwAAAIAVcMYeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAFSYxMVG33XabatasqcDAQPXt21cZGRkOfc6dO6f4+HjVrl1bNWrU0IABA5Sdne3QJzMzU9HR0apevboCAwM1evRonT9/3qHPhg0b1KZNG3l6eqpx48ZKTk6u6MMDAKBKINgDAIAKs3HjRsXHx2v79u1KSUlRfn6+evToobNnz5p9Ro0apc8//1xLlizRxo0bdfToUfXv399sLygoUHR0tPLy8rRt2zbNnz9fycnJGj9+vNnn8OHDio6OVrdu3ZSenq6RI0fq0Ucf1apVqyr1eAEAcAZ3ZxcAAACuXStXrnRYT05OVmBgoNLS0tSlSxedPn1ac+fO1cKFC3XXXXdJkubNm6fw8HBt375dHTp00OrVq3Xw4EGtWbNGQUFBatWqlSZPnqwxY8Zo4sSJ8vDw0OzZsxUWFqYpU6ZIksLDw7VlyxZNmzZNUVFRlX7cAABUJs7YAwCASnP69GlJUkBAgCQpLS1N+fn5ioyMNPs0bdpUDRo0UGpqqiQpNTVVLVq0UFBQkNknKipKdrtdBw4cMPtcPEZRn6IxSpKbmyu73e6wAABgRQR7AABQKQoLCzVy5Eh17NhRzZs3lyRlZWXJw8ND/v7+Dn2DgoKUlZVl9rk41Be1F7Vdqo/dbtfvv/9eYj2JiYny8/Mzl5CQkKs+RgAAnIFgDwAAKkV8fLz279+vRYsWObsUSdLYsWN1+vRpczly5IizSwIAoEy4xx4AAFS44cOHa9myZdq0aZPq169vbrfZbMrLy9OpU6ccztpnZ2fLZrOZfXbu3OkwXtFT8y/u88cn6WdnZ8vX11fe3t4l1uTp6SlPT8+rPjYAAJyNM/YAAKDCGIah4cOHa+nSpVq3bp3CwsIc2tu2batq1app7dq15raMjAxlZmYqIiJCkhQREaF9+/bp+PHjZp+UlBT5+vqqWbNmZp+LxyjqUzQGAADXMs7YAwCAChMfH6+FCxfq3//+t2rWrGneE+/n5ydvb2/5+fkpLi5OCQkJCggIkK+vr5588klFRESoQ4cOkqQePXqoWbNmGjx4sJKSkpSVlaVx48YpPj7ePOP+xBNP6J133tGzzz6roUOHat26dVq8eLGWL1/utGMHAKCycMYeAABUmFmzZun06dPq2rWr6tWrZy4ff/yx2WfatGm65557NGDAAHXp0kU2m02ffPKJ2e7m5qZly5bJzc1NERERGjRokIYMGaJJkyaZfcLCwrR8+XKlpKTo1ltv1ZQpU/T+++/zVXcAgOsCZ+wBAECFMQzjT/t4eXlpxowZmjFjRql9QkNDtWLFikuO07VrV+3Zs+eKawQAwOo4Yw8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIW5O7sAAAAAABc0fG55pe/zh1ejK32fAMoXZ+wBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABbm7uwC4HwNn1te6fv84dXoSt8nAAAAAFyLOGMPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9gAAAAAAWBjBHgAAAAAAC6vSwX7ixIlycXFxWJo2bWq2nzt3TvHx8apdu7Zq1KihAQMGKDs722GMzMxMRUdHq3r16goMDNTo0aN1/vz5yj4UAAAAAAAqhLuzC/gzt9xyi9asWWOuu7v/r+RRo0Zp+fLlWrJkifz8/DR8+HD1799fW7dulSQVFBQoOjpaNptN27Zt07FjxzRkyBBVq1ZNr7zySqUfCwAAAAAA5a3KB3t3d3fZbLZi20+fPq25c+dq4cKFuuuuuyRJ8+bNU3h4uLZv364OHTpo9erVOnjwoNasWaOgoCC1atVKkydP1pgxYzRx4kR5eHhU9uEAAAAAAFCuqvSl+JL07bffKjg4WDfeeKNiYmKUmZkpSUpLS1N+fr4iIyPNvk2bNlWDBg2UmpoqSUpNTVWLFi0UFBRk9omKipLdbteBAwdK3Wdubq7sdrvDAgAAAABAVVSlg3379u2VnJyslStXatasWTp8+LA6d+6sM2fOKCsrSx4eHvL393d4TVBQkLKysiRJWVlZDqG+qL2orTSJiYny8/Mzl5CQkPI9MAAAAAAAykmVvhS/V69e5p9btmyp9u3bKzQ0VIsXL5a3t3eF7Xfs2LFKSEgw1+12O+EeAAAAAFAlVekz9n/k7++vm2++Wd99951sNpvy8vJ06tQphz7Z2dnmPfk2m63YU/KL1ku6b7+Ip6enfH19HRYAAAAAAKqiKn3G/o9ycnJ06NAhDR48WG3btlW1atW0du1aDRgwQJKUkZGhzMxMRURESJIiIiL08ssv6/jx4woMDJQkpaSkyNfXV82aNXPacQAAAFSmhs8tr/R9/vBqdKXvEwCuV1U62D/zzDPq06ePQkNDdfToUU2YMEFubm568MEH5efnp7i4OCUkJCggIEC+vr568sknFRERoQ4dOkiSevTooWbNmmnw4MFKSkpSVlaWxo0bp/j4eHl6ejr56AAAAAAAuHpVOtj/+OOPevDBB/Xrr7+qbt266tSpk7Zv3666detKkqZNmyZXV1cNGDBAubm5ioqK0syZM83Xu7m5admyZRo2bJgiIiLk4+Oj2NhYTZo0yVmHBAAAAABAuarSwX7RokWXbPfy8tKMGTM0Y8aMUvuEhoZqxYoV5V0aAAAAAABVgqUengcAAAAAABxV6TP2ABxV9sOPePARAAAAUPVxxh4AAAAAAAsj2AMAAAAAYGEEewAAUGE2bdqkPn36KDg4WC4uLvr0008d2g3D0Pjx41WvXj15e3srMjJS3377rUOfEydOKCYmRr6+vvL391dcXJxycnIc+uzdu1edO3eWl5eXQkJClJSUVNGHBgBAlUGwBwAAFebs2bO69dZbS/0Gm6SkJL311luaPXu2duzYIR8fH0VFRencuXNmn5iYGB04cEApKSlatmyZNm3apMcff9xst9vt6tGjh0JDQ5WWlqbXX39dEydO1Jw5cyr8+AAAqAp4eB4AAKgwvXr1Uq9evUpsMwxDb775psaNG6d7771XkvThhx8qKChIn376qQYOHKivv/5aK1eu1K5du9SuXTtJ0ttvv63evXvrjTfeUHBwsBYsWKC8vDx98MEH8vDw0C233KL09HRNnTrV4QMAAACuVZyxBwAATnH48GFlZWUpMjLS3Obn56f27dsrNTVVkpSamip/f38z1EtSZGSkXF1dtWPHDrNPly5d5OHhYfaJiopSRkaGTp48Wer+c3NzZbfbHRYAAKyIYA8AAJwiKytLkhQUFOSwPSgoyGzLyspSYGCgQ7u7u7sCAgIc+pQ0xsX7KEliYqL8/PzMJSQk5OoOCAAAJyHYAwCA69LYsWN1+vRpczly5IizSwIAoEwI9gAAwClsNpskKTs722F7dna22Waz2XT8+HGH9vPnz+vEiRMOfUoa4+J9lMTT01O+vr4OCwAAVkSwBwAAThEWFiabzaa1a9ea2+x2u3bs2KGIiAhJUkREhE6dOqW0tDSzz7p161RYWKj27dubfTZt2qT8/HyzT0pKipo0aaJatWpV0tEAAOA8BHsAAFBhcnJylJ6ervT0dEkXHpiXnp6uzMxMubi4aOTIkXrppZf02Wefad++fRoyZIiCg4PVt29fSVJ4eLh69uypxx57TDt37tTWrVs1fPhwDRw4UMHBwZKkhx56SB4eHoqLi9OBAwf08ccfa/r06UpISHDSUQMAULn4ujsAAFBhdu/erW7dupnrRWE7NjZWycnJevbZZ3X27Fk9/vjjOnXqlDp16qSVK1fKy8vLfM2CBQs0fPhwde/eXa6urhowYIDeeusts93Pz0+rV69WfHy82rZtqzp16mj8+PF81R0A4LpBsAcAABWma9euMgyj1HYXFxdNmjRJkyZNKrVPQECAFi5ceMn9tGzZUps3by5znQAAWBmX4gMAAAAAYGEEewAAAAAALIxgDwAAAACAhRHsAQAAAACwMII9AAAAAAAWRrAHAAAAAMDCCPYAAAAAAFgYwR4AAAAAAAsj2AMAAAAAYGEEewAAAAAALIxgDwAAAACAhRHsAQAAAACwMII9AAAAAAAWRrAHAAAAAMDCCPYAAAAAAFgYwR4AAAAAAAsj2AMAAAAAYGEEewAAAAAALIxgDwAAAACAhRHsAQAAAACwMII9AAAAAAAWRrAHAAAAAMDCCPYAAAAAAFgYwR4AAAAAAAsj2AMAAAAAYGEEewAAAAAALIxgDwAAAACAhRHsAQAAAACwMII9AAAAAAAWRrAHAAAAAMDCCPYAAAAAAFgYwR4AAAAAAAsj2AMAAAAAYGEEewAAAAAALMzd2QUAAAAAAK4dDZ9bXun7/OHV6ErfZ1XCGXsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIW5O7sAAAAAALCahs8tr9T9/fBqdKXuD9bCGXsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGF93BwAAgOsaX1sGwOo4Yw8AAAAAgIUR7AEAAAAAsDCCPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhfI89AAAAgCqv4XPLK32fP7waXen7BMqCM/YAAAAAAFgYwR4AAAAAAAvjUnwAAAAAwDWrsm/jcMYtHAR74BK4lwsAAABAVcel+AAAAAAAWNh1FexnzJihhg0bysvLS+3bt9fOnTudXRIAAChHzPUAgOvRdRPsP/74YyUkJGjChAn68ssvdeuttyoqKkrHjx93dmkAAKAcMNcDAK5X18099lOnTtVjjz2mRx55RJI0e/ZsLV++XB988IGee+45J1cH4FpzPTyk5VrAczSuLcz1AIDr1XUR7PPy8pSWlqaxY8ea21xdXRUZGanU1NRi/XNzc5Wbm2uunz59WpJkt9vLrabC3N/KbazLcanaK7sWqWrVU5VqkapWPX/2d74q1dN8wqpKrOSC/S9GldpWld6bqqayf1ZV6eckld/PqmgcwzDKZTyru9K5Xqr4+b4q/T9Q1f6uX+/1VKVapKpVT1WqRapa9fzZ/03Mr9b5WV3pOJc11xvXgZ9++smQZGzbts1h++jRo43bb7+9WP8JEyYYklhYWFhYWKr8cuTIkcqaTqu0K53rDYP5noWFhYXFGsvlzPXXxRn7KzV27FglJCSY64WFhTpx4oRq164tFxcXJ1ZWddjtdoWEhOjIkSPy9fV1djlVDu9P6XhvSsd7Uzrem+IMw9CZM2cUHBzs7FIsi/n+z/Fvr3S8N6XjvSkd703peG+Ku5K5/roI9nXq1JGbm5uys7MdtmdnZ8tmsxXr7+npKU9PT4dt/v7+FVmiZfn6+vIP7xJ4f0rHe1M63pvS8d448vPzc3YJVcaVzvUS8/2V4N9e6XhvSsd7Uzrem9Lx3ji63Ln+ungqvoeHh9q2bau1a9ea2woLC7V27VpFREQ4sTIAAFAemOsBANez6+KMvSQlJCQoNjZW7dq10+23364333xTZ8+eNZ+cCwAArI25HgBwvbpugv1f/vIX/fzzzxo/fryysrLUqlUrrVy5UkFBQc4uzZI8PT01YcKEYpcw4gLen9Lx3pSO96Z0vDe4HMz15Y9/e6XjvSkd703peG9Kx3tzdVwMg+/JAQAAAADAqq6Le+wBAAAAALhWEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwMII9rgiiYmJuu2221SzZk0FBgaqb9++ysjIcHZZVdKrr74qFxcXjRw50tmlVAk//fSTBg0apNq1a8vb21stWrTQ7t27nV2W0xUUFOiFF15QWFiYvL291ahRI02ePFnX63NNN23apD59+ig4OFguLi769NNPHdoNw9D48eNVr149eXt7KzIyUt9++61zigWuUcz1l4+5vjjm+5Ix3/8Pc33FINjjimzcuFHx8fHavn27UlJSlJ+frx49eujs2bPOLq1K2bVrl9599121bNnS2aVUCSdPnlTHjh1VrVo1ffHFFzp48KCmTJmiWrVqObs0p3vttdc0a9YsvfPOO/r666/12muvKSkpSW+//bazS3OKs2fP6tZbb9WMGTNKbE9KStJbb72l2bNna8eOHfLx8VFUVJTOnTtXyZUC1y7m+svDXF8c833pmO//h7m+YvB1d7gqP//8swIDA7Vx40Z16dLF2eVUCTk5OWrTpo1mzpypl156Sa1atdKbb77p7LKc6rnnntPWrVu1efNmZ5dS5dxzzz0KCgrS3LlzzW0DBgyQt7e3PvroIydW5nwuLi5aunSp+vbtK+nCJ/jBwcF6+umn9cwzz0iSTp8+raCgICUnJ2vgwIFOrBa4djHXF8dcXzLm+9Ix35eMub78cMYeV+X06dOSpICAACdXUnXEx8crOjpakZGRzi6lyvjss8/Url073X///QoMDFTr1q313nvvObusKuGOO+7Q2rVr9c0330iSvvrqK23ZskW9evVycmVVz+HDh5WVleXwb8vPz0/t27dXamqqEysDrm3M9cUx15eM+b50zPeXh7m+7NydXQCsq7CwUCNHjlTHjh3VvHlzZ5dTJSxatEhffvmldu3a5exSqpTvv/9es2bNUkJCgv7+979r165dGjFihDw8PBQbG+vs8pzqueeek91uV9OmTeXm5qaCggK9/PLLiomJcXZpVU5WVpYkKSgoyGF7UFCQ2QagfDHXF8dcXzrm+9Ix318e5vqyI9ijzOLj47V//35t2bLF2aVUCUeOHNFTTz2llJQUeXl5ObucKqWwsFDt2rXTK6+8Iklq3bq19u/fr9mzZ1/3E/3ixYu1YMECLVy4ULfccovS09M1cuRIBQcHX/fvDQDnY653xFx/acz3pWO+R0XjUnyUyfDhw7Vs2TKtX79e9evXd3Y5VUJaWpqOHz+uNm3ayN3dXe7u7tq4caPeeustubu7q6CgwNklOk29evXUrFkzh23h4eHKzMx0UkVVx+jRo/Xcc89p4MCBatGihQYPHqxRo0YpMTHR2aVVOTabTZKUnZ3tsD07O9tsA1B+mOuLY66/NOb70jHfXx7m+rIj2OOKGIah4cOHa+nSpVq3bp3CwsKcXVKV0b17d+3bt0/p6enm0q5dO8XExCg9PV1ubm7OLtFpOnbsWOyrkr755huFhoY6qaKq47fffpOrq+N/xW5ubiosLHRSRVVXWFiYbDab1q5da26z2+3asWOHIiIinFgZcG1hri8dc/2lMd+Xjvn+8jDXlx2X4uOKxMfHa+HChfr3v/+tmjVrmve6+Pn5ydvb28nVOVfNmjWL3X/o4+Oj2rVrX/f3JY4aNUp33HGHXnnlFT3wwAPauXOn5syZozlz5ji7NKfr06ePXn75ZTVo0EC33HKL9uzZo6lTp2ro0KHOLs0pcnJy9N1335nrhw8fVnp6ugICAtSgQQONHDlSL730km666SaFhYXphRdeUHBwsPk0XQBXj7m+dMz1l8Z8Xzrm+/9hrq8gBnAFJJW4zJs3z9mlVUl33nmn8dRTTzm7jCrh888/N5o3b254enoaTZs2NebMmePskqoEu91uPPXUU0aDBg0MLy8v48YbbzSef/55Izc319mlOcX69etL/D8mNjbWMAzDKCwsNF544QUjKCjI8PT0NLp3725kZGQ4t2jgGsNcf2WY6x0x35eM+f5/mOsrBt9jDwAAAACAhXGPPQAAAAAAFkawBwAAAADAwgj2AAAAAABYGMEeAAAAAAALI9gDAAAAAGBhBHsAAAAAACyMYA8AAAAAgIUR7AEAAAAAsDCCPa4rDz/8sPr27evsMnAda9iwod58882rGuNy/h537dpVI0eOLLV94sSJatWq1VXVcaWSk5Pl7+9fqfsEcP1hroezMdf7V+o+cQHBHpXu4YcflouLS7GlZ8+ezi7NUjZs2CAXFxedOnWq0sf44Ycf5OLiovT09DLvuzy5uLjo008/LbadX+4AwDmY68sHc/3/MNcDl+bu7AJwferZs6fmzZvnsM3T09NJ1QAAgPLGXA8AlYcz9nAKT09P2Ww2h6VWrVpmu4uLi959913dc889ql69usLDw5WamqrvvvtOXbt2lY+Pj+644w4dOnTIfE3R5UbvvvuuQkJCVL16dT3wwAM6ffp0qXXk5uZqxIgRCgwMlJeXlzp16qRdu3ZJkgzDUOPGjfXGG284vCY9PV0uLi767rvvylyrJP373/9WmzZt5OXlpRtvvFEvvviizp8/7/AevP/+++rXr5+qV6+um266SZ999pmkC5+id+vWTZJUq1Ytubi46OGHHy7xGP/73/+qT58+qlWrlnx8fHTLLbdoxYoVlxxj5cqV6tSpk/z9/VW7dm3dc889DvWHhYVJklq3bi0XFxd17dpVUsmXhPXt29ehtpkzZ+qmm26Sl5eXgoKCdN9995X68ylvl/p5SyVfPvbpp5/KxcXFXP/qq6/UrVs31axZU76+vmrbtq12795ttm/ZskWdO3eWt7e3QkJCNGLECJ09e9ZhzN9++01Dhw5VzZo11aBBA82ZM8ehfd++fbrrrrvk7e2t2rVr6/HHH1dOTk6px3X27FkNGTJENWrUUL169TRlypSyvD16//33FR4eLi8vLzVt2lQzZ8402+644w6NGTPGof/PP/+satWqadOmTZIuvL/PPPOMbrjhBvn4+Kh9+/basGFDmWoBYH3M9cz1zPXM9ag8BHtUWZMnT9aQIUOUnp6upk2b6qGHHtJf//pXjR07Vrt375ZhGBo+fLjDa7777jstXrxYn3/+uVauXKk9e/bob3/7W6n7ePbZZ/Wvf/1L8+fP15dffqnGjRsrKipKJ06ckIuLi4YOHVrsbMO8efPUpUsXNW7cuMy1bt68WUOGDNFTTz2lgwcP6t1331VycrJefvllh329+OKLeuCBB7R371717t1bMTExOnHihEJCQvSvf/1LkpSRkaFjx45p+vTpJR5jfHy8cnNztWnTJu3bt0+vvfaaatSocckxzp49q4SEBO3evVtr166Vq6ur+vXrp8LCQknSzp07JUlr1qzRsWPH9Mknn5T+g7zI7t27NWLECE2aNEkZGRlauXKlunTpclmvLQ+X+nlfrpiYGNWvX1+7du1SWlqannvuOVWrVk2SdOjQIfXs2VMDBgzQ3r179fHHH2vLli3F/p5OmTJF7dq1M/9+Dhs2TBkZGZIuvPdRUVGqVauWdu3apSVLlmjNmjXFxrjY6NGjtXHjRv373//W6tWrtWHDBn355ZdX9N4sWLBA48eP18svv6yvv/5ar7zyil544QXNnz/fPO5FixbJMAzzNR9//LGCg4PVuXNnSdLw4cOVmpqqRYsWae/evbr//vvVs2dPffvtt1dUC4DrB3M9c315Y64vHXP9Nc4AKllsbKzh5uZm+Pj4OCwvv/yy2UeSMW7cOHM9NTXVkGTMnTvX3PbPf/7T8PLyMtcnTJhguLm5GT/++KO57YsvvjBcXV2NY8eOmfu+9957DcMwjJycHKNatWrGggULzP55eXlGcHCwkZSUZBiGYfz000+Gm5ubsWPHDrO9Tp06RnJy8lXV2r17d+OVV15xeF/+8Y9/GPXq1St13JycHEOS8cUXXxiGYRjr1683JBknT54s/iZfpEWLFsbEiRNLbLvcMX7++WdDkrFv3z7DMAzj8OHDhiRjz549Dv3uvPNO46mnnnLYdu+99xqxsbGGYRjGv/71L8PX19ew2+2X3N+VkmR4eXkV+zvl7u5+RT/vefPmGX5+fg5jL1261Lj4v8qaNWs6/PwvFhcXZzz++OMO2zZv3my4uroav//+u2EYhhEaGmoMGjTIbC8sLDQCAwONWbNmGYZhGHPmzDFq1apl5OTkmH2WL19uuLq6GllZWYZhOP49PnPmjOHh4WEsXrzY7P/rr78a3t7exX4WF5swYYJx6623muuNGjUyFi5c6NBn8uTJRkREhGEYhnH8+HHD3d3d2LRpk9keERFhjBkzxjAMw/jvf/9ruLm5GT/99JPDGN27dzfGjh1rGEbJ7y+AaxNzPXM9cz1zPSoX99jDKbp166ZZs2Y5bAsICHBYb9mypfnnoKAgSVKLFi0ctp07d052u12+vr6SpAYNGuiGG24w+0RERKiwsFAZGRmy2WwO4x86dEj5+fnq2LGjua1atWq6/fbb9fXXX0uSgoODFR0drQ8++EC33367Pv/8c+Xm5ur++++/qlq/+uorbd261eFT+4KCAp07d06//fabqlevXmxcHx8f+fr66vjx47oSI0aM0LBhw7R69WpFRkZqwIABDuOW5Ntvv9X48eO1Y8cO/fLLL+an95mZmWrevPkV7f9id999t0JDQ3XjjTeqZ8+e6tmzp3n5YUlq1Khh/nnQoEGaPXt2qWNPmzZNkZGRDtvGjBmjgoICSZf3874cCQkJevTRR/WPf/xDkZGRuv/++9WoUSNJFy7d27t3rxYsWGD2NwxDhYWFOnz4sMLDwyU5/lxdXFxks9nMn+vXX3+tW2+9VT4+Pmafjh07mn+Pi/5+FTl06JDy8vLUvn17c1tAQICaNGly2cd09uxZHTp0SHFxcXrsscfM7efPn5efn58kqW7duurRo4cWLFigzp076/Dhw0pNTdW7774r6cIlhQUFBbr55psdxs7NzVXt2rUvuxYA1w7meuZ65voLmOtRGQj2cAofHx+Hy9tKUnTJkyTzvqeSthVNRBXl0Ucf1eDBgzVt2jTNmzdPf/nLX4pNTldaa05Ojl588UX179+/2P68vLxKHLdonCs93kcffVRRUVFavny5Vq9ercTERE2ZMkVPPvlkqa/p06ePQkND9d577yk4OFiFhYVq3ry58vLyLrkvV1dXh8u3JCk/P9/8c82aNfXll19qw4YNWr16tcaPH6+JEydq165dJX41ysVP4i36ha40Nput2N+pmjVrXtFTgP+sfunC/Z0PPfSQli9fri+++EITJkzQokWL1K9fP+Xk5Oivf/2rRowYUWzsBg0amH8uj59reSq6p++9995z+KVBktzc3Mw/x8TEaMSIEXr77be1cOFCtWjRwvylNicnR25ubkpLS3N4jeT4SxuA6wdzPXM9c/3/MNejonGPPa4pmZmZOnr0qLm+fft2ubq6lviJZqNGjeTh4aGtW7ea2/Lz87Vr1y41a9bM3Na7d2/5+Pho1qxZWrlypYYOHXrVdbZp00YZGRlq3LhxscXV9fL+WXp4eEiS+Sn1pYSEhOiJJ57QJ598oqefflrvvfdeqWP8+uuvysjI0Lhx49S9e3eFh4fr5MmTl7XvunXr6tixY+Z6QUGB9u/f79DH3d1dkZGRSkpK0t69e/XDDz9o3bp1JdZ98fsSGBj4p8d5KZfz865bt67OnDnj8ACckr7m5+abb9aoUaO0evVq9e/f37w3s02bNjp48GCJP9ei9+zPhIeH66uvvnKoYevWrZf8e1ytWjXt2LHD3Hby5El98803l7U/6cJZpuDgYH3//ffF6i56eJIk3XvvvTp37pxWrlyphQsXKiYmxmxr3bq1CgoKdPz48WJj/PEMGgBcDeb6kjHXM9dfCnP9tY8z9nCK3NxcZWVlOWxzd3dXnTp1rmpcLy8vxcbG6o033pDdbteIESP0wAMPlPifjY+Pj4YNG6bRo0crICBADRo0UFJSkn777TfFxcWZ/dzc3PTwww9r7NixuummmxQREXFVNUrS+PHjdc8996hBgwa677775Orqqq+++kr79+/XSy+9dFljhIaGysXFRcuWLVPv3r3l7e1d4qelI0eOVK9evXTzzTfr5MmTWr9+vXmZWElj1KpVS7Vr19acOXNUr149ZWZm6rnnnnMYMzAwUN7e3lq5cqXq168vLy8v+fn56a677lJCQoKWL1+uRo0aaerUqQ6foi9btkzff/+9unTpolq1amnFihUqLCy8okvJyupyft7t27dX9erV9fe//10jRozQjh07lJycbI7x+++/a/To0brvvvsUFhamH3/8Ubt27dKAAQMkXbgcsEOHDho+fLgeffRR+fj46ODBg0pJSdE777xzWXXGxMRowoQJio2N1cSJE/Xzzz/rySef1ODBg4tdmidd+IQ8Li5Oo0ePVu3atRUYGKjnn3/+sn9pLPLiiy9qxIgR8vPzU8+ePZWbm6vdu3fr5MmTSkhIMN/Dvn376oUXXtDXX3+tBx980Hz9zTffrJiYGA0ZMkRTpkxR69at9fPPP2vt2rVq2bKloqOjr6geANbHXM9cz1xfMuZ6VAhn3uCP61NsbKwhqdjSpEkTs48kY+nSpeZ6SQ9w+ePDYIoeEDJz5kwjODjY8PLyMu677z7jxIkTDvsuehCJYRjG77//bjz55JNGnTp1DE9PT6Njx47Gzp07i9V86NAhQ5L54JWLlaVWwzCMlStXGnfccYfh7e1t+Pr6GrfffrsxZ86cUsc1DMPw8/Mz5s2bZ65PmjTJsNlshouLi/nQmj8aPny40ahRI8PT09OoW7euMXjwYOOXX3655BgpKSlGeHi44enpabRs2dLYsGFDsXree+89IyQkxHB1dTXuvPNOwzAuPKBm2LBhRkBAgBEYGGgkJiY6PFBn8+bNxp133mnUqlXL8Pb2Nlq2bGl8/PHHJdZ9JUp6rwyjbD/vpUuXGo0bNza8vb2Ne+65x5gzZ475QJ3c3Fxj4MCBRkhIiOHh4WEEBwcbw4cPNx+WYxiGsXPnTuPuu+82atSoYfj4+BgtW7Z0eFhUaGioMW3aNId93nrrrcaECRPM9b179xrdunUzvLy8jICAAOOxxx4zzpw5U+pxnTlzxhg0aJBRvXp1IygoyEhKSirx4UYX++MDdQzDMBYsWGC0atXK8PDwMGrVqmV06dLF+OSTTxz6rFixwpBkdOnSpdiYeXl5xvjx442GDRsa1apVM+rVq2f069fP2Lt3r2EYPFAHuJ4w11/AXM9cX4S5HhXNxTD+cJMJYFETJ07Up59+WuLlVFdr8+bN6t69u44cOVLiJ6kAAKDiMdcDQMm4FB+4hNzcXP3888+aOHGi7r//fiZ6AACuMcz1AK4FPDwPuIR//vOfCg0N1alTp5SUlOTscgAAQDljrgdwLeBSfAAAAAAALIwz9gAAAAAAWBjBHgAAAAAACyPYAwAAAABgYQR7AAAAAAAsjGAPAAAAAICFEewBAAAAALAwgj0AAAAAABZGsAcAAAAAwML+P323qIAJF4FgAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIjCAYAAACgdyAGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX1ElEQVR4nO3de3zP9f//8ft7YwdjM4edNOZ8yGFY9iOFj2WLDohURMtHn9RCKzLVRtTwQetoKKdS5Bs60JJFUcv50AEhctyQw2wy2l6/P3y8824He/Pe3ntxu14ur0ver9fz/Xw9Xu9NT/fX6/l6vS2GYRgCAAAAAACm4OLsAgAAAAAAQPER5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARAjyAAAAAACYCEEeAAAAAAATIcgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPIBi+fHHH9WrVy/VqlVLHh4eqlGjhu644w698cYb1jYhISGyWCzWxc/PT7fddpsWL15cYJ+LFy/WnXfeqWrVqsnNzU1BQUG6//779fXXX5fWYQEAgP+ZPXu2LBaLPDw8dOjQoXzbO3bsqKZNm2r06NE2431hS8eOHa3v/eyzz9ShQwf5+fmpQoUKqlOnju6//36lpKSU4hEC149yzi4AQNn3/fffq1OnTqpZs6YGDRqkgIAAHThwQD/88INee+01PfXUU9a2oaGheuaZZyRJhw8f1rRp09SzZ09NnTpVjz/+uCTJMAw9+uijmj17tlq2bKnY2FgFBAToyJEjWrx4sTp37qzvvvtO7dq1c8rxAgBwI8vJydH48eNtTtZfrmfPnqpXr571dVZWlgYPHqwePXqoZ8+e1vX+/v6SpEmTJmn48OHq0KGD4uLiVKFCBe3evVsrVqzQ/PnzFRUVVbIHBFyHLIZhGM4uAkDZ1q1bN61fv16//vqrKleubLPt6NGj8vPzk3TxinzTpk31+eefW7enp6erXr16qlGjhnbu3Cnp7wF92LBhmjJliiwWi02f7733nho2bKg2bdqU7IEBAACr2bNnKzo6WqGhodq+fbt+++03BQUFWbd37NhRx48f108//WTzvuPHj6t69epKSEjQ6NGjbbb99ddfqlq1qsLDw7V8+fJ8+7z83xEAio+p9QCuaM+ePbr55pvzhXhJVxx8AwIC1LhxY+3du1eS9OeffyoxMVGNGjXSpEmT8oV4SXr44YcJ8QAAOMmoUaOUm5ur8ePHX3Nfx48fV2Zmpm699dYCtxPigatDkAdwRbVq1dLGjRvznYEvjgsXLujAgQOqWrWqJGnNmjU6ceKEHnroIbm6ujq6VAAAcI1q166t/v37a8aMGTp8+PA19eXn5ydPT0999tlnOnHihIMqBECQB3BFzz77rM6ePavQ0FC1a9dOzz33nJYvX64LFy7ka3vhwgUdP35cx48f17Zt29S/f39lZGSod+/ekqTt27dLkpo1a1aqxwAAAIrv+eef119//aUJEyZcUz8uLi4aPny4Nm7cqJo1a6pr16565ZVXtGnTJgdVCtyYCPIAruiOO+5QWlqa7rnnHm3dulUTJ05UZGSkatSooU8//dSm7fLly1W9enVVr15dLVq00MKFC/Xwww9b/yGQmZkpSapUqVKpHwcAACieOnXq6OGHH9b06dN15MiRa+przJgx+uCDD9SyZUt9+eWXev7559W6dWu1atXKeoIfgH0I8gCK5ZZbbtGiRYt08uRJrVu3TnFxcTpz5ox69eqlX375xdouPDxcX331lVasWKHvv/9ex48f19y5c+Xp6SlJ8vb2liSdOXPGKccBAACK54UXXtBff/3lkHvlH3zwQa1evVonT57U8uXL9dBDD2nz5s26++67de7cOQdUC9xYCPIA7OLm5qZbbrlFr7zyiqZOnaoLFy5o4cKF1u3VqlVTRESEOnfurLZt2+Z7QF6jRo0kXfxeegAAUHbVqVNH/fr1c8hV+Uu8vb11xx13aN68eRowYID27NmjtWvXOqRv4EZCkAdw1cLCwiTJrsG9ffv28vX11Ycffqjc3NySKg0AADjApavy13qvfEGu5t8RAC4iyAO4opUrV8owjHzrly1bJklq2LBhsfuqUKGCnnvuOW3fvl3PPfdcgf2+//77Wrdu3dUXDAAAHKJu3brq16+fpk2bpvT0dLvff/bsWaWlpRW47YsvvpBk378jAFxUztkFACj7nnrqKZ09e1Y9evRQo0aNdP78eX3//fdasGCBQkJCFB0dbVd/w4cP188//6zJkydr5cqV6tWrlwICApSenq4lS5Zo3bp1+v7770voaAAAgD2ef/55vffee9q5c6duvvlmu9579uxZtWvXTv/v//0/RUVFKTg4WKdOndKSJUu0evVqde/eXS1btiyhyoHrF0EewBVNmjRJCxcu1LJlyzR9+nSdP39eNWvW1BNPPKEXXngh333wV+Li4qK5c+fq3nvv1fTp0zVp0iRlZmaqevXquv322zVx4kS1bdu2ZA4GAADYpV69eurXr5/mzJlj93srV66sGTNmaOnSpZo1a5bS09Pl6uqqhg0b6r///a+GDBlSAhUD1z+LUdC8VgAAAAAAUCZxjzwAAAAAACZCkAcAAAAAwEQI8gAAAAAAmAhBHgAAAAAAEyHIAwAAAABgIgR5AAAAAABMhO+RL0BeXp4OHz6sSpUqyWKxOLscAABkGIbOnDmjoKAgubhwHv5aMdYDAMoae8Z6gnwBDh8+rODgYGeXAQBAPgcOHNBNN93k7DJMj7EeAFBWFWesJ8gXoFKlSpIufoDe3t5OrgYAACkzM1PBwcHWMQrXhrEeAFDW2DPWE+QLcGmKnbe3N4M7AKBMYRq4YzDWAwDKquKM9dxkBwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmUs7ZBdwIQkYuLfV97hvfrdT3CQDAjay0x3vGegC4cXFFHgAAAAAAEyHIAwAAAABgIgR5AAAAAABMhCAPAAAAAICJEOQBAAAAADCRMhHk33rrLYWEhMjDw0Ph4eFat25doW0XLVqksLAwVa5cWV5eXgoNDdV7771n0+aRRx6RxWKxWaKiokr6MAAAAAAAKHFO//q5BQsWKDY2VsnJyQoPD1dSUpIiIyO1c+dO+fn55WtfpUoVPf/882rUqJHc3Nz0+eefKzo6Wn5+foqMjLS2i4qK0qxZs6yv3d3dS+V4AAAAAAAoSU6/Ij9lyhQNGjRI0dHRatKkiZKTk1WhQgXNnDmzwPYdO3ZUjx491LhxY9WtW1dDhw5V8+bNtWbNGpt27u7uCggIsC6+vr6lcTgAAAAAAJQopwb58+fPa+PGjYqIiLCuc3FxUUREhNLS0q74fsMwlJqaqp07d+r222+32bZq1Sr5+fmpYcOGGjx4sP74449C+8nJyVFmZqbNAgAAAABAWeTUIH/8+HHl5ubK39/fZr2/v7/S09MLfd/p06dVsWJFubm5qVu3bnrjjTd0xx13WLdHRUVp7ty5Sk1N1YQJE/TNN9/ozjvvVG5uboH9JSYmysfHx7oEBwc75gABAIAknocDAIAjOf0e+atRqVIlbdmyRVlZWUpNTVVsbKzq1Kmjjh07SpIeeOABa9tmzZqpefPmqlu3rlatWqXOnTvn6y8uLk6xsbHW15mZmYR5AAAchOfhAADgWE4N8tWqVZOrq6syMjJs1mdkZCggIKDQ97m4uKhevXqSpNDQUG3fvl2JiYnWIP9PderUUbVq1bR79+4Cg7y7uzuDPwAAJeTy5+FIUnJyspYuXaqZM2dq5MiR+dr/czwfOnSo5syZozVr1tgE+UvPwymOnJwc5eTkWF9zGx0AwMycOrXezc1NrVu3VmpqqnVdXl6eUlNT1bZt22L3k5eXZzM4/9PBgwf1xx9/KDAw8JrqBQAA9ikrz8PhNjoAwPXE6VPrY2NjNWDAAIWFhalNmzZKSkpSdna29ax9//79VaNGDSUmJkq6OBCHhYWpbt26ysnJ0bJly/Tee+9p6tSpkqSsrCyNGTNG9913nwICArRnzx6NGDFC9erVszmLDwAASl5Rz8PZsWNHoe87ffq0atSooZycHLm6uurtt9/O9zycnj17qnbt2tqzZ49GjRqlO++8U2lpaXJ1dc3XH7fRAQCuJ04P8n369NGxY8cUHx+v9PR0hYaGKiUlxTrg79+/Xy4uf08cyM7O1hNPPKGDBw/K09NTjRo10vvvv68+ffpIklxdXbVt2zbNmTNHp06dUlBQkLp06aKxY8cyfR4AAJNw9PNwuI0OAHA9cXqQl6SYmBjFxMQUuG3VqlU2r8eNG6dx48YV2penp6e+/PJLR5YHAACuUll5Hg4AANcTp94jDwAArm88DwcAAMcrE1fkAQDA9Yvn4QAA4FgEeQAAUKJ4Hg4AAI5lMQzDcHYRZU1mZqZ8fHx0+vRpeXt7X3N/ISOXOqAq++wb363U93k1+GwAoHgcPTbd6Eri8yztMY3xDACuL/aMTdwjDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMpE0H+rbfeUkhIiDw8PBQeHq5169YV2nbRokUKCwtT5cqV5eXlpdDQUL333ns2bQzDUHx8vAIDA+Xp6amIiAjt2rWrpA8DAAAAAIAS5/Qgv2DBAsXGxiohIUGbNm1SixYtFBkZqaNHjxbYvkqVKnr++eeVlpambdu2KTo6WtHR0fryyy+tbSZOnKjXX39dycnJWrt2rby8vBQZGalz586V1mEBAAAAAFAinB7kp0yZokGDBik6OlpNmjRRcnKyKlSooJkzZxbYvmPHjurRo4caN26sunXraujQoWrevLnWrFkj6eLV+KSkJL3wwgu699571bx5c82dO1eHDx/WkiVLSvHIAAAAAABwPKcG+fPnz2vjxo2KiIiwrnNxcVFERITS0tKu+H7DMJSamqqdO3fq9ttvlyTt3btX6enpNn36+PgoPDy80D5zcnKUmZlpswAAAMfhNjoAABzHqUH++PHjys3Nlb+/v816f39/paenF/q+06dPq2LFinJzc1O3bt30xhtv6I477pAk6/vs6TMxMVE+Pj7WJTg4+FoOCwAAXIbb6AAAcCynT62/GpUqVdKWLVu0fv16vfzyy4qNjdWqVauuur+4uDidPn3auhw4cMBxxQIAcIPjNjoAABzLqUG+WrVqcnV1VUZGhs36jIwMBQQEFPo+FxcX1atXT6GhoXrmmWfUq1cvJSYmSpL1ffb06e7uLm9vb5sFAABcO26jAwDA8Zwa5N3c3NS6dWulpqZa1+Xl5Sk1NVVt27Ytdj95eXnKycmRJNWuXVsBAQE2fWZmZmrt2rV29QkAAK4dt9EBAOB45ZxdQGxsrAYMGKCwsDC1adNGSUlJys7OVnR0tCSpf//+qlGjhvWKe2JiosLCwlS3bl3l5ORo2bJleu+99zR16lRJksVi0bBhwzRu3DjVr19ftWvX1osvvqigoCB1797dWYcJAADscOk2uqysLKWmpio2NlZ16tRRx44dr6q/uLg4xcbGWl9nZmYS5gEApuX0IN+nTx8dO3ZM8fHxSk9PV2hoqFJSUqxn2ffv3y8Xl78nDmRnZ+uJJ57QwYMH5enpqUaNGun9999Xnz59rG1GjBih7OxsPfbYYzp16pTat2+vlJQUeXh4lPrxAQBwI7vW2+gkKTQ0VNu3b1diYqI6duxocxtdYGCgTZ+hoaEF9ufu7i53d/drPBoAAMoGpwd5SYqJiVFMTEyB2/75ELtx48Zp3LhxRfZnsVj00ksv6aWXXnJUiQAA4CpcfhvdpZlxl26jK2zsL0hht9FdCu6XbqMbPHiwow8BAIAyp0wEeQAAcP3iNjoAAByLIA8AAEoUt9EBAOBYFsMwDGcXUdZkZmbKx8dHp0+fdshX0YWMXOqAquyzb3y3Ut/n1eCzAYDicfTYdKMric+ztMc0xjMAuL7YMzY59evnAAAAAACAfQjyAAAAAACYCEEeAAAAAAATIcgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARAjyAAAAAACYCEEeAAAAAAATIcgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARAjyAAAAAACYCEEeAAAAAAATIcgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARAjyAAAAAACYCEEeAAAAAAATIcgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARAjyAAAAAACYCEEeAAAAAAATIcgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARAjyAAAAAACYCEEeAAAAAAATIcgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPAAAAAAAJnJVQf7ChQs6cOCAdu7cqRMnTlxzEW+99ZZCQkLk4eGh8PBwrVu3rtC2M2bM0G233SZfX1/5+voqIiIiX/tHHnlEFovFZomKirrmOgEAAAAAcLZiB/kzZ85o6tSp6tChg7y9vRUSEqLGjRurevXqqlWrlgYNGqT169fbXcCCBQsUGxurhIQEbdq0SS1atFBkZKSOHj1aYPtVq1bpwQcf1MqVK5WWlqbg4GB16dJFhw4dsmkXFRWlI0eOWJcPP/zQ7toAAAAAAChrihXkp0yZopCQEM2aNUsRERFasmSJtmzZol9//VVpaWlKSEjQX3/9pS5duigqKkq7du0qdgFTpkzRoEGDFB0drSZNmig5OVkVKlTQzJkzC2w/b948PfHEEwoNDVWjRo30zjvvKC8vT6mpqTbt3N3dFRAQYF18fX2LXRMAAHAsZt8BAOA45YrTaP369fr222918803F7i9TZs2evTRR5WcnKxZs2Zp9erVql+//hX7PX/+vDZu3Ki4uDjrOhcXF0VERCgtLa1YB3D27FlduHBBVapUsVm/atUq+fn5ydfXV//61780btw4Va1atcA+cnJylJOTY32dmZlZrH0DAIAruzT7Ljk5WeHh4UpKSlJkZKR27twpPz+/fO0vzb5r166dPDw8NGHCBHXp0kU///yzatSoYW0XFRWlWbNmWV+7u7uXyvEAAOBsxQryxZ2W7u7urscff7zYOz9+/Lhyc3Pl7+9vs97f3187duwoVh/PPfecgoKCFBERYV0XFRWlnj17qnbt2tqzZ49GjRqlO++8U2lpaXJ1dc3XR2JiosaMGVPsugEAQPFdPvtOkpKTk7V06VLNnDlTI0eOzNd+3rx5Nq/feecdffzxx0pNTVX//v2t6y/NvgMA4EZj6qfWjx8/XvPnz9fixYvl4eFhXf/AAw/onnvuUbNmzdS9e3d9/vnnWr9+vVatWlVgP3FxcTp9+rR1OXDgQCkdAQAA17dLs+8uP+Hu6Nl3DRs21ODBg/XHH38U2kdOTo4yMzNtFgAAzKpYV+R79uxZ7A4XLVpU7LbVqlWTq6urMjIybNZnZGRc8Qz7pEmTNH78eK1YsULNmzcvsm2dOnVUrVo17d69W507d8633d3dnel4AACUAGbfAQDgeMW6Iu/j42NdvL29lZqaqg0bNli3b9y4UampqfLx8bFr525ubmrdurXNg+ouPbiubdu2hb5v4sSJGjt2rFJSUhQWFnbF/Rw8eFB//PGHAgMD7aoPAAA4F7PvAADIr1hX5C9/kMxzzz2n+++/X8nJydYz3rm5uXriiSfk7e1tdwGxsbEaMGCAwsLC1KZNGyUlJSk7O9t6H13//v1Vo0YNJSYmSpImTJig+Ph4ffDBBwoJCVF6erokqWLFiqpYsaKysrI0ZswY3XfffQoICNCePXs0YsQI1atXT5GRkXbXBwAArh6z7wAAcDy775GfOXOmnn32WZtpa66uroqNjS30K+OK0qdPH02aNEnx8fEKDQ3Vli1blJKSYp2Ct3//fh05csTafurUqTp//rx69eqlwMBA6zJp0iRrLdu2bdM999yjBg0aaODAgWrdurVWr17NAA4AQClj9h0AAI5XrCvyl/vrr7+0Y8cONWzY0Gb9jh07lJeXd1VFxMTEKCYmpsBt/5wit2/fviL78vT01JdffnlVdQAAAMdj9h0AAI5ld5CPjo7WwIEDtWfPHrVp00aStHbtWo0fP946IAMAAFzSp08fHTt2TPHx8UpPT1doaGi+2XcuLn9PErx89t3lEhISNHr0aOvsuzlz5ujUqVMKCgpSly5dNHbsWGbfAQBuCHYH+UmTJikgIECTJ0+2TnkPDAzU8OHD9cwzzzi8QAAAYH7MvgMAwHHsDvIuLi4aMWKERowYYf0O1qt5yB0AAAAAALCf3Q+7ky7eJ79ixQp9+OGHslgskqTDhw8rKyvLocUBAAAAAABbdl+R//333xUVFaX9+/crJydHd9xxhypVqqQJEyYoJydHycnJJVEnAAAAAADQVVyRHzp0qMLCwnTy5El5enpa1/fo0cPmq2UAAAAAAIDj2X1FfvXq1fr+++/l5uZmsz4kJESHDh1yWGEAAAAAACA/u6/I5+XlKTc3N9/6gwcPqlKlSg4pCgAAAAAAFMzuIN+lSxclJSVZX1ssFmVlZSkhIUFdu3Z1ZG0AAAAAAOAf7J5aP3nyZEVGRqpJkyY6d+6cHnroIe3atUvVqlXThx9+WBI1AgAAAACA/7E7yN90003aunWrFixYoK1btyorK0sDBw5U3759bR5+BwAAAAAAHM/uIC9J5cqVU9++fdW3b19H1wMAAAAAAIpg9z3yrq6u6tSpk06cOGGzPiMjQ66urg4rDAAAAAAA5Gd3kDcMQzk5OQoLC9PPP/+cbxsAAAAAACg5dgd5i8Wijz/+WHfffbfatm2rTz75xGYbAAAAAAAoOVd1Rd7V1VWvvfaaJk2apD59+mjcuHFcjQcAAAAAoBRc1cPuLnnsscdUv3599e7dW99++62jagIAAAAAAIWw+4p8rVq1bB5q16lTJ/3www86cOCAQwsDAAAAAAD52X1Ffu/evfnW1atXT5s3b1ZGRoZDigIAAAAAAAWz+4p8YTw8PFSrVi1HdQcAAAAAAApQrCvyVapU0a+//qpq1arJ19e3yKfT//P75QEAAAAAgOMUK8i/+uqrqlSpkiQpKSmpJOsBAAAAAABFKFaQHzBgQIF/BgAAAAAApatYQT4zM7PYHXp7e191MQAAAAAAoGjFCvKVK1cu8r54STIMQxaLRbm5uQ4pDAAAAAAA5FesIL9y5cqSrgMAAAAAABRDsYJ8hw4dSroOAAAAAABQDMUK8gU5e/as9u/fr/Pnz9usb968+TUXBQAAAAAACmZ3kD927Jiio6P1xRdfFLide+QBAAAAACg5Lva+YdiwYTp16pTWrl0rT09PpaSkaM6cOapfv74+/fTTkqgRAAAAAAD8j91X5L/++mt98sknCgsLk4uLi2rVqqU77rhD3t7eSkxMVLdu3UqiTgAAAAAAoKu4Ip+dnS0/Pz9Jkq+vr44dOyZJatasmTZt2uTY6gAAAAAAgA27g3zDhg21c+dOSVKLFi00bdo0HTp0SMnJyQoMDHR4gQAAAAAA4G92T60fOnSojhw5IklKSEhQVFSU5s2bJzc3N82ePdvR9QEAAAAAgMvYHeT79etn/XPr1q31+++/a8eOHapZs6aqVavm0OIAAAAAAICtq/4e+UsqVKigVq1aOaIWAAAAAABwBXYHecMw9H//939auXKljh49qry8PJvtixYtclhxAAAAAADAlt1BftiwYZo2bZo6deokf39/WSyWkqgLAAAAAAAUwO4g/95772nRokXq2rVrSdQDAAAAAACKYPfXz/n4+KhOnTolUQsAAAAAALgCu4P86NGjNWbMGP35558lUQ8AAAAAACiC3VPr77//fn344Yfy8/NTSEiIypcvb7N906ZNDisOAAAAAADYsjvIDxgwQBs3blS/fv142B0AAAAAAKXM7iC/dOlSffnll2rfvn1J1AMAAAAAAIpg9z3ywcHB8vb2LolaAAAAAADAFdgd5CdPnqwRI0Zo3759JVAOAAAAAAAoit1T6/v166ezZ8+qbt26qlChQr6H3Z04ccJhxQEAAAAAAFt2B/mkpKQSKAMAAAAAABSHXUH+woUL+uabb/Tiiy+qdu3aJVUTAAAAAAAohF33yJcvX14ff/xxSdUCAAAAAACuwO6H3XXv3l1LlixxaBFvvfWWQkJC5OHhofDwcK1bt67QtjNmzNBtt90mX19f+fr6KiIiIl97wzAUHx+vwMBAeXp6KiIiQrt27XJozQAAAAAAOIPd98jXr19fL730kr777ju1bt1aXl5eNtuHDBliV38LFixQbGyskpOTFR4erqSkJEVGRmrnzp3y8/PL137VqlV68MEH1a5dO3l4eGjChAnq0qWLfv75Z9WoUUOSNHHiRL3++uuaM2eOateurRdffFGRkZH65Zdf5OHhYe8hAwAAAABQZth9Rf7dd99V5cqVtXHjRk2fPl2vvvqqdbmaB+FNmTJFgwYNUnR0tJo0aaLk5GRVqFBBM2fOLLD9vHnz9MQTTyg0NFSNGjXSO++8o7y8PKWmpkq6eDU+KSlJL7zwgu699141b95cc+fO1eHDhx0+kwAAABQPs+8AAHAcu4P83r17C11+++03u/o6f/68Nm7cqIiIiL8LcnFRRESE0tLSitXH2bNndeHCBVWpUsVaX3p6uk2fPj4+Cg8PL7TPnJwcZWZm2iwAAMAxLs2+S0hI0KZNm9SiRQtFRkbq6NGjBba/NPtu5cqVSktLU3BwsLp06aJDhw5Z21yafZecnKy1a9fKy8tLkZGROnfuXGkdFgAATmN3kL+cYRgyDOOq33/8+HHl5ubK39/fZr2/v7/S09OL1cdzzz2noKAga3C/9D57+kxMTJSPj491CQ4OtvdQAABAIZh9BwCAY11VkJ87d66aNWsmT09PeXp6qnnz5nrvvfccXdsVjR8/XvPnz9fixYuv6d73uLg4nT592rocOHDAgVUCAHDjYvYdAACOZ/fD7qZMmaIXX3xRMTExuvXWWyVJa9as0eOPP67jx4/r6aefLnZf1apVk6urqzIyMmzWZ2RkKCAgoMj3Tpo0SePHj9eKFSvUvHlz6/pL78vIyFBgYKBNn6GhoQX25e7uLnd392LXDQAAiqeo2Xc7duwoVh+Omn03ZswYe8uHg4SMXFqq+9s3vlup7g8ASpvdV+TfeOMNTZ06VRMmTNA999yje+65RxMnTtTbb7+t119/3a6+3Nzc1Lp1a+tUOUnWqXNt27Yt9H0TJ07U2LFjlZKSorCwMJtttWvXVkBAgE2fmZmZWrt2bZF9AgCAsofZdwAA5Gf3FfkjR46oXbt2+da3a9dOR44csbuA2NhYDRgwQGFhYWrTpo2SkpKUnZ2t6OhoSVL//v1Vo0YNJSYmSpImTJig+Ph4ffDBBwoJCbGeea9YsaIqVqwoi8WiYcOGady4capfv7716+eCgoLUvXt3u+sDAABXj9l3AAA4nt1X5OvVq6ePPvoo3/oFCxaofv36dhfQp08fTZo0SfHx8QoNDdWWLVuUkpJinS63f/9+mxMEU6dO1fnz59WrVy8FBgZal0mTJlnbjBgxQk899ZQee+wx3XLLLcrKylJKSgrfIQ8AQClj9h0AAI5n9xX5MWPGqE+fPvr222+t98h/9913Sk1NLTDgF0dMTIxiYmIK3LZq1Sqb1/v27btifxaLRS+99JJeeumlq6oHAAA4DrPvAABwLLuD/H333ae1a9fq1VdftX7FS+PGjbVu3Tq1bNnS0fUBAACT69Onj44dO6b4+Hilp6crNDQ03+w7F5e/JwlePvvucgkJCRo9erSki7PvsrOz9dhjj+nUqVNq3749s+8AADcMu4O8JLVu3Vrvv/++o2sBAADXKWbfAQDgOFcV5PPy8rR7924dPXpUeXl5Nttuv/12hxQGAAAAAADyszvI//DDD3rooYf0+++/yzAMm20Wi0W5ubkOKw4AAAAAANiyO8g//vjjCgsL09KlSxUYGCiLxVISdQEAAAAAgALYHeR37dql//u//1O9evVKoh4AAAAAAFAEu79HPjw8XLt37y6JWgAAAAAAwBXYfUX+qaee0jPPPKP09HQ1a9ZM5cuXt9nevHlzhxUHAAAAAABsXdX3yEvSo48+al1nsVhkGAYPuwMAAAAAoITZHeT37t1bEnUAAAAAAIBisDvI16pVqyTqAAAAAOBEISOXlvo+943vVur7BK4HxXrY3Q8//FDsDs+ePauff/75qgsCAAAAAACFK1aQf/jhhxUZGamFCxcqOzu7wDa//PKLRo0apbp162rjxo0OLRIAAAAAAFxUrKn1v/zyi6ZOnaoXXnhBDz30kBo0aKCgoCB5eHjo5MmT2rFjh7KystSjRw8tX75czZo1K+m6AQAAAAC4IRUryJcvX15DhgzRkCFDtGHDBq1Zs0a///67/vzzT7Vo0UJPP/20OnXqpCpVqpR0vQAAAAAA3NDsfthdWFiYwsLCSqIWAAAAAABwBcW6Rx4AAAAAAJQNBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBG7g/xvv/1WEnUAAAAAAIBisDvI16tXT506ddL777+vc+fOlURNAAAAAACgEHYH+U2bNql58+aKjY1VQECA/vOf/2jdunUlURsAAAAAAPgHu4N8aGioXnvtNR0+fFgzZ87UkSNH1L59ezVt2lRTpkzRsWPHSqJOAAAAAACga3jYXbly5dSzZ08tXLhQEyZM0O7du/Xss88qODhY/fv315EjRxxZJwAAAAAA0DUE+Q0bNuiJJ55QYGCgpkyZomeffVZ79uzRV199pcOHD+vee+91ZJ0AAAAAAEBSOXvfMGXKFM2aNUs7d+5U165dNXfuXHXt2lUuLhfPCdSuXVuzZ89WSEiIo2sFAAAAAOCGZ3eQnzp1qh599FE98sgjCgwMLLCNn5+f3n333WsuDgAAAAAA2LI7yO/ateuKbdzc3DRgwICrKggAAAAAABTO7nvkZ82apYULF+Zbv3DhQs2ZM8chRQEAAAAAgILZHeQTExNVrVq1fOv9/Pz0yiuvOKQoAAAAAABQMLuD/P79+1W7du1862vVqqX9+/c7pCgAAAAAAFAwu4O8n5+ftm3blm/91q1bVbVqVYcUBQAAAAAACmZ3kH/wwQc1ZMgQrVy5Urm5ucrNzdXXX3+toUOH6oEHHiiJGgEAAAAAwP/Y/dT6sWPHat++fercubPKlbv49ry8PPXv35975AEAAAAAKGF2B3k3NzctWLBAY8eO1datW+Xp6almzZqpVq1aJVEfAAAAAAC4jN1B/pIGDRqoQYMGjqwFAAAAAABcgd1BPjc3V7Nnz1ZqaqqOHj2qvLw8m+1ff/21w4oDAAAAAAC27A7yQ4cO1ezZs9WtWzc1bdpUFoulJOoCAAAAAAAFsDvIz58/Xx999JG6du1aEvUAAAAAAIAi2P31c25ubqpXr15J1AIAAAAAAK7A7iD/zDPP6LXXXpNhGCVRDwAAAAAAKILdU+vXrFmjlStX6osvvtDNN9+s8uXL22xftGiRw4oDAAAAAAC27A7ylStXVo8ePUqiFgAAAAAAcAV2B/lZs2aVRB0AAAAAAKAY7L5HXpL++usvrVixQtOmTdOZM2ckSYcPH1ZWVpZDiwMAAAAAALbsviL/+++/KyoqSvv371dOTo7uuOMOVapUSRMmTFBOTo6Sk5NLok4AAAAAAKCruCI/dOhQhYWF6eTJk/L09LSu79Gjh1JTUx1aHAAAAAAAsGX3FfnVq1fr+++/l5ubm836kJAQHTp0yGGFAQAAAACA/Oy+Ip+Xl6fc3Nx86w8ePKhKlSo5pCgAAAAAAFAwu4N8ly5dlJSUZH1tsViUlZWlhIQEde3a1ZG1AQAAAACAf7A7yE+ePFnfffedmjRponPnzumhhx6yTqufMGGC3QW89dZbCgkJkYeHh8LDw7Vu3bpC2/7888+67777FBISIovFYnNC4ZLRo0fLYrHYLI0aNbK7LgAAAAAAyiK7g/xNN92krVu3atSoUXr66afVsmVLjR8/Xps3b5afn59dfS1YsECxsbFKSEjQpk2b1KJFC0VGRuro0aMFtj979qzq1Kmj8ePHKyAgoNB+b775Zh05csS6rFmzxq66AACAY3HiHgAAx7H7YXeSVK5cOfXr1++adz5lyhQNGjRI0dHRkqTk5GQtXbpUM2fO1MiRI/O1v+WWW3TLLbdIUoHbL6+vqKD/Tzk5OcrJybG+zszMLPZ7AQBA0S6duE9OTlZ4eLiSkpIUGRmpnTt3FngR4NKJ+969e+vpp58utN+bb75ZK1assL4uV+6q/lkDAIDp2D3izZ07t8jt/fv3L1Y/58+f18aNGxUXF2dd5+LiooiICKWlpdlblo1du3YpKChIHh4eatu2rRITE1WzZs1C2ycmJmrMmDHXtE8AAFCwsnLiHgCA64XdQX7o0KE2ry9cuKCzZ8/Kzc1NFSpUKHaQP378uHJzc+Xv72+z3t/fXzt27LC3LKvw8HDNnj1bDRs21JEjRzRmzBjddttt+umnnwp9qn5cXJxiY2OtrzMzMxUcHHzVNQAAgIvKyol7Zt8BAK4ndgf5kydP5lu3a9cuDR48WMOHD3dIUdfizjvvtP65efPmCg8PV61atfTRRx9p4MCBBb7H3d1d7u7upVUiAAA3jLJy4p7ZdwCA64ndD7srSP369TV+/Ph8V+uLUq1aNbm6uiojI8NmfUZGhkOnyVWuXFkNGjTQ7t27HdYnAABwrjvvvFO9e/dW8+bNFRkZqWXLlunUqVP66KOPCmwfFxen06dPW5cDBw6UcsUAADiOQ4K8dPE+tcOHDxe7vZubm1q3bq3U1FTrury8PKWmpqpt27aOKktZWVnas2ePAgMDHdYnAAAonrJy4t7d3V3e3t42CwAAZmX31PpPP/3U5rVhGDpy5IjefPNN3XrrrXb1FRsbqwEDBigsLExt2rRRUlKSsrOzrQ/D6d+/v2rUqKHExERJF++z++WXX6x/PnTokLZs2aKKFSuqXr16kqRnn31Wd999t2rVqqXDhw8rISFBrq6uevDBB+09VAAAcI0uP3HfvXt3SX+fuI+JiXHYfi6duH/44Ycd1icAAGWV3UH+0iB8icViUfXq1fWvf/1LkydPtquvPn366NixY4qPj1d6erpCQ0OVkpJivY9u//79cnH5e9LA4cOH1bJlS+vrSZMmadKkSerQoYNWrVolSTp48KAefPBB/fHHH6pevbrat2+vH374QdWrV7f3UAEAgANw4h4AAMeyO8jn5eU5tICYmJhCz8hfCueXhISEyDCMIvubP3++o0oDAAAOwIl7AAAcy+4gDwAAYC9O3AMA4Dh2B/nLv2/9SqZMmWJv9wAAAAAAoAh2B/nNmzdr8+bNunDhgho2bChJ+vXXX+Xq6qpWrVpZ21ksFsdVCQAAAAAAJF1FkL/77rtVqVIlzZkzR76+vpKkkydPKjo6WrfddpueeeYZhxcJAAAAAAAusvt75CdPnqzExERriJckX19fjRs3zu6n1gMAAAAAAPvYHeQzMzN17NixfOuPHTumM2fOOKQoAAAAAABQMLuDfI8ePRQdHa1Fixbp4MGDOnjwoD7++GMNHDhQPXv2LIkaAQAAAADA/9h9j3xycrKeffZZPfTQQ7pw4cLFTsqV08CBA/Xf//7X4QUCAAAAAIC/2R3kK1SooLffflv//e9/tWfPHklS3bp15eXl5fDiAAAAAACALbun1l9y5MgRHTlyRPXr15eXl5cMw3BkXQAAAAAAoAB2B/k//vhDnTt3VoMGDdS1a1cdOXJEkjRw4EC+eg4AAAAAgBJmd5B/+umnVb58ee3fv18VKlSwru/Tp49SUlIcWhwAAAAAALBl9z3yy5cv15dffqmbbrrJZn39+vX1+++/O6wwAGVLyMilpb7PfeO7lfo+AQAAgLLO7ivy2dnZNlfiLzlx4oTc3d0dUhQAAAAAACiY3UH+tttu09y5c62vLRaL8vLyNHHiRHXq1MmhxQEAAAAAAFt2T62fOHGiOnfurA0bNuj8+fMaMWKEfv75Z504cULfffddSdQIAAAAAAD+x+4r8k2bNtWvv/6q9u3b695771V2drZ69uypzZs3q27duiVRIwAAAAAA+B+7rshfuHBBUVFRSk5O1vPPP19SNQEAAAAAgELYdUW+fPny2rZtW0nVAgAAAAAArsDuqfX9+vXTu+++WxK1AAAAAACAK7D7YXd//fWXZs6cqRUrVqh169by8vKy2T5lyhSHFQcAAAAAAGzZHeR/+ukntWrVSpL066+/2myzWCyOqQoAAAAAABSo2EH+t99+U+3atbVy5cqSrAcAAAAAABSh2PfI169fX8eOHbO+7tOnjzIyMkqkKAAAAAAAULBiB3nDMGxeL1u2TNnZ2Q4vCAAAAAAAFM7up9YDAAAAAADnKXaQt1gs+R5mx8PtAAAAAAAoXcV+2J1hGHrkkUfk7u4uSTp37pwef/zxfF8/t2jRIsdWCAAAAAAArIod5AcMGGDzul+/fg4vBgAAAAAAFK3YQX7WrFklWQcAAAAAACgGHnYHAAAAAICJEOQBAAAAADARgjwAAAAAACZCkAcAAAAAwEQI8gAAAAAAmAhBHgAAAAAAEyHIAwAAAABgIgR5AAAAAABMhCAPAAAAAICJEOQBAAAAADARgjwAAAAAACZCkAcAAAAAwEQI8gAAAAAAmAhBHgAAAAAAEyHIAwAAAABgIgR5AAAAAABMhCAPAAAAAICJEOQBAAAAADARgjwAAAAAACZCkAcAAAAAwEScHuTfeusthYSEyMPDQ+Hh4Vq3bl2hbX/++Wfdd999CgkJkcViUVJS0jX3CQAAAACAmTg1yC9YsECxsbFKSEjQpk2b1KJFC0VGRuro0aMFtj979qzq1Kmj8ePHKyAgwCF9AgCAkseJewAAHMepQX7KlCkaNGiQoqOj1aRJEyUnJ6tChQqaOXNmge1vueUW/fe//9UDDzwgd3d3h/QJAABKFifuAQBwLKcF+fPnz2vjxo2KiIj4uxgXF0VERCgtLa1U+8zJyVFmZqbNAgAAHIMT9wAAOJbTgvzx48eVm5srf39/m/X+/v5KT08v1T4TExPl4+NjXYKDg69q/wAAwFZZOXHPSXsAwPWknLMLKAvi4uIUGxtrfZ2ZmUmYBwDAAYo6yb5jx45S6zMxMVFjxoy5qv0BJSlk5NJS3d++8d1KdX8ASobTrshXq1ZNrq6uysjIsFmfkZFR6P1wJdWnu7u7vL29bRYAAHD9iIuL0+nTp63LgQMHnF0SAABXzWlB3s3NTa1bt1Zqaqp1XV5enlJTU9W2bdsy0ycAALh6ZeXEPSftAQDXE6c+tT42NlYzZszQnDlztH37dg0ePFjZ2dmKjo6WJPXv319xcXHW9ufPn9eWLVu0ZcsWnT9/XocOHdKWLVu0e/fuYvcJAABKDyfuAQBwPKfeI9+nTx8dO3ZM8fHxSk9PV2hoqFJSUqz3vO3fv18uLn+fazh8+LBatmxpfT1p0iRNmjRJHTp00KpVq4rVJwAAKF2xsbEaMGCAwsLC1KZNGyUlJeU7cV+jRg0lJiZKunji/pdffrH++dKJ+4oVK6pevXrF6hMAgOuZ0x92FxMTo5iYmAK3XQrnl4SEhMgwjGvqEwAAlC5O3AMA4FhOD/IAAOD6x4l7AAAcx6n3yAMAAAAAAPsQ5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARHjY3Q0oZOTSUt3fvvHdSnV/AAAAAHA944o8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCLlnF0AAAAAHCtk5NJS3+e+8d1KfZ8AcKPiijwAAAAAACZCkAcAAAAAwEQI8gAAAAAAmAhBHgAAAAAAE+Fhd0AZVtoPK+JBRQAAAEDZxxV5AAAAAABMhCAPAAAAAICJEOQBAAAAADARgjwAAAAAACZCkAcAAAAAwEQI8gAAAAAAmAhBHgAAAAAAEyHIAwAAAABgIgR5AAAAAABMhCAPAAAAAICJEOQBAAAAADARgjwAAAAAACZCkAcAAAAAwEQI8gAAAAAAmAhBHgAAAAAAEyHIAwAAAABgIgR5AAAAAABMpEwE+bfeekshISHy8PBQeHi41q1bV2T7hQsXqlGjRvLw8FCzZs20bNkym+2PPPKILBaLzRIVFVWShwAAAAAAQKlwepBfsGCBYmNjlZCQoE2bNqlFixaKjIzU0aNHC2z//fff68EHH9TAgQO1efNmde/eXd27d9dPP/1k0y4qKkpHjhyxLh9++GFpHA4AACgAJ+0BAHAcpwf5KVOmaNCgQYqOjlaTJk2UnJysChUqaObMmQW2f+211xQVFaXhw4ercePGGjt2rFq1aqU333zTpp27u7sCAgKsi6+vb2kcDgAA+AdO2gMA4FhODfLnz5/Xxo0bFRERYV3n4uKiiIgIpaWlFfietLQ0m/aSFBkZma/9qlWr5Ofnp4YNG2rw4MH6448/Cq0jJydHmZmZNgsAAHAMTtoDAOBYTg3yx48fV25urvz9/W3W+/v7Kz09vcD3pKenX7F9VFSU5s6dq9TUVE2YMEHffPON7rzzTuXm5hbYZ2Jionx8fKxLcHDwNR4ZAACQOGkPAEBJKOfsAkrCAw88YP1zs2bN1Lx5c9WtW1erVq1S586d87WPi4tTbGys9XVmZiZhHgAAByjqpP2OHTsKfE9xT9r37NlTtWvX1p49ezRq1CjdeeedSktLk6ura74+ExMTNWbMGAccEQAAzufUIF+tWjW5uroqIyPDZn1GRoYCAgIKfE9AQIBd7SWpTp06qlatmnbv3l1gkHd3d5e7u/tVHAEAAHAGTtoDAG5kTp1a7+bmptatWys1NdW6Li8vT6mpqWrbtm2B72nbtq1Ne0n66quvCm0vSQcPHtQff/yhwMBAxxQOAACKxRkn7Qvi7u4ub29vmwUAALNy+lPrY2NjNWPGDM2ZM0fbt2/X4MGDlZ2drejoaElS//79FRcXZ20/dOhQpaSkaPLkydqxY4dGjx6tDRs2KCYmRpKUlZWl4cOH64cfftC+ffuUmpqqe++9V/Xq1VNkZKRTjhEAgBsVJ+0BAHA8p98j36dPHx07dkzx8fFKT09XaGioUlJSrPfG7d+/Xy4uf59vaNeunT744AO98MILGjVqlOrXr68lS5aoadOmkiRXV1dt27ZNc+bM0alTpxQUFKQuXbpo7NixTJ8HAMAJYmNjNWDAAIWFhalNmzZKSkrKd9K+Ro0aSkxMlHTxpH2HDh00efJkdevWTfPnz9eGDRs0ffp0SRdP2o8ZM0b33XefAgICtGfPHo0YMYKT9gCAG4bTg7wkxcTEWK+o/9OqVavyrevdu7d69+5dYHtPT099+eWXjiwPAABcA07aAwDgWGUiyAMAgOsbJ+0BAHAcp98jDwAAAAAAio8gDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiZRzdgEAAAAAAPMKGbm0VPe3b3y3Ut1fWcQVeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiZRzdgEAAAAAUNaFjFxaqvvbN75bqe4P5sIVeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIXz8HAACAG0Zpf4WYxNeIAXA8rsgDAAAAAGAiBHkAAAAAAEyEIA8AAAAAgIkQ5AEAAAAAMBGCPAAAAAAAJkKQBwAAAADARAjyAAAAAACYCN8jDwAAAKDMCRm5tFT3t298t1LdH3AtuCIPAAAAAICJEOQBAAAAADARptYDAAAAAK4LpX1LhuSc2zII8sBluBcLAAAAQFnH1HoAAAAAAEykTAT5t956SyEhIfLw8FB4eLjWrVtXZPuFCxeqUaNG8vDwULNmzbRs2TKb7YZhKD4+XoGBgfL09FRERIR27dpVkocAAACKwFgPAIDjOD3IL1iwQLGxsUpISNCmTZvUokULRUZG6ujRowW2//777/Xggw9q4MCB2rx5s7p3767u3bvrp59+sraZOHGiXn/9dSUnJ2vt2rXy8vJSZGSkzp07V1qHBQAA/oexHgAAx3L6PfJTpkzRoEGDFB0dLUlKTk7W0qVLNXPmTI0cOTJf+9dee01RUVEaPny4JGns2LH66quv9Oabbyo5OVmGYSgpKUkvvPCC7r33XknS3Llz5e/vryVLluiBBx4ovYMDcEO4UR6qcj3gZ+UcjPUAADiWU4P8+fPntXHjRsXFxVnXubi4KCIiQmlpaQW+Jy0tTbGxsTbrIiMjtWTJEknS3r17lZ6eroiICOt2Hx8fhYeHKy0trcDBPScnRzk5OdbXp0+fliRlZmZe9bFdLi/nrEP6sUdRtZd2PWWpFqls1XOl37GyVE9Z+1k1TfiyFCuRfhoTWei2svbZlCWl/XOSrt+f1aV+DMNwSH+l5UYZ6yX+n12W6ilLtUhlq56yVItUtuox07/LbvTxtSz93kjOGeudGuSPHz+u3Nxc+fv726z39/fXjh07CnxPenp6ge3T09Ot2y+tK6zNPyUmJmrMmDH51gcHBxfvQMognyRnV/C3slSLVLbqKUu1SNRTlLJUi1T26ilLytpn4+h6zpw5Ix8fH8d2WoIY60vO9f67fi3KUi1S2aqnLNUila16ylItEvUUpSzVIjlnrHf61PqyIC4uzubMf15enk6cOKGqVavKYrE4sbKyIzMzU8HBwTpw4IC8vb2dXU6ZwmdTOD6bovH5FI7PJj/DMHTmzBkFBQU5uxRTYqy/Mv7eFY7Ppmh8PoXjsykcn01+9oz1Tg3y1apVk6urqzIyMmzWZ2RkKCAgoMD3BAQEFNn+0n8zMjIUGBho0yY0NLTAPt3d3eXu7m6zrnLlyvYcyg3D29ubv2iF4LMpHJ9N0fh8CsdnY8tMV+IvYaw3H/7eFY7Ppmh8PoXjsykcn42t4o71Tn1qvZubm1q3bq3U1FTrury8PKWmpqpt27YFvqdt27Y27SXpq6++sravXbu2AgICbNpkZmZq7dq1hfYJAABKBmM9AACO5/Sp9bGxsRowYIDCwsLUpk0bJSUlKTs72/pk2/79+6tGjRpKTEyUJA0dOlQdOnTQ5MmT1a1bN82fP18bNmzQ9OnTJUkWi0XDhg3TuHHjVL9+fdWuXVsvvviigoKC1L17d2cdJgAANyzGegAAHMvpQb5Pnz46duyY4uPjlZ6ertDQUKWkpFgfYLN//365uPw9caBdu3b64IMP9MILL2jUqFGqX7++lixZoqZNm1rbjBgxQtnZ2Xrsscd06tQptW/fXikpKfLw8Cj147teuLu7KyEhId+0RPDZFIXPpmh8PoXjs7m+MNabA3/vCsdnUzQ+n8Lx2RSOz+baWAyzfY8NAAAAAAA3MKfeIw8AAAAAAOxDkAcAAAAAwEQI8gAAAAAAmAhBHgAAAAAAEyHIo0iJiYm65ZZbVKlSJfn5+al79+7auXOns8sqk8aPH2/9SiRIhw4dUr9+/VS1alV5enqqWbNm2rBhg7PLcrrc3Fy9+OKLql27tjw9PVW3bl2NHTtWN+JzR7/99lvdfffdCgoKksVi0ZIlS2y2G4ah+Ph4BQYGytPTUxEREdq1a5dzigWuY4z1xcdYb4uxvmCM9bYY70sGQR5F+uabb/Tkk0/qhx9+0FdffaULFy6oS5cuys7OdnZpZcr69es1bdo0NW/e3NmllAknT57UrbfeqvLly+uLL77QL7/8osmTJ8vX19fZpTndhAkTNHXqVL355pvavn27JkyYoIkTJ+qNN95wdmmlLjs7Wy1atNBbb71V4PaJEyfq9ddfV3JystauXSsvLy9FRkbq3LlzpVwpcH1jrC8exnpbjPWFY6y3xXhfMvj6Odjl2LFj8vPz0zfffKPbb7/d2eWUCVlZWWrVqpXefvttjRs3TqGhoUpKSnJ2WU41cuRIfffdd1q9erWzSylz7rrrLvn7++vdd9+1rrvvvvvk6emp999/34mVOZfFYtHixYvVvXt3SRfPzgcFBemZZ57Rs88+K0k6ffq0/P39NXv2bD3wwANOrBa4vjHW58dYnx9jfeEY6wvHeO84XJGHXU6fPi1JqlKlipMrKTuefPJJdevWTREREc4upcz49NNPFRYWpt69e8vPz08tW7bUjBkznF1WmdCuXTulpqbq119/lSRt3bpVa9as0Z133unkysqWvXv3Kj093ebvlY+Pj8LDw5WWlubEyoDrH2N9foz1+THWF46xvvgY769eOWcXAPPIy8vTsGHDdOutt6pp06bOLqdMmD9/vjZt2qT169c7u5Qy5bffftPUqVMVGxurUaNGaf369RoyZIjc3Nw0YMAAZ5fnVCNHjlRmZqYaNWokV1dX5ebm6uWXX1bfvn2dXVqZkp6eLkny9/e3We/v72/dBsDxGOvzY6wvGGN94Rjri4/x/uoR5FFsTz75pH766SetWbPG2aWUCQcOHNDQoUP11VdfycPDw9nllCl5eXkKCwvTK6+8Iklq2bKlfvrpJyUnJ9/wg/tHH32kefPm6YMPPtDNN9+sLVu2aNiwYQoKCrrhPxsAzsdYb4uxvnCM9YVjrEdpYGo9iiUmJkaff/65Vq5cqZtuusnZ5ZQJGzdu1NGjR9WqVSuVK1dO5cqV0zfffKPXX39d5cqVU25urrNLdJrAwEA1adLEZl3jxo21f/9+J1VUdgwfPlwjR47UAw88oGbNmunhhx/W008/rcTERGeXVqYEBARIkjIyMmzWZ2RkWLcBcCzG+vwY6wvHWF84xvriY7y/egR5FMkwDMXExGjx4sX6+uuvVbt2bWeXVGZ07txZP/74o7Zs2WJdwsLC1LdvX23ZskWurq7OLtFpbr311nxfXfTrr7+qVq1aTqqo7Dh79qxcXGz/1+vq6qq8vDwnVVQ21a5dWwEBAUpNTbWuy8zM1Nq1a9W2bVsnVgZcfxjrC8dYXzjG+sIx1hcf4/3VY2o9ivTkk0/qgw8+0CeffKJKlSpZ71Xx8fGRp6enk6tzrkqVKuW7f9DLy0tVq1a94e8rfPrpp9WuXTu98soruv/++7Vu3TpNnz5d06dPd3ZpTnf33Xfr5ZdfVs2aNXXzzTdr8+bNmjJlih599FFnl1bqsrKytHv3buvrvXv3asuWLapSpYpq1qypYcOGady4capfv75q166tF198UUFBQdYn3QJwDMb6wjHWF46xvnCM9bYY70uIARRBUoHLrFmznF1amdShQwdj6NChzi6jTPjss8+Mpk2bGu7u7kajRo2M6dOnO7ukMiEzM9MYOnSoUbNmTcPDw8OoU6eO8fzzzxs5OTnOLq3UrVy5ssD/vwwYMMAwDMPIy8szXnzxRcPf399wd3c3OnfubOzcudO5RQPXIcZ6+zDW/42xvmCM9bYY70sG3yMPAAAAAICJcI88AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwEYI8rmuPPPKIunfv7uwycAMLCQlRUlLSNfVRnN/jjh07atiwYYVuHz16tEJDQ6+pDnvNnj1blStXLtV9ArjxMNbD2RjrK5fqPnERQR4l7pFHHpHFYsm3REVFObs0U1m1apUsFotOnTpV6n3s27dPFotFW7Zsuep9O5LFYtGSJUvyrecfcwDgHIz1jsFY/zfGeqBo5ZxdAG4MUVFRmjVrls06d3d3J1UDAAAcjbEeAEoPV+RRKtzd3RUQEGCz+Pr6WrdbLBZNmzZNd911lypUqKDGjRsrLS1Nu3fvVseOHeXl5aV27dppz5491vdcmj40bdo0BQcHq0KFCrr//vt1+vTpQuvIycnRkCFD5OfnJw8PD7Vv317r16+XJBmGoXr16mnSpEk279myZYssFot279591bVK0ieffKJWrVrJw8NDderU0ZgxY/TXX3/ZfAbvvPOOevTooQoVKqh+/fr69NNPJV08S96pUydJkq+vrywWix555JECj/H333/X3XffLV9fX3l5eenmm2/WsmXLiuwjJSVF7du3V+XKlVW1alXdddddNvXXrl1bktSyZUtZLBZ17NhRUsFTvLp3725T29tvv6369evLw8ND/v7+6tWrV6E/H0cr6uctFTwdbMmSJbJYLNbXW7duVadOnVSpUiV5e3urdevW2rBhg3X7mjVrdNttt8nT01PBwcEaMmSIsrOzbfo8e/asHn30UVWqVEk1a9bU9OnTbbb/+OOP+te//iVPT09VrVpVjz32mLKysgo9ruzsbPXv318VK1ZUYGCgJk+efDUfj9555x01btxYHh4eatSokd5++23rtnbt2um5556zaX/s2DGVL19e3377raSLn++zzz6rGjVqyMvLS+Hh4Vq1atVV1QLA/BjrGesZ6xnrUXoI8igzxo4dq/79+2vLli1q1KiRHnroIf3nP/9RXFycNmzYIMMwFBMTY/Oe3bt366OPPtJnn32mlJQUbd68WU888USh+xgxYoQ+/vhjzZkzR5s2bVK9evUUGRmpEydOyGKx6NFHH813NWHWrFm6/fbbVa9evauudfXq1erfv7+GDh2qX375RdOmTdPs2bP18ssv2+xrzJgxuv/++7Vt2zZ17dpVffv21YkTJxQcHKyPP/5YkrRz504dOXJEr732WoHH+OSTTyonJ0fffvutfvzxR02YMEEVK1Ysso/s7GzFxsZqw4YNSk1NlYuLi3r06KG8vDxJ0rp16yRJK1as0JEjR7Ro0aLCf5CX2bBhg4YMGaKXXnpJO3fuVEpKim6//fZivdcRivp5F1ffvn110003af369dq4caNGjhyp8uXLS5L27NmjqKgo3Xfffdq2bZsWLFigNWvW5Ps9nTx5ssLCwqy/n4MHD9bOnTslXfzsIyMj5evrq/Xr12vhwoVasWJFvj4uN3z4cH3zzTf65JNPtHz5cq1atUqbNm2y67OZN2+e4uPj9fLLL2v79u165ZVX9OKLL2rOnDnW454/f74Mw7C+Z8GCBQoKCtJtt90mSYqJiVFaWprmz5+vbdu2qXfv3oqKitKuXbvsqgXAjYOxnrHe0RjrC8dYf50zgBI2YMAAw9XV1fDy8rJZXn75ZWsbScYLL7xgfZ2WlmZIMt59913rug8//NDw8PCwvk5ISDBcXV2NgwcPWtd98cUXhouLi3HkyBHrvu+9917DMAwjKyvLKF++vDFv3jxr+/PnzxtBQUHGxIkTDcMwjEOHDhmurq7G2rVrrdurVatmzJ49+5pq7dy5s/HKK6/YfC7vvfeeERgYWGi/WVlZhiTjiy++MAzDMFauXGlIMk6ePJn/Q75Ms2bNjNGjRxe4rbh9HDt2zJBk/Pjjj4ZhGMbevXsNScbmzZtt2nXo0MEYOnSozbp7773XGDBggGEYhvHxxx8b3t7eRmZmZpH7s5ckw8PDI9/vVLly5ez6ec+aNcvw8fGx6Xvx4sXG5f9rrFSpks3P/3IDBw40HnvsMZt1q1evNlxcXIw///zTMAzDqFWrltGvXz/r9ry8PMPPz8+YOnWqYRiGMX36dMPX19fIysqytlm6dKnh4uJipKenG4Zh+3t85swZw83Nzfjoo4+s7f/44w/D09Mz38/icgkJCUaLFi2sr+vWrWt88MEHNm3Gjh1rtG3b1jAMwzh69KhRrlw549tvv7Vub9u2rfHcc88ZhmEYv//+u+Hq6mocOnTIpo/OnTsbcXFxhmEU/PkCuD4x1jPWM9Yz1qN0cY88SkWnTp00depUm3VVqlSxed28eXPrn/39/SVJzZo1s1l37tw5ZWZmytvbW5JUs2ZN1ahRw9qmbdu2ysvL086dOxUQEGDT/549e3ThwgXdeuut1nXly5dXmzZttH37dklSUFCQunXrppkzZ6pNmzb67LPPlJOTo969e19TrVu3btV3331nc1Y+NzdX586d09mzZ1WhQoV8/Xp5ecnb21tHjx6VPYYMGaLBgwdr+fLlioiI0H333WfTb0F27dql+Ph4rV27VsePH7eend+/f7+aNm1q1/4vd8cdd6hWrVqqU6eOoqKiFBUVZZ1OWJCKFSta/9yvXz8lJycX2verr76qiIgIm3XPPfeccnNzJRXv510csbGx+ve//6333ntPERER6t27t+rWrSvp4lS8bdu2ad68edb2hmEoLy9Pe/fuVePGjSXZ/lwtFosCAgKsP9ft27erRYsW8vLysra59dZbrb/Hl36/LtmzZ4/Onz+v8PBw67oqVaqoYcOGxT6m7Oxs7dmzRwMHDtSgQYOs6//66y/5+PhIkqpXr64uXbpo3rx5uu2227R3716lpaVp2rRpki5OEczNzVWDBg1s+s7JyVHVqlWLXQuA6wdjPWM9Y/1FjPUoDQR5lAovLy+b6WoFuTSFSZL1vqWC1l0aeErKv//9bz388MN69dVXNWvWLPXp0yffYGRvrVlZWRozZox69uyZb38eHh4F9nupH3uP99///rciIyO1dOlSLV++XImJiZo8ebKeeuqpQt9z9913q1atWpoxY4aCgoKUl5enpk2b6vz580Xuy8XFxWY6liRduHDB+udKlSpp06ZNWrVqlZYvX674+HiNHj1a69evL/CrSi5/Uu6lf8AVJiAgIN/vVKVKlex6Su+V6pcu3p/50EMPaenSpfriiy+UkJCg+fPnq0ePHsrKytJ//vMfDRkyJF/fNWvWtP7ZET9XR7p0T96MGTNs/pEgSa6urtY/9+3bV0OGDNEbb7yhDz74QM2aNbP+IzYrK0uurq7auHGjzXsk23+kAbhxMNYz1jPW/42xHiWNe+Rhavv379fhw4etr3/44Qe5uLgUeMaybt26cnNz03fffWddd+HCBa1fv15NmjSxruvatau8vLw0depUpaSk6NFHH73mOlu1aqWdO3eqXr16+RYXl+L9NXRzc5Mk61noogQHB+vxxx/XokWL9Mwzz2jGjBmF9vHHH39o586deuGFF9S5c2c1btxYJ0+eLNa+q1evriNHjlhf5+bm6qeffrJpU65cOUVERGjixInatm2b9u3bp6+//rrAui//XPz8/K54nEUpzs+7evXqOnPmjM0Dawr62p0GDRro6aef1vLly9WzZ0/rvZWtWrXSL7/8UuDP9dJndiWNGzfW1q1bbWr47rvvivw9Ll++vNauXWtdd/LkSf3666/F2p908SpSUFCQfvvtt3x1X3rYkSTde++9OnfunFJSUvTBBx+ob9++1m0tW7ZUbm6ujh49mq+Pf14hA4BrwVhfMMZ6xvqiMNZf/7gij1KRk5Oj9PR0m3XlypVTtWrVrqlfDw8PDRgwQJMmTVJmZqaGDBmi+++/v8D/uXh5eWnw4MEaPny4qlSpopo1a2rixIk6e/asBg4caG3n6uqqRx55RHFxcapfv77atm17TTVKUnx8vO666y7VrFlTvXr1kouLi7Zu3aqffvpJ48aNK1YftWrVksVi0eeff66uXbvK09OzwLOhw4YN05133qkGDRro5MmTWrlypXXaV0F9+Pr6qmrVqpo+fboCAwO1f/9+jRw50qZPPz8/eXp6KiUlRTfddJM8PDzk4+Ojf/3rX4qNjdXSpUtVt25dTZkyxeYs+eeff67ffvtNt99+u3x9fbVs2TLl5eXZNTXsahXn5x0eHq4KFSpo1KhRGjJkiNauXavZs2db+/jzzz81fPhw9erVS7Vr19bBgwe1fv163XfffZIuTu/7f//v/ykmJkb//ve/5eXlpV9++UVfffWV3nzzzWLV2bdvXyUkJGjAgAEaPXq0jh07pqeeekoPP/xwvql20sUz4AMHDtTw4cNVtWpV+fn56fnnny/2PxIvGTNmjIYMGSIfHx9FRUUpJydHGzZs0MmTJxUbG2v9DLt3764XX3xR27dv14MPPmh9f4MGDdS3b1/1799fkydPVsuWLXXs2DGlpqaqefPm6tatm131ADA/xnrGesb6gjHWo0Q48wZ93BgGDBhgSMq3NGzY0NpGkrF48WLr64IeuPLPh7dceqDH22+/bQQFBRkeHh5Gr169jBMnTtjs+9KDQwzDMP7880/jqaeeMqpVq2a4u7sbt956q7Fu3bp8Ne/Zs8eQZH1QyuWuplbDMIyUlBSjXbt2hqenp+Ht7W20adPGmD59eqH9GoZh+Pj4GLNmzbK+fumll4yAgADDYrFYHzLzTzExMUbdunUNd3d3o3r16sbDDz9sHD9+vMg+vvrqK6Nx48aGu7u70bx5c2PVqlX56pkxY4YRHBxsuLi4GB06dDAM4+IDZQYPHmxUqVLF8PPzMxITE20egLN69WqjQ4cOhq+vr+Hp6Wk0b97cWLBgQYF126Ogz8owru7nvXjxYqNevXqGp6encddddxnTp0+3PgAnJyfHeOCBB4zg4GDDzc3NCAoKMmJiYqwPtzEMw1i3bp1xxx13GBUrVjS8vLyM5s2b2zzcqVatWsarr75qs88WLVoYCQkJ1tfbtm0zOnXqZHh4eBhVqlQxBg0aZJw5c6bQ4zpz5ozRr18/o0KFCoa/v78xceLEAh9GdLl/PgDHMAxj3rx5RmhoqOHm5mb4+voat99+u7Fo0SKbNsuWLTMkGbfffnu+Ps+fP2/Ex8cbISEhRvny5Y3AwECjR48exrZt2wzD4AE4wI2Esf4ixnrG+ksY61HSLIbxj5tGAJMYPXq0lixZUuD0qGu1evVqde7cWQcOHCjwTCkAACh5jPUAUDCm1gOXycnJ0bFjxzR69Gj17t2bgR0AgOsMYz2A6wEPuwMu8+GHH6pWrVo6deqUJk6c6OxyAACAgzHWA7geMLUeAAAAAAAT4Yo8AAAAAAAmQpAHAAAAAMBECPIAAAAAAJgIQR4AAAAAABMhyAMAAAAAYCIEeQAAAAAATIQgDwAAAACAiRDkAQAAAAAwkf8PRIs121Kjdu0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# bar plot of counts_df['pwkstat_NTS_match'] and nts_households['HHoldEmploy_B01ID']\n", "fig, ax = plt.subplots(1, 2, figsize=(12, 6))\n", @@ -1487,330 +778,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idhouseholdlocationpid_hsmsoaoamemberssic1d2007sic2d2007pwkstatsalary_yearlysalary_hourlyhidaccommodation_typecommunal_typenum_roomscentral_heattenurenum_carssexage_yearsethnicitynssec8salary_yearly_hhsalary_yearly_hh_catis_adultnum_adultsis_childnum_childrenis_pension_agenum_pension_agepwkstat_FT_hhpwkstat_PT_hhpwkstat_NTS_matchOA11CDRUC11RUC11CD
000{'x': -1.7892179489135742, 'y': 53.91915130615...2905399E02002183E00053954[0]J58.06NaNNaNE02002183_00011.0NaN2.0True2.0218611.00.0000001110011001E00053954Urban city and townC1
111{'x': -1.8262380361557007, 'y': 53.92028045654...2905308E02002183E00053953[1, 2]C25.06NaNNaNE02002183_00023.0NaN6.0True2.0217431.00.0000001120012001E00053953Urban city and townC1
221{'x': -1.8262380361557007, 'y': 53.92028045654...2907681E02002183E00053953[1, 2]P85.06NaNNaNE02002183_00023.0NaN6.0True2.0226812.00.0000001120012001E00053953Urban city and townC1
332{'x': -1.8749940395355225, 'y': 53.94298934936...2902817E02002183E00053689[3, 4]C31.0132857.85937514.360952E02002183_00033.0NaN6.0True2.0112714.051020.3105473120000206E00053689Rural town and fringeD1
442{'x': -1.8749940395355225, 'y': 53.94298934936...2900884E02002183E00053689[3, 4]J62.0118162.4511729.439944E02002183_00033.0NaN6.0True2.0122616.051020.3105473120000206E00053689Rural town and fringeD1
\n", - "
" - ], - "text/plain": [ - " id household location pid_hs \\\n", - "0 0 0 {'x': -1.7892179489135742, 'y': 53.91915130615... 2905399 \n", - "1 1 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2905308 \n", - "2 2 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2907681 \n", - "3 3 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2902817 \n", - "4 4 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2900884 \n", - "\n", - " msoa oa members sic1d2007 sic2d2007 pwkstat salary_yearly \\\n", - "0 E02002183 E00053954 [0] J 58.0 6 NaN \n", - "1 E02002183 E00053953 [1, 2] C 25.0 6 NaN \n", - "2 E02002183 E00053953 [1, 2] P 85.0 6 NaN \n", - "3 E02002183 E00053689 [3, 4] C 31.0 1 32857.859375 \n", - "4 E02002183 E00053689 [3, 4] J 62.0 1 18162.451172 \n", - "\n", - " salary_hourly hid accommodation_type communal_type \\\n", - "0 NaN E02002183_0001 1.0 NaN \n", - "1 NaN E02002183_0002 3.0 NaN \n", - "2 NaN E02002183_0002 3.0 NaN \n", - "3 14.360952 E02002183_0003 3.0 NaN \n", - "4 9.439944 E02002183_0003 3.0 NaN \n", - "\n", - " num_rooms central_heat tenure num_cars sex age_years ethnicity \\\n", - "0 2.0 True 2.0 2 1 86 1 \n", - "1 6.0 True 2.0 2 1 74 3 \n", - "2 6.0 True 2.0 2 2 68 1 \n", - "3 6.0 True 2.0 1 1 27 1 \n", - "4 6.0 True 2.0 1 2 26 1 \n", - "\n", - " nssec8 salary_yearly_hh salary_yearly_hh_cat is_adult num_adults \\\n", - "0 1.0 0.000000 1 1 1 \n", - "1 1.0 0.000000 1 1 2 \n", - "2 2.0 0.000000 1 1 2 \n", - "3 4.0 51020.310547 3 1 2 \n", - "4 6.0 51020.310547 3 1 2 \n", - "\n", - " is_child num_children is_pension_age num_pension_age pwkstat_FT_hh \\\n", - "0 0 0 1 1 0 \n", - "1 0 0 1 2 0 \n", - "2 0 0 1 2 0 \n", - "3 0 0 0 0 2 \n", - "4 0 0 0 0 2 \n", - "\n", - " pwkstat_PT_hh pwkstat_NTS_match OA11CD RUC11 RUC11CD \n", - "0 0 1 E00053954 Urban city and town C1 \n", - "1 0 1 E00053953 Urban city and town C1 \n", - "2 0 1 E00053953 Urban city and town C1 \n", - "3 0 6 E00053689 Rural town and fringe D1 \n", - "4 0 6 E00053689 Rural town and fringe D1 " - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# read the rural urban classification data\n", "rural_urban = pd.read_csv('../data/external/census_2011_rural_urban.csv', sep=',')\n", @@ -1823,7 +793,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1876,368 +846,9 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idhouseholdlocationpid_hsmsoaoamemberssic1d2007sic2d2007pwkstatsalary_yearlysalary_hourlyhidaccommodation_typecommunal_typenum_roomscentral_heattenurenum_carssexage_yearsethnicitynssec8salary_yearly_hhsalary_yearly_hh_catis_adultnum_adultsis_childnum_childrenis_pension_agenum_pension_agepwkstat_FT_hhpwkstat_PT_hhpwkstat_NTS_matchOA11CDRUC11RUC11CDSettlement2011EW_B03ID_spcSettlement2011EW_B04ID_spcSettlement2011EW_B03ID_spc_CDSettlement2011EW_B04ID_spc_CD
000{'x': -1.7892179489135742, 'y': 53.91915130615...2905399E02002183E00053954[0]J58.06NaNNaNE02002183_00011.0NaN2.0True2.0218611.00.0000001110011001E00053954Urban city and townC1UrbanUrban City and Town12
111{'x': -1.8262380361557007, 'y': 53.92028045654...2905308E02002183E00053953[1, 2]C25.06NaNNaNE02002183_00023.0NaN6.0True2.0217431.00.0000001120012001E00053953Urban city and townC1UrbanUrban City and Town12
221{'x': -1.8262380361557007, 'y': 53.92028045654...2907681E02002183E00053953[1, 2]P85.06NaNNaNE02002183_00023.0NaN6.0True2.0226812.00.0000001120012001E00053953Urban city and townC1UrbanUrban City and Town12
332{'x': -1.8749940395355225, 'y': 53.94298934936...2902817E02002183E00053689[3, 4]C31.0132857.85937514.360952E02002183_00033.0NaN6.0True2.0112714.051020.3105473120000206E00053689Rural town and fringeD1RuralRural Town and Fringe23
442{'x': -1.8749940395355225, 'y': 53.94298934936...2900884E02002183E00053689[3, 4]J62.0118162.4511729.439944E02002183_00033.0NaN6.0True2.0122616.051020.3105473120000206E00053689Rural town and fringeD1RuralRural Town and Fringe23
\n", - "
" - ], - "text/plain": [ - " id household location pid_hs \\\n", - "0 0 0 {'x': -1.7892179489135742, 'y': 53.91915130615... 2905399 \n", - "1 1 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2905308 \n", - "2 2 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2907681 \n", - "3 3 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2902817 \n", - "4 4 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2900884 \n", - "\n", - " msoa oa members sic1d2007 sic2d2007 pwkstat salary_yearly \\\n", - "0 E02002183 E00053954 [0] J 58.0 6 NaN \n", - "1 E02002183 E00053953 [1, 2] C 25.0 6 NaN \n", - "2 E02002183 E00053953 [1, 2] P 85.0 6 NaN \n", - "3 E02002183 E00053689 [3, 4] C 31.0 1 32857.859375 \n", - "4 E02002183 E00053689 [3, 4] J 62.0 1 18162.451172 \n", - "\n", - " salary_hourly hid accommodation_type communal_type \\\n", - "0 NaN E02002183_0001 1.0 NaN \n", - "1 NaN E02002183_0002 3.0 NaN \n", - "2 NaN E02002183_0002 3.0 NaN \n", - "3 14.360952 E02002183_0003 3.0 NaN \n", - "4 9.439944 E02002183_0003 3.0 NaN \n", - "\n", - " num_rooms central_heat tenure num_cars sex age_years ethnicity \\\n", - "0 2.0 True 2.0 2 1 86 1 \n", - "1 6.0 True 2.0 2 1 74 3 \n", - "2 6.0 True 2.0 2 2 68 1 \n", - "3 6.0 True 2.0 1 1 27 1 \n", - "4 6.0 True 2.0 1 2 26 1 \n", - "\n", - " nssec8 salary_yearly_hh salary_yearly_hh_cat is_adult num_adults \\\n", - "0 1.0 0.000000 1 1 1 \n", - "1 1.0 0.000000 1 1 2 \n", - "2 2.0 0.000000 1 1 2 \n", - "3 4.0 51020.310547 3 1 2 \n", - "4 6.0 51020.310547 3 1 2 \n", - "\n", - " is_child num_children is_pension_age num_pension_age pwkstat_FT_hh \\\n", - "0 0 0 1 1 0 \n", - "1 0 0 1 2 0 \n", - "2 0 0 1 2 0 \n", - "3 0 0 0 0 2 \n", - "4 0 0 0 0 2 \n", - "\n", - " pwkstat_PT_hh pwkstat_NTS_match OA11CD RUC11 RUC11CD \\\n", - "0 0 1 E00053954 Urban city and town C1 \n", - "1 0 1 E00053953 Urban city and town C1 \n", - "2 0 1 E00053953 Urban city and town C1 \n", - "3 0 6 E00053689 Rural town and fringe D1 \n", - "4 0 6 E00053689 Rural town and fringe D1 \n", - "\n", - " Settlement2011EW_B03ID_spc Settlement2011EW_B04ID_spc \\\n", - "0 Urban Urban City and Town \n", - "1 Urban Urban City and Town \n", - "2 Urban Urban City and Town \n", - "3 Rural Rural Town and Fringe \n", - "4 Rural Rural Town and Fringe \n", - "\n", - " Settlement2011EW_B03ID_spc_CD Settlement2011EW_B04ID_spc_CD \n", - "0 1 2 \n", - "1 1 2 \n", - "2 1 2 \n", - "3 2 3 \n", - "4 2 3 " - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# add the nts Settlement2011EW_B03ID and Settlement2011EW_B04ID columns to the spc\n", "spc_edited['Settlement2011EW_B03ID_spc'] = spc_edited['RUC11'].map(census_2011_to_nts_B03ID)\n", @@ -2272,7 +883,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2300,168 +911,9 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NumCarNumCar_SPC_match
1429541.01.0
1429551.01.0
1429560.00.0
1429572.02.0
1429581.01.0
1429591.01.0
1429602.02.0
1429611.01.0
1429622.02.0
1429631.01.0
1429641.01.0
1429651.01.0
1429660.00.0
1429671.01.0
1429681.01.0
1429690.00.0
1429702.02.0
1429710.00.0
1429721.01.0
1429733.02.0
\n", - "
" - ], - "text/plain": [ - " NumCar NumCar_SPC_match\n", - "142954 1.0 1.0\n", - "142955 1.0 1.0\n", - "142956 0.0 0.0\n", - "142957 2.0 2.0\n", - "142958 1.0 1.0\n", - "142959 1.0 1.0\n", - "142960 2.0 2.0\n", - "142961 1.0 1.0\n", - "142962 2.0 2.0\n", - "142963 1.0 1.0\n", - "142964 1.0 1.0\n", - "142965 1.0 1.0\n", - "142966 0.0 0.0\n", - "142967 1.0 1.0\n", - "142968 1.0 1.0\n", - "142969 0.0 0.0\n", - "142970 2.0 2.0\n", - "142971 0.0 0.0\n", - "142972 1.0 1.0\n", - "142973 3.0 2.0" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "\n", "# Create a new column in NTS\n", @@ -2481,33 +933,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "({'1': 'Owns / buying',\n", - " '2': 'Rents',\n", - " '3': 'Other (including rent free)',\n", - " '-8': 'NA',\n", - " '-9': 'DNA',\n", - " '-10': 'DEAD'},\n", - " {'1': 'Owned: Owned outright',\n", - " '2': 'Owned: Owned with a mortgage or loan or shared ownership',\n", - " '3': 'Rented or living rent free: Total',\n", - " '4': 'Rented: Social rented',\n", - " '5': 'Rented: Private rented or living rent free',\n", - " '-8': 'NA',\n", - " '-9': 'DNA',\n", - " '-10': 'DEAD'})" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "dict_nts['Ten1_B02ID'], dict_spc['tenure']" ] @@ -2521,7 +949,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2562,7 +990,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2614,220 +1042,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
hidsalary_yearly_hh_catnum_adultsnum_childrennum_pension_agepwkstat_NTS_matchnum_carstenure_spc_for_matchingSettlement2011EW_B03ID_spc_CDSettlement2011EW_B04ID_spc_CD
0E02002183_00011101121.012
1E02002183_00021202121.012
3E02002183_00033200611.023
5E02002183_00042100311.023
6E02002183_00051211121.023
9E02002183_00063100312.012
10E02002183_00071212111.012
13E02002183_00082100321.024
14E02002183_00091200321.024
16E02002183_00101210221.012
\n", - "
" - ], - "text/plain": [ - " hid salary_yearly_hh_cat num_adults num_children \\\n", - "0 E02002183_0001 1 1 0 \n", - "1 E02002183_0002 1 2 0 \n", - "3 E02002183_0003 3 2 0 \n", - "5 E02002183_0004 2 1 0 \n", - "6 E02002183_0005 1 2 1 \n", - "9 E02002183_0006 3 1 0 \n", - "10 E02002183_0007 1 2 1 \n", - "13 E02002183_0008 2 1 0 \n", - "14 E02002183_0009 1 2 0 \n", - "16 E02002183_0010 1 2 1 \n", - "\n", - " num_pension_age pwkstat_NTS_match num_cars tenure_spc_for_matching \\\n", - "0 1 1 2 1.0 \n", - "1 2 1 2 1.0 \n", - "3 0 6 1 1.0 \n", - "5 0 3 1 1.0 \n", - "6 1 1 2 1.0 \n", - "9 0 3 1 2.0 \n", - "10 2 1 1 1.0 \n", - "13 0 3 2 1.0 \n", - "14 0 3 2 1.0 \n", - "16 0 2 2 1.0 \n", - "\n", - " Settlement2011EW_B03ID_spc_CD Settlement2011EW_B04ID_spc_CD \n", - "0 1 2 \n", - "1 1 2 \n", - "3 2 3 \n", - "5 2 3 \n", - "6 2 3 \n", - "9 1 2 \n", - "10 1 2 \n", - "13 2 4 \n", - "14 2 4 \n", - "16 1 2 " - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Select multiple columns\n", "spc_matching = spc_edited[[\n", @@ -2852,232 +1069,9 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
HouseholdIDHHIncome2002_B02IDHHoldNumAdultsHHoldNumChildrennum_pension_age_ntsHHoldEmploy_B01IDNumCar_SPC_matchtenure_nts_for_matchingSettlement2011EW_B03IDSettlement2011EW_B04ID
14295420190018951.030211.01.011
14295520190026761.010031.01.011
14295620190018911.020010.02.011
14295720190026872.040042.02.012
14295820190019131.010031.01.011
14295920190022732.010031.02.011
14296020190019063.030052.01.011
14296120190019101.020211.01.011
14296220190026883.022062.01.012
14296320190026861.020221.01.012
\n", - "
" - ], - "text/plain": [ - " HouseholdID HHIncome2002_B02ID HHoldNumAdults HHoldNumChildren \\\n", - "142954 2019001895 1.0 3 0 \n", - "142955 2019002676 1.0 1 0 \n", - "142956 2019001891 1.0 2 0 \n", - "142957 2019002687 2.0 4 0 \n", - "142958 2019001913 1.0 1 0 \n", - "142959 2019002273 2.0 1 0 \n", - "142960 2019001906 3.0 3 0 \n", - "142961 2019001910 1.0 2 0 \n", - "142962 2019002688 3.0 2 2 \n", - "142963 2019002686 1.0 2 0 \n", - "\n", - " num_pension_age_nts HHoldEmploy_B01ID NumCar_SPC_match \\\n", - "142954 2 1 1.0 \n", - "142955 0 3 1.0 \n", - "142956 0 1 0.0 \n", - "142957 0 4 2.0 \n", - "142958 0 3 1.0 \n", - "142959 0 3 1.0 \n", - "142960 0 5 2.0 \n", - "142961 2 1 1.0 \n", - "142962 0 6 2.0 \n", - "142963 2 2 1.0 \n", - "\n", - " tenure_nts_for_matching Settlement2011EW_B03ID \\\n", - "142954 1.0 1 \n", - "142955 1.0 1 \n", - "142956 2.0 1 \n", - "142957 2.0 1 \n", - "142958 1.0 1 \n", - "142959 2.0 1 \n", - "142960 1.0 1 \n", - "142961 1.0 1 \n", - "142962 1.0 1 \n", - "142963 1.0 1 \n", - "\n", - " Settlement2011EW_B04ID \n", - "142954 1 \n", - "142955 1 \n", - "142956 1 \n", - "142957 2 \n", - "142958 1 \n", - "142959 1 \n", - "142960 1 \n", - "142961 1 \n", - "142962 2 \n", - "142963 2 " - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "nts_matching = nts_households[[\n", " 'HouseholdID','HHIncome2002_B02ID',\n", @@ -3098,31 +1092,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'household_id': ['hid', 'HouseholdID'],\n", - " 'yearly_income': ['salary_yearly_hh_cat', 'HHIncome2002_B02ID'],\n", - " 'number_adults': ['num_adults', 'HHoldNumAdults'],\n", - " 'number_children': ['num_children', 'HHoldNumChildren'],\n", - " 'num_pension_age': ['num_pension_age', 'num_pension_age_nts'],\n", - " 'employment_status': ['pwkstat_NTS_match', 'HHoldEmploy_B01ID'],\n", - " 'number_cars': ['num_cars', 'NumCar_SPC_match'],\n", - " 'tenure_status': ['tenure_spc_for_matching', 'tenure_nts_for_matching'],\n", - " 'rural_urban_2_categories': ['Settlement2011EW_B03ID_spc_CD',\n", - " 'Settlement2011EW_B03ID'],\n", - " 'rural_urban_4_categories': ['Settlement2011EW_B04ID_spc_CD',\n", - " 'Settlement2011EW_B04ID']}" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# column_names (keys) for the dictionary\n", "matching_ids = ['household_id', 'yearly_income', 'number_adults', 'number_children', 'num_pension_age',\n", @@ -3144,7 +1116,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3164,17 +1136,9 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "matching rows 0 to 50000 out of 6725\n" - ] - } - ], + "outputs": [], "source": [ "matches_hh_level = match_categorical(\n", " df_pop = spc_matching,\n", @@ -3196,20 +1160,9 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABk/UlEQVR4nO3deVxU1f8/8NcAMqzDosJIIaCYiLuSivtCkuJOpclHcUnTMLdyyx1T1Mo1l6wUTM2lkMStEFAzcUNx38U0FVAREFG2Ob8//HG/joDO6MCA83o+HvfxYM459973PcwMb+49516ZEEKAiIiIyIAZ6TsAIiIiIn1jQkREREQGjwkRERERGTwmRERERGTwmBARERGRwWNCRERERAaPCREREREZPCZEREREZPCYEBEREZHBY0JEBm/GjBmQyWQltv0BAwbA1dVVo7YqlQp16tTB7NmzSyye0rJy5UpUrVoV2dnZ+g5FJwYMGAArKyuN2spkMsyYMaNkA6JCZDIZRowYobPt7d27FzKZDHv37n1p27Zt26Jt27Y627c+lPR3YVnHhIhw9epVfPrpp6hWrRrMzMygUCjQokULLF68GI8fP9Z6e8uXL0doaKjuAzUAv/76K27evKn2pR4aGgqZTFbscujQIT1GDMyZMwcRERGFygcMGICcnBz88MMPGm1nwIABkMlkUCgURb7vLl++LB3zt99+q3Wct2/fxowZM5CQkKD1um+qFyUQBe+7Y8eOlXJUbzZXV1d06dJF32FQEUz0HQDp144dO/Dhhx9CLpejf//+qFOnDnJycnDgwAGMGzcOZ8+exapVq7Ta5vLly1GpUiUMGDCgZILWsSlTpmDixIn6DgMA8M0336BPnz6wsbEpVBccHAw3N7dC5e7u7qURWrHmzJmDDz74AD169FArNzMzQ2BgIBYsWIDPP/9co/88TUxMkJWVhcjISHz00UdqdevXr4eZmRmePHnySnHevn0bM2fOhKurKxo0aPBK29DU48ePYWLCr1ei8oSfWAOWmJiIPn36wMXFBTExMahSpYpUFxQUhCtXrmDHjh16jLBkPXr0CJaWljAxMSkTf7xOnDiBkydP4rvvviuyvlOnTvDy8irlqF7PRx99hPnz5yM2Nhbt27d/aXu5XI4WLVrg119/LZQQbdiwAX5+fvj9999LKlydMTMz03cIRKQlXjIzYPPnz0dmZiZ+/vlntWSogLu7O0aNGiW9XrNmDdq3bw8HBwfI5XJ4enpixYoVauu4urri7Nmz2Ldvn3R549nr6mlpaRg9ejScnZ0hl8vh7u6OefPmQaVSqW3n/v376NevHxQKBWxtbREYGIiTJ09CJpMVuhwXExODVq1awdLSEra2tujevTvOnz+v1qbg2vi5c+fQt29f2NnZoWXLlmp1z1u3bh2aNGkCCwsL2NnZoXXr1vjrr7+k+j/++AN+fn5wcnKCXC5H9erVMWvWLOTn57+444sREREBU1NTtG7d+pXWnz59OoyMjBAdHa1WPnToUJiamuLkyZMAgJycHEybNg2NGzeGjY0NLC0t0apVK8TGxhbapkqlwuLFi1G3bl2YmZmhcuXKeP/996XLKDKZDI8ePUJYWJj0+372zGDjxo1hb2+PP/74Q+Pj6Nu3L3bt2oW0tDSp7OjRo7h8+TL69u1bqH1qaiq+/PJL1K1bF1ZWVlAoFOjUqZN0vMDTsSDvvvsuAGDgwIFSrM++lw4fPozOnTvDzs4OlpaWqFevHhYvXlxof7du3UKPHj1gZWWFypUr48svvyz0O39+DFHBe+zKlSsYMGAAbG1tYWNjg4EDByIrK0tt3cePH2PkyJGoVKkSrK2t0a1bN9y6davMjEvS5PNW3Li5oj5rUVFRaNmyJWxtbWFlZYWaNWviq6++UmuTnZ2N6dOnw93dHXK5HM7Ozhg/fnyx49MiIiJQp04dyOVy1K5dG7t37y7U5sSJE+jUqRMUCgWsrKzQoUMHjS8/r1q1CtWrV4e5uTmaNGmCv//+W6P1tLFu3To0btwY5ubmsLe3R58+fXDz5k2pfsSIEbCysir0/gGAjz/+GEqlUu19uWvXLun3Zm1tDT8/P5w9e1bncZdn+v+3mPQmMjIS1apVQ/PmzTVqv2LFCtSuXRvdunWDiYkJIiMj8dlnn0GlUiEoKAgAsGjRInz++eewsrLC5MmTAQCOjo4AgKysLLRp0wa3bt3Cp59+iqpVq+LgwYOYNGkS7ty5g0WLFgF4+ke4a9euOHLkCIYPHw4PDw/88ccfCAwMLBTTnj170KlTJ1SrVg0zZszA48ePsXTpUrRo0QLHjx8v9KX84YcfokaNGpgzZw6EEMUe68yZMzFjxgw0b94cwcHBMDU1xeHDhxETE4OOHTsCeDrGwsrKCmPHjoWVlRViYmIwbdo0ZGRk4JtvvtGoT5918OBB1KlTBxUqVCiyPj09Hffu3VMrk8lkqFixIoCnl/4iIyMxePBgnD59GtbW1vjzzz/x448/YtasWahfvz4AICMjAz/99BM+/vhjDBkyBA8fPsTPP/8MX19fHDlyRO1y0uDBgxEaGopOnTrhk08+QV5eHv7++28cOnQIXl5e+OWXX/DJJ5+gSZMmGDp0KACgevXqajE2atQI//zzj8b90KtXLwwbNgzh4eEYNGgQgKdnhzw8PNCoUaNC7a9du4aIiAh8+OGHcHNzQ3JyMn744Qe0adMG586dg5OTE2rVqoXg4GBMmzYNQ4cORatWrQBAeu9HRUWhS5cuqFKlCkaNGgWlUonz589j+/btav8U5Ofnw9fXF02bNsW3336LPXv24LvvvkP16tUxfPjwlx7bRx99BDc3N4SEhOD48eP46aef4ODggHnz5kltBgwYgM2bN6Nfv35o1qwZ9u3bBz8/P437T1tPnjwp9L4CgMzMzEJl2n7eXubs2bPo0qUL6tWrh+DgYMjlcly5ckXt/aJSqdCtWzccOHAAQ4cORa1atXD69GksXLgQly5dKjR+7cCBAwgPD8dnn30Ga2trLFmyBP7+/rhx44b0WTl79ixatWoFhUKB8ePHo0KFCvjhhx/Qtm1b7Nu3D02bNi025p9//hmffvopmjdvjtGjR+PatWvo1q0b7O3t4ezsrNXxF2f27NmYOnUqPvroI3zyySe4e/culi5ditatW+PEiROwtbVF7969sWzZMmnYQ4GCS84DBgyAsbExAOCXX35BYGAgfH19MW/ePGRlZWHFihVo2bIlTpw4ofXv7Y0lyCClp6cLAKJ79+4ar5OVlVWozNfXV1SrVk2trHbt2qJNmzaF2s6aNUtYWlqKS5cuqZVPnDhRGBsbixs3bgghhPj9998FALFo0SKpTX5+vmjfvr0AINasWSOVN2jQQDg4OIj79+9LZSdPnhRGRkaif//+Utn06dMFAPHxxx8XiqugrsDly5eFkZGR6Nmzp8jPz1drq1KpXtgfn376qbCwsBBPnjyRygIDA4WLi0uhts97++23hb+/f6HyNWvWCABFLnK5XK3t6dOnhampqfjkk0/EgwcPxFtvvSW8vLxEbm6u1CYvL09kZ2errffgwQPh6OgoBg0aJJXFxMQIAGLkyJGFYnq2HywtLUVgYGCxxzV06FBhbm7+0uMPDAwUlpaWQgghPvjgA9GhQwchxNPfvVKpFDNnzhSJiYkCgPjmm2+k9Z48eVLo95SYmCjkcrkIDg6Wyo4ePVro/SPE0/5wc3MTLi4u4sGDB8UeZ2BgoACgtk0hhGjYsKFo3LixWhkAMX36dOl1wXvs2f4VQoiePXuKihUrSq/j4+MFADF69Gi1dgMGDCi0TV0o7n317HL06FGpvaaft+Le889/1hYuXCgAiLt37xYb4y+//CKMjIzE33//rVa+cuVKAUD8888/asdjamoqrly5ohYfALF06VKprEePHsLU1FRcvXpVKrt9+7awtrYWrVu3lspiY2MFABEbGyuEECInJ0c4ODiIBg0aqH2GVq1aJQAU+b33PBcXF+Hn51ds/fXr14WxsbGYPXu2Wvnp06eFiYmJVK5SqcRbb71V6Dtj8+bNAoDYv3+/EEKIhw8fCltbWzFkyBC1dklJScLGxkat/Pnfj6HhJTMDlZGRAQCwtrbWeB1zc3Pp54KzFW3atMG1a9eQnp7+0vW3bNmCVq1awc7ODvfu3ZMWHx8f5OfnY//+/QCA3bt3o0KFChgyZIi0rpGRkXQWqsCdO3eQkJCAAQMGwN7eXiqvV68e3nvvPezcubNQDMOGDXtpnBEREVCpVJg2bRqMjNQ/Is+e7n+2Px4+fIh79+6hVatWyMrKwoULF166n+fdv38fdnZ2xdYvW7YMUVFRasuuXbvU2tSpUwczZ87ETz/9BF9fX9y7dw9hYWFqY6SMjY1hamoK4Ol/36mpqcjLy4OXlxeOHz8utfv9998hk8kwffr0QrFoMzXXzs4Ojx8/LvLUfnH69u2LvXv3IikpCTExMUhKSirychnwdNxRwe8pPz8f9+/fly69PHs8xTlx4gQSExMxevRo2NraqtUVdZzPv4datWqFa9euaXRcRa17//596fNYcGnns88+U2v3+eefa7T9V9G9e/dC76uoqCiMGzdOrd2rfN5epqC///jjj0KXzQts2bIFtWrVgoeHh9r3RsGYtOcv9fr4+KidpaxXrx4UCoX0O8rPz8dff/2FHj16oFq1alK7KlWqoG/fvjhw4ID0+3jesWPHkJKSgmHDhkmfIeDpWb2iJkK8ivDwcKhUKnz00Udqx6tUKlGjRg3peGUyGT788EPs3LlT7Wzepk2b8NZbb0lDAqKiopCWloaPP/5YbXvGxsZo2rRpkZfKDRUvmRkohUIB4Okfck39888/mD59OuLi4gr9cUtPT3/pF8Lly5dx6tQpVK5cucj6lJQUAMC///6LKlWqwMLCQq3++dlU//77LwCgZs2ahbZVq1Yt/Pnnn9LA6QJFzdJ63tWrV2FkZARPT88Xtjt79iymTJmCmJiYQl+gmiSIRREvuIzXpEkTjQZVjxs3Dhs3bsSRI0cwZ86cIo8jLCwM3333HS5cuIDc3Fyp/Nn+uXr1KpycnNT++L2KgmPSJonq3LkzrK2tsWnTJiQkJODdd9+Fu7s7rl+/XqhtwTin5cuXIzExUW3cRMElkhe5evUqgKfJ5MsUjKN6lp2dHR48ePDSdQGgatWqhdYFgAcPHkChUODff/+FkZFRofeppjMJk5KS1F7b2NioJe5Fefvtt+Hj41Oo/L///lN7/Sqft5fp3bs3fvrpJ3zyySeYOHEiOnTogF69euGDDz6QktzLly/j/PnzL/3eKPB8HwPqv6O7d+8iKyur2ONQqVS4efMmateuXai+oA9q1KihVl6hQgW15Op1XL58GUKIQvt4dl8FevfujUWLFmHbtm3o27cvMjMzsXPnTnz66afS5+3y5csAUOykhoK/BcSEyGApFAo4OTnhzJkzGrW/evUqOnToAA8PDyxYsADOzs4wNTXFzp07sXDhwmL/u3uWSqXCe++9h/HjxxdZ/84772h1DK/iZX8cNJWWloY2bdpAoVAgODgY1atXh5mZGY4fP44JEyZo1B/Pq1ixosZ/WF/k2rVr0pfg6dOnC9WvW7cOAwYMQI8ePTBu3Dg4ODjA2NgYISEhUnKgSw8ePICFhYVWfS+Xy9GrVy+EhYXh2rVrLxxMPGfOHEydOhWDBg3CrFmzYG9vDyMjI4wePfqVfg8vUjAmQ9frvygR1sbzkyPWrFmjl9tfFJf8Pj/43NzcHPv370dsbCx27NiB3bt3Y9OmTWjfvj3++usvGBsbQ6VSoW7duliwYEGR23x+3E5J93FJU6lUkMlk2LVrV5HH8uzNQZs1awZXV1ds3rwZffv2RWRkJB4/fozevXurbQ94Oo5IqVQW2l5ZmGFbVrAnDFiXLl2watUqxMXFwdvb+4VtIyMjkZ2djW3btqn9B1bU6dbivgyrV6+OzMzMIv8bfZaLiwtiY2ORlZWldpboypUrhdoBwMWLFwtt48KFC6hUqZJW/60+G6dKpcK5c+eKvV/N3r17cf/+fYSHh6vNCktMTNR6fwU8PDxea33g6ZffgAEDoFAoMHr0aOkeQb169ZLa/Pbbb6hWrRrCw8PVflfPXxqrXr06/vzzT6Smpr7wLNHLzvwkJiaiVq1aWh9L3759sXr1ahgZGaFPnz7Ftvvtt9/Qrl07/Pzzz2rlaWlpqFSp0kvjLLi8cubMmZe+N0uai4sLVCoVEhMT1c4QPP/eL05UVJTa66LOcrxObIBmnzc7Ozu1WYIFCs6wPMvIyAgdOnRAhw4dsGDBAsyZMweTJ09GbGysdPnr5MmT6NChg07uoly5cmVYWFgUexxGRkbFDo4u6IPLly+rnXHJzc1FYmKiNHHhdVSvXh1CCLi5uWn0T+JHH32ExYsXIyMjA5s2bYKrqyuaNWumtj0AcHBw0Pv7u6zjGCIDNn78eFhaWuKTTz5BcnJyofqrV69K044L/lN59r+s9PR0rFmzptB6lpaWRX4ZfvTRR4iLi8Off/5ZqC4tLQ15eXkAAF9fX+Tm5uLHH3+U6lUqFZYtW6a2TpUqVdCgQQOEhYWp7e/MmTP466+/0Llz5xccffF69OgBIyMjBAcHFzrDUHD8RfVHTk4Oli9f/kr7BABvb2+cOXPmtR51sWDBAhw8eBCrVq3CrFmz0Lx5cwwfPlxtFlFRsR8+fBhxcXFq2/L394cQAjNnziy0n2fXLe73XeD48eMaz2R8Vrt27TBr1ix8//33Rf5nW8DY2LjQf/9btmzBrVu31MoK/lg/H2ujRo3g5uaGRYsWFaor7bMKvr6+AFDofbR06VKN1vfx8VFbirqdxqvS5vNWvXp1pKen49SpU1LZnTt3sHXrVrVtpqamFtpPwT8hBZ+Djz76CLdu3VL7Pijw+PFjPHr0SKvjMDY2RseOHfHHH3+oXYJNTk7Ghg0b0LJly2IvI3l5eaFy5cpYuXIlcnJypPLQ0NAXfga00atXLxgbG2PmzJmF3n9CCNy/f1+trHfv3sjOzkZYWBh2795d6P5dvr6+UCgUmDNnjtrl8QJ3797VSdxvAp4hMmDVq1fHhg0b0Lt3b9SqVUvtTtUHDx7Eli1bpNPtHTt2hKmpKbp27YpPP/0UmZmZ+PHHH+Hg4IA7d+6obbdx48ZYsWIFvv76a7i7u8PBwQHt27fHuHHjsG3bNnTp0gUDBgxA48aN8ejRI5w+fRq//fYbrl+/jkqVKqFHjx5o0qQJvvjiC1y5cgUeHh7Ytm2b9OX57H+J33zzDTp16gRvb28MHjxYmgZsY2PzyvdscXd3x+TJkzFr1iy0atUKvXr1glwux9GjR+Hk5ISQkBA0b94cdnZ2CAwMxMiRIyGTyfDLL7+81h/Q7t27Y9asWdi3b580tf9Zu3btKnKwdvPmzVGtWjWcP38eU6dOxYABA9C1a1cAT7+oGzRogM8++wybN28G8PTMYHh4OHr27Ak/Pz8kJiZi5cqV8PT0VBuc2a5dO/Tr1w9LlizB5cuX8f7770OlUuHvv/9Gu3btpEc+NG7cGHv27MGCBQvg5OQENzc3adpyfHw8UlNT0b17d637w8jICFOmTHlpuy5duiA4OBgDBw5E8+bNcfr0aaxfv77QmI7q1avD1tYWK1euhLW1NSwtLdG0aVO4ublhxYoV6Nq1Kxo0aICBAweiSpUquHDhAs6ePVtkAl9SGjduDH9/fyxatAj379+Xpt1funQJgHbjsEqCpp+3Pn36YMKECejZsydGjhwpTfN+55131Aa6BwcHY//+/fDz84OLiwtSUlKwfPlyvP3229Kg4H79+mHz5s0YNmwYYmNj0aJFC+Tn5+PChQvYvHkz/vzzT61vWPr1119L9z/67LPPYGJigh9++AHZ2dmYP39+setVqFABX3/9NT799FO0b98evXv3RmJiItasWaPVGKIrV67g66+/LlTesGFD+Pn54euvv8akSZNw/fp19OjRA9bW1khMTMTWrVsxdOhQfPnll9I6jRo1kr6zsrOz1S6XAU+HR6xYsQL9+vVDo0aN0KdPH1SuXBk3btzAjh070KJFC3z//fcax/5GK/V5bVTmXLp0SQwZMkS4uroKU1NTYW1tLVq0aCGWLl2qNn1827Ztol69esLMzEy4urqKefPmidWrVwsAIjExUWqXlJQk/Pz8hLW1daGpqA8fPhSTJk0S7u7uwtTUVFSqVEk0b95cfPvttyInJ0dqd/fuXdG3b19hbW0tbGxsxIABA8Q///wjAIiNGzeqxb9nzx7RokULYW5uLhQKhejatas4d+6cWpuC6aRFTe8tbqrp6tWrRcOGDYVcLhd2dnaiTZs2IioqSqr/559/RLNmzYS5ublwcnIS48ePF3/++afaNF0hNJ92L4QQ9erVE4MHD1Yre9G0e/z/aeR5eXni3XffFW+//bZIS0tTW3/x4sUCgNi0aZMQ4ul03Tlz5ggXFxchl8tFw4YNxfbt24uMMy8vT3zzzTfCw8NDmJqaisqVK4tOnTqJ+Ph4qc2FCxdE69athbm5uQCgNgV/woQJomrVqmrT14vz7LT74hQ37f6LL74QVapUEebm5qJFixYiLi5OtGnTptA06D/++EN4enoKExOTQlPwDxw4IN577z1hbW0tLC0tRb169dSmahcXX1HvHxQz7f7591/B7/bZz8+jR49EUFCQsLe3F1ZWVqJHjx7i4sWLAoCYO3fuC/tHWwBEUFBQkXUFsT077V4IzT5vQgjx119/iTp16ghTU1NRs2ZNsW7dukJ9FR0dLbp37y6cnJyEqampcHJyEh9//HGhW3Pk5OSIefPmidq1a0ufx8aNG4uZM2eK9PT0lx6Pi4tLoVtDHD9+XPj6+gorKythYWEh2rVrJw4ePKjW5vlp9wWWL18u3NzchFwuF15eXmL//v1Fvt+K4uLiUuxn+dnP/u+//y5atmwpLC0thaWlpfDw8BBBQUHi4sWLhbY5efJkAUC4u7sXu9/Y2Fjh6+srbGxshJmZmahevboYMGCAOHbsmNTG0Kfdy4QoJyPNyOBFRESgZ8+eOHDgAFq0aKHvcErEL7/8gqCgINy4caPQFPDyJjs7G66urpg4caLazQ1JewkJCWjYsCHWrVuHgIAAfYdD9EbiGCIqk55/2nl+fj6WLl0KhUJR5N2K3xQBAQGoWrVqofFS5dGaNWtQoUIFje79RP/n+fc+8PQO8EZGRq/8WBciejmeIaIy6ZNPPsHjx4/h7e2N7OxshIeH4+DBg5gzZw4mTZqk7/CISszMmTMRHx+Pdu3awcTEBLt27cKuXbswdOhQ/PDDD/oOj+iNxYSIyqQNGzbgu+++w5UrV/DkyRO4u7tj+PDh0kBeojdVVFQUZs6ciXPnziEzMxNVq1ZFv379MHnyZN4zhqgEMSEiIiIig8cxRERERGTwmBARERGRweMFaQ2pVCrcvn0b1tbWer85GhEREWlGCIGHDx/CyclJemhwUZgQaej27dvFPt+GiIiIyrabN2/i7bffLraeCZGGrK2tATzt0OKec0NERERlS0ZGBpydnaW/48VhQqShgstkCoWCCREREVE587LhLhxUTURERAaPCREREREZPCZEREREZPCYEBEREZHBY0JEREREBo8JERERERk8JkRERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRERERGTwmBARERGRwWNCRERERAaPCREREREZPCZEREREZPBM9B0AAa4Td+h1/9fn+ul1/0RERPrGM0RERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRERERGTwmBARERGRwWNCRERERAaPCREREREZPCZEREREZPD0mhDt378fXbt2hZOTE2QyGSIiIgq1OX/+PLp16wYbGxtYWlri3XffxY0bN6T6J0+eICgoCBUrVoSVlRX8/f2RnJysto0bN27Az88PFhYWcHBwwLhx45CXl1fSh0dERETlhF4TokePHqF+/fpYtmxZkfVXr15Fy5Yt4eHhgb179+LUqVOYOnUqzMzMpDZjxoxBZGQktmzZgn379uH27dvo1auXVJ+fnw8/Pz/k5OTg4MGDCAsLQ2hoKKZNm1bix0dERETlg0wIIfQdBADIZDJs3boVPXr0kMr69OmDChUq4JdffilynfT0dFSuXBkbNmzABx98AAC4cOECatWqhbi4ODRr1gy7du1Cly5dcPv2bTg6OgIAVq5ciQkTJuDu3bswNTXVKL6MjAzY2NggPT0dCoXi9Q72OXyWGRERUcnQ9O93mR1DpFKpsGPHDrzzzjvw9fWFg4MDmjZtqnZZLT4+Hrm5ufDx8ZHKPDw8ULVqVcTFxQEA4uLiULduXSkZAgBfX19kZGTg7Nmzxe4/OzsbGRkZagsRERG9mcpsQpSSkoLMzEzMnTsX77//Pv766y/07NkTvXr1wr59+wAASUlJMDU1ha2trdq6jo6OSEpKkto8mwwV1BfUFSckJAQ2NjbS4uzsrMOjIyIiorKkzCZEKpUKANC9e3eMGTMGDRo0wMSJE9GlSxesXLmyxPc/adIkpKenS8vNmzdLfJ9ERESkH2U2IapUqRJMTEzg6empVl6rVi1plplSqUROTg7S0tLU2iQnJ0OpVEptnp91VvC6oE1R5HI5FAqF2kJERERvpjKbEJmamuLdd9/FxYsX1covXboEFxcXAEDjxo1RoUIFREdHS/UXL17EjRs34O3tDQDw9vbG6dOnkZKSIrWJioqCQqEolGwRERGRYTLR584zMzNx5coV6XViYiISEhJgb2+PqlWrYty4cejduzdat26Ndu3aYffu3YiMjMTevXsBADY2Nhg8eDDGjh0Le3t7KBQKfP755/D29kazZs0AAB07doSnpyf69euH+fPnIykpCVOmTEFQUBDkcrk+DpuIiIjKGL0mRMeOHUO7du2k12PHjgUABAYGIjQ0FD179sTKlSsREhKCkSNHombNmvj999/RsmVLaZ2FCxfCyMgI/v7+yM7Ohq+vL5YvXy7VGxsbY/v27Rg+fDi8vb1haWmJwMBABAcHl96BEhERUZlWZu5DVNbxPkRERETlT7m/DxERERFRaWFCRERERAaPCREREREZPCZEREREZPCYEBEREZHBY0JEREREBo8JERERERk8JkRERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRERERGTwmBARERGRwWNCRERERAaPCREREREZPCZEREREZPCYEBEREZHBY0JEREREBo8JERERERk8JkRERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRERERGTwmBARERGRwWNCRERERAbvtROivLw8ZGZm6iIWIiIiIr3QOCGKjIxEaGioWtns2bNhZWUFW1tbdOzYEQ8ePNB1fEREREQlTuOEaMGCBXj06JH0+uDBg5g2bRqmTp2KzZs34+bNm5g1a1aJBElERERUkjROiM6ePYvmzZtLr3/77Te89957mDx5Mnr16oXvvvsOkZGRJRIkERERUUnSOCF6+PAhKlasKL0+cOAAOnToIL2uXbs2bt++rdvoiIiIiEqBxgnRW2+9hfPnzwMAMjMzcfLkSbUzRvfv34eFhYVWO9+/fz+6du0KJycnyGQyREREFNt22LBhkMlkWLRokVp5amoqAgICoFAoYGtri8GDBxca5H3q1Cm0atUKZmZmcHZ2xvz587WKk4iIiN5sGidEH374IUaPHo1ffvkFQ4YMgVKpRLNmzaT6Y8eOoWbNmlrt/NGjR6hfvz6WLVv2wnZbt27FoUOH4OTkVKguICAAZ8+eRVRUFLZv3479+/dj6NChUn1GRgY6duwIFxcXxMfH45tvvsGMGTOwatUqrWIlIiKiN5eJpg2nTZuGW7duYeTIkVAqlVi3bh2MjY2l+l9//RVdu3bVauedOnVCp06dXtjm1q1b+Pzzz/Hnn3/Cz89Pre78+fPYvXs3jh49Ci8vLwDA0qVL0blzZ3z77bdwcnLC+vXrkZOTg9WrV8PU1BS1a9dGQkICFixYoJY4ERERkeHSOCG6e/cuQkNDYWRU9Eml2NhYnQVVQKVSoV+/fhg3bhxq165dqD4uLg62trZSMgQAPj4+MDIywuHDh9GzZ0/ExcWhdevWMDU1ldr4+vpi3rx5ePDgAezs7HQeNxEREZUvGl8yc3Nzw71790oylkLmzZsHExMTjBw5ssj6pKQkODg4qJWZmJjA3t4eSUlJUhtHR0e1NgWvC9oUJTs7GxkZGWoLERERvZk0ToiEECUZRyHx8fFYvHgxQkNDIZPJSnXfABASEgIbGxtpcXZ2LvUYiIiIqHRo9eiO0kxM/v77b6SkpKBq1aowMTGBiYkJ/v33X3zxxRdwdXUFACiVSqSkpKitl5eXh9TUVCiVSqlNcnKyWpuC1wVtijJp0iSkp6dLy82bN3V4dERERFSWaDyGCACmTp360qn1CxYseK2ACvTr1w8+Pj5qZb6+vujXrx8GDhwIAPD29kZaWhri4+PRuHFjAEBMTAxUKhWaNm0qtZk8eTJyc3NRoUIFAEBUVBRq1qz5wvFDcrkccrlcJ8dCREREZZtWCdHp06fVBic/T9szSJmZmbhy5Yr0OjExEQkJCbC3t0fVqlXVbgQJABUqVIBSqZSm99eqVQvvv/8+hgwZgpUrVyI3NxcjRoxAnz59pCn6ffv2xcyZMzF48GBMmDABZ86cweLFi7Fw4UKtYiUiIqI3l1YJ0datWwsNYn4dx44dQ7t27aTXY8eOBQAEBgYWepBscdavX48RI0agQ4cOMDIygr+/P5YsWSLV29jY4K+//kJQUBAaN26MSpUqYdq0aZxyT0RERBKNE6KSGD/Utm1brQZrX79+vVCZvb09NmzY8ML16tWrh7///lvb8IiIiMhAlNlZZkRERESlReOEaM2aNbCxsSnJWIiIiIj0QuNLZm5ubjh8+PBL27Vu3fq1AiIiIiIqbRonRG3btoVMJivy0lnB+CKZTIa8vDzdRUdERERUCjROiB48eFBkeVZWFhYvXowlS5agWrVqOguMiIiIqLRonBA9P35IpVJh9erVmDlzJoyMjLBs2TIEBgbqPEAiIiKikqbVfYgKhIeH46uvvsLdu3cxadIkfP7557yrMxEREZVbWj3LbN++fWjWrBn69euHXr164dq1a/jyyy+ZDBEREVG5pvEZos6dO2PPnj0YNGgQIiIiXvhgVCIiIqLyROOEaPfu3TAxMcGmTZuwefPmYtulpqbqJDAiIiKi0qJxQrRmzZqSjIOIiIhIbzROiDiDjIiIiN5UWg2qJiIiInoTMSEiIiIig8eEiIiIiAweEyIiIiIyeEyIiIiIyOBp/eiO/Px8hIaGIjo6GikpKVCpVGr1MTExOguOiIiIqDRonRCNGjUKoaGh8PPzQ506dSCTyUoiLiIiIqJSo3VCtHHjRmzevBmdO3cuiXiIiIiISp3WY4hMTU3h7u5eErEQERER6YXWCdEXX3yBxYsXQwhREvEQERERlTqtL5kdOHAAsbGx2LVrF2rXro0KFSqo1YeHh+ssOCIiIqLSoHVCZGtri549e5ZELERERER6oXVCxKfeExER0ZuGN2YkIiIig6fRGaJGjRohOjoadnZ2aNiw4QvvPXT8+HGdBUdERERUGjRKiLp37w65XA4A6NGjR0nGQ0RERFTqNEqIpk+fXuTPRERERG8CjiEiIiIig8eEiIiIiAyeXhOi/fv3o2vXrnBycoJMJkNERIRUl5ubiwkTJqBu3bqwtLSEk5MT+vfvj9u3b6ttIzU1FQEBAVAoFLC1tcXgwYORmZmp1ubUqVNo1aoVzMzM4OzsjPnz55fG4REREVE5odeE6NGjR6hfvz6WLVtWqC4rKwvHjx/H1KlTcfz4cYSHh+PixYvo1q2bWruAgACcPXsWUVFR2L59O/bv34+hQ4dK9RkZGejYsSNcXFwQHx+Pb775BjNmzMCqVatK/PiIiIiofJCJ13woWX5+Pk6fPg0XFxfY2dm9eiAyGbZu3frCWWxHjx5FkyZN8O+//6Jq1ao4f/48PD09cfToUXh5eQEAdu/ejc6dO+O///6Dk5MTVqxYgcmTJyMpKQmmpqYAgIkTJyIiIgIXLlzQOL6MjAzY2NggPT0dCoXilY+zKK4Td+h0e9q6PtdPr/snIiIqKZr+/db6DNHo0aPx888/A3iaDLVp0waNGjWCs7Mz9u7d+8oBayI9PR0ymQy2trYAgLi4ONja2krJEAD4+PjAyMgIhw8fltq0bt1aSoYAwNfXFxcvXsSDBw9KNF4iIiIqH7ROiH777TfUr18fABAZGYnExERcuHABY8aMweTJk3UeYIEnT55gwoQJ+Pjjj6UMLykpCQ4ODmrtTExMYG9vj6SkJKmNo6OjWpuC1wVtipKdnY2MjAy1hYiIiN5MWidE9+7dg1KpBADs3LkTH374Id555x0MGjQIp0+f1nmAwNMB1h999BGEEFixYkWJ7ON5ISEhsLGxkRZnZ+dS2S8RERGVPq0TIkdHR5w7dw75+fnYvXs33nvvPQBPB0EbGxvrPMCCZOjff/9FVFSU2vU/pVKJlJQUtfZ5eXlITU2VkjalUonk5GS1NgWvC9oUZdKkSUhPT5eWmzdv6uqQiIiIqIzROiEaOHAgPvroI9SpUwcymQw+Pj4AgMOHD8PDw0OnwRUkQ5cvX8aePXtQsWJFtXpvb2+kpaUhPj5eKouJiYFKpULTpk2lNvv370dubq7UJioqCjVr1nzhIHC5XA6FQqG2EBER0ZtJo0d3PGvGjBmoU6cObt68iQ8//FB6xpmxsTEmTpyo1bYyMzNx5coV6XViYiISEhJgb2+PKlWq4IMPPsDx48exfft25OfnS2N+7O3tYWpqilq1auH999/HkCFDsHLlSuTm5mLEiBHo06cPnJycAAB9+/bFzJkzMXjwYEyYMAFnzpzB4sWLsXDhQm0PnYiIiN5Qrz3t/nXs3bsX7dq1K1QeGBiIGTNmwM3Nrcj1YmNj0bZtWwBPb8w4YsQIREZGwsjICP7+/liyZAmsrKyk9qdOnUJQUBCOHj2KSpUq4fPPP8eECRO0ipXT7omIiMofTf9+a5QQLVmyROMdjxw5UuO25QkTIiIiovJH07/fGl0ye/7y0t27d5GVlSXdDygtLQ0WFhZwcHB4YxMiIiIienNpNKg6MTFRWmbPno0GDRrg/PnzSE1NRWpqKs6fP49GjRph1qxZJR0vERERkc5pPcts6tSpWLp0KWrWrCmV1axZEwsXLsSUKVN0GhwRERFRadA6Ibpz5w7y8vIKlefn5xe63w8RERFReaB1QtShQwd8+umnOH78uFQWHx+P4cOHS/ckIiIiIipPtE6IVq9eDaVSCS8vL8jlcsjlcjRp0gSOjo746aefSiJGIiIiohKl9Y0ZK1eujJ07d+LSpUu4cOECAMDDwwPvvPOOzoMjIiIiKg1aJ0QF3nnnHSZBRERE9EbQKCEaO3asxhtcsGDBKwdDREREpA8aJUQnTpzQaGMymey1giEiIiLSB40SotjY2JKOg4iIiEhvtJ5l9qz//vsP//33n65iISIiItILrRMilUqF4OBg2NjYwMXFBS4uLrC1tcWsWbOgUqlKIkYiIiKiEqX1LLPJkyfj559/xty5c9GiRQsAwIEDBzBjxgw8efIEs2fP1nmQRERERCVJ64QoLCwMP/30E7p16yaV1atXD2+99RY+++wzJkRERERU7mh9ySw1NRUeHh6Fyj08PJCamqqToIiIiIhKk9YJUf369fH9998XKv/+++9Rv359nQRFREREVJq0vmQ2f/58+Pn5Yc+ePfD29gYAxMXF4ebNm9i5c6fOAyQiIiIqaVqfIWrTpg0uXbqEnj17Ii0tDWlpaejVqxcuXryIVq1alUSMRERERCXqlZ5l5uTkxMHTRERE9MZ4pYQoLS0NR44cQUpKSqF7D/Xv318ngRERERGVFq0TosjISAQEBCAzMxMKhULt+WUymYwJEREREZU7Wo8h+uKLLzBo0CBkZmYiLS0NDx48kBZOuyciIqLySOuE6NatWxg5ciQsLCxKIh4iIiKiUqd1QuTr64tjx46VRCxEREREeqHRGKJt27ZJP/v5+WHcuHE4d+4c6tatiwoVKqi1ffaRHkRERETlgUYJUY8ePQqVBQcHFyqTyWTIz89/7aCIiIiISpNGCdHzU+uJiIiI3iRajyF61pMnT3QVBxEREZHeaJ0Q5efnY9asWXjrrbdgZWWFa9euAQCmTp2Kn3/+WecBEhEREZU0rROi2bNnIzQ0FPPnz4epqalUXqdOHfz00086DY6IiIioNGidEK1duxarVq1CQEAAjI2NpfL69evjwoULOg2OiIiIqDS80o0Z3d3dC5WrVCrk5uZqta39+/eja9eucHJygkwmQ0REhFq9EALTpk1DlSpVYG5uDh8fH1y+fFmtTWpqKgICAqBQKGBra4vBgwcjMzNTrc2pU6fQqlUrmJmZwdnZGfPnz9cqTiIiInqzaZ0QeXp64u+//y5U/ttvv6Fhw4ZabevRo0eoX78+li1bVmT9/PnzsWTJEqxcuRKHDx+GpaUlfH191QZzBwQE4OzZs4iKisL27duxf/9+DB06VKrPyMhAx44d4eLigvj4eHzzzTeYMWMGVq1apVWsRERE9ObS+uGu06ZNQ2BgIG7dugWVSoXw8HBcvHgRa9euxfbt27XaVqdOndCpU6ci64QQWLRoEaZMmYLu3bsDeHq5ztHREREREejTpw/Onz+P3bt34+jRo/Dy8gIALF26FJ07d8a3334LJycnrF+/Hjk5OVi9ejVMTU1Ru3ZtJCQkYMGCBWqJExERERkurc8Qde/eHZGRkdizZw8sLS0xbdo0nD9/HpGRkXjvvfd0FlhiYiKSkpLg4+MjldnY2KBp06aIi4sDAMTFxcHW1lZKhgDAx8cHRkZGOHz4sNSmdevWagPAfX19cfHiRTx48KDY/WdnZyMjI0NtISIiojeT1meIAKBVq1aIiorSdSxqkpKSAACOjo5q5Y6OjlJdUlISHBwc1OpNTExgb2+v1sbNza3QNgrq7Ozsitx/SEgIZs6c+foHQkRERGWe1meIbt68if/++096feTIEYwePfqNG5MzadIkpKenS8vNmzf1HRIRERGVEK3PEPXt2xdDhw5Fv379pEtaderUwfr165GUlIRp06bpJDClUgkASE5ORpUqVaTy5ORkNGjQQGqTkpKitl5eXh5SU1Ol9ZVKJZKTk9XaFLwuaFMUuVwOuVz+2sdBRERUHrhO3KHX/V+f66fX/Wt9hujMmTNo0qQJAGDz5s2oW7cuDh48iPXr1yM0NFRngbm5uUGpVCI6Oloqy8jIwOHDh+Ht7Q0A8Pb2RlpaGuLj46U2MTExUKlUaNq0qdRm//79arcEiIqKQs2aNYu9XEZERESGReuEKDc3VzpzsmfPHnTr1g0A4OHhgTt37mi1rczMTCQkJCAhIQHA04HUCQkJuHHjBmQyGUaPHo2vv/4a27Ztw+nTp9G/f384OTmhR48eAIBatWrh/fffx5AhQ3DkyBH8888/GDFiBPr06QMnJycAT89omZqaYvDgwTh79iw2bdqExYsXY+zYsdoeOhEREb2htL5kVrt2baxcuRJ+fn6IiorCrFmzAAC3b99GxYoVtdrWsWPH0K5dO+l1QZISGBiI0NBQjB8/Ho8ePcLQoUORlpaGli1bYvfu3TAzM5PWWb9+PUaMGIEOHTrAyMgI/v7+WLJkiVRvY2ODv/76C0FBQWjcuDEqVaqEadOmcco9ERERSWRCCKHNCnv37kXPnj2RkZGBwMBArF69GgDw1Vdf4cKFCwgPDy+RQPUtIyMDNjY2SE9Ph0Kh0Om2Df26LRER6d+b+rdI07/fWp8hatu2Le7du4eMjAy1MThDhw6FhYXFq0VLREREpEevdB8iY2PjQgOSXV1ddREPERERUanTOiFyc3ODTCYrtv7atWuvFRARERFRadM6IRo9erTa69zcXJw4cQK7d+/GuHHjdBUXERERUanROiEaNWpUkeXLli3DsWPHXjsgIiIiotKm9X2IitOpUyf8/vvvutocERERUanRWUL022+/wd7eXlebIyIiIio1Wl8ya9iwodqgaiEEkpKScPfuXSxfvlynwRERERGVBq0TooLHZhQwMjJC5cqV0bZtW3h4eOgqLiIiIqJSo3VCNH369JKIg4iIiEhvXunGjPn5+YiIiMD58+cBPH2+Wbdu3WBsbKzT4IiIiIhKg9YJ0ZUrV9C5c2fcunULNWvWBACEhITA2dkZO3bsQPXq1XUeJBEREVFJ0nqW2ciRI1G9enXcvHkTx48fx/Hjx3Hjxg24ublh5MiRJREjERERUYnS+gzRvn37cOjQIbUp9hUrVsTcuXPRokULnQZHREREVBq0PkMkl8vx8OHDQuWZmZkwNTXVSVBEREREpUnrhKhLly4YOnQoDh8+DCEEhBA4dOgQhg0bhm7dupVEjEREREQlSuuEaMmSJahevTq8vb1hZmYGMzMztGjRAu7u7li8eHFJxEhERERUorQeQ2Rra4s//vgDly9fxoULFwAAtWrVgru7u86DIyIiIioNr3QfIgCoUaMGatSooctYiIiIiPRC64QoPz8foaGhiI6ORkpKClQqlVp9TEyMzoIjIiIiKg1aJ0SjRo1CaGgo/Pz8UKdOHbUHvRIRERGVR1onRBs3bsTmzZvRuXPnkoiHiIiIqNRpPcvM1NSUA6iJiIjojaJ1QvTFF19g8eLFEEKURDxEREREpU6jS2a9evVSex0TE4Ndu3ahdu3aqFChglpdeHi47qIjIiIiKgUaJUQ2NjZqr3v27FkiwRARERHpg0YJ0Zo1a0o6DiIiIiK90XoMEREREdGbhgkRERERGTwmRERERGTwmBARERGRwSvTCVF+fj6mTp0KNzc3mJubo3r16pg1a5baPZCEEJg2bRqqVKkCc3Nz+Pj44PLly2rbSU1NRUBAABQKBWxtbTF48GBkZmaW9uEQERFRGaX1ozuWLFlSZLlMJoOZmRnc3d3RunVrGBsbv3Zw8+bNw4oVKxAWFobatWvj2LFjGDhwIGxsbDBy5EgAwPz587FkyRKEhYXBzc0NU6dOha+vL86dOwczMzMAQEBAAO7cuYOoqCjk5uZi4MCBGDp0KDZs2PDaMRIREVH5p3VCtHDhQty9exdZWVmws7MDADx48AAWFhawsrJCSkoKqlWrhtjYWDg7O79WcAcPHkT37t3h5+cHAHB1dcWvv/6KI0eOAHh6dmjRokWYMmUKunfvDgBYu3YtHB0dERERgT59+uD8+fPYvXs3jh49Ci8vLwDA0qVL0blzZ3z77bdwcnJ6rRiJiIio/NP6ktmcOXPw7rvv4vLly7h//z7u37+PS5cuoWnTpli8eDFu3LgBpVKJMWPGvHZwzZs3R3R0NC5dugQAOHnyJA4cOIBOnToBABITE5GUlAQfHx9pHRsbGzRt2hRxcXEAgLi4ONja2krJEAD4+PjAyMgIhw8fLnbf2dnZyMjIUFuIiIjozaT1GaIpU6bg999/R/Xq1aUyd3d3fPvtt/D398e1a9cwf/58+Pv7v3ZwEydOREZGBjw8PGBsbIz8/HzMnj0bAQEBAICkpCQAgKOjo9p6jo6OUl1SUhIcHBzU6k1MTGBvby+1KUpISAhmzpz52sdAREREZZ/WZ4ju3LmDvLy8QuV5eXlSguHk5ISHDx++dnCbN2/G+vXrsWHDBhw/fhxhYWH49ttvERYW9trbfplJkyYhPT1dWm7evFni+yQiIiL90DohateuHT799FOcOHFCKjtx4gSGDx+O9u3bAwBOnz4NNze31w5u3LhxmDhxIvr06YO6deuiX79+GDNmDEJCQgAASqUSAJCcnKy2XnJyslSnVCqRkpKiVp+Xl4fU1FSpTVHkcjkUCoXaQkRERG8mrROin3/+Gfb29mjcuDHkcjnkcjm8vLxgb2+Pn3/+GQBgZWWF77777rWDy8rKgpGReojGxsZQqVQAADc3NyiVSkRHR0v1GRkZOHz4MLy9vQEA3t7eSEtLQ3x8vNQmJiYGKpUKTZs2fe0YiYiIqPzTegyRUqlEVFQULly4IA12rlmzJmrWrCm1adeunU6C69q1K2bPno2qVauidu3aOHHiBBYsWIBBgwYBeDrVf/To0fj6669Ro0YNadq9k5MTevToAQCoVasW3n//fQwZMgQrV65Ebm4uRowYgT59+nCGGRERAQBcJ+7Qdwi4PtdP3yEYNK0TogIeHh7w8PDQZSyFLF26FFOnTsVnn32GlJQUODk54dNPP8W0adOkNuPHj8ejR48wdOhQpKWloWXLlti9e7d0DyIAWL9+PUaMGIEOHTrAyMgI/v7+xd5PiYiIiAyPTDx722cN5OfnIzQ0FNHR0UhJSZEuXxWIiYnRaYBlRUZGBmxsbJCenq7z8UT6/s+E/5UQkaHT9/cwoP/vYn33QUkdv6Z/v7U+QzRq1CiEhobCz88PderUgUwme61AiYiIiPRN64Ro48aN2Lx5Mzp37lwS8RARERGVOq1nmZmamsLd3b0kYiEiIiLSC60Toi+++AKLFy+GlkOPiIiIiMosrS+ZHThwALGxsdi1axdq166NChUqqNWHh4frLDgiIiKi0qB1QmRra4uePXuWRCxEREREeqF1QrRmzZqSiIOIiIhIb7QeQ0RERET0ptHoDFGjRo0QHR0NOzs7NGzY8IX3Hjp+/LjOgiMiIiIqDRolRN27d4dcLgcA6RlhRERERG8KjRKi6dOnF/kzERER0ZvglR/umpOTU+SzzKpWrfraQRERERGVJq0TokuXLmHw4ME4ePCgWrkQAjKZDPn5+ToLjoiIiKg0aJ0QDRw4ECYmJti+fTuqVKnCh7sSERFRuad1QpSQkID4+Hh4eHiURDxEREREpU7rhMjT0xP37t0riVhIT1wn7tDr/q/P9dPr/omIiDS6MWNGRoa0zJs3D+PHj8fevXtx//59tbqMjIySjpeIiIhI5zQ6Q2Rra6s2VkgIgQ4dOqi14aBqIiIiKq80SohiY2NLOg4iIiIivdEoIWrTpk1Jx0FERESkN1o/3HXNmjXYsmVLofItW7YgLCxMJ0ERERERlSatE6KQkBBUqlSpULmDgwPmzJmjk6CIiIiISpPWCdGNGzfg5uZWqNzFxQU3btzQSVBEREREpUnr+xA5ODjg1KlTcHV1VSs/efIkKlasqKu4iEoV78VERGTYtD5D9PHHH2PkyJGIjY1Ffn4+8vPzERMTg1GjRqFPnz4lESMRERFRidL6DNGsWbNw/fp1dOjQASYmT1dXqVTo378/Zs+erfMAiYiIiEqa1gmRqakpNm3ahK+//hoJCQkwNzdH3bp14eLiUhLxEREREZU4rS+ZBQcHIysrCzVq1MCHH36ILl26wMXFBY8fP0ZwcHBJxEhERERUorROiGbOnInMzMxC5VlZWZg5c6ZOgiIiIiIqTVonRAXPLHveyZMnYW9vr5OgiIiIiEqTxmOI7OzsIJPJIJPJ8M4776glRfn5+cjMzMSwYcNKJEgiIiKikqRxQrRo0SIIITBo0CDMnDkTNjY2Up2pqSlcXV3h7e2t8wBv3bqFCRMmYNeuXcjKyoK7uzvWrFkDLy8vAE/PWE2fPh0//vgj0tLS0KJFC6xYsQI1atSQtpGamorPP/8ckZGRMDIygr+/PxYvXgwrKyudx0tERETlj8YJUWBgIADAzc0NzZs3R4UKFUosqAIPHjxAixYt0K5dO+zatQuVK1fG5cuXYWdnJ7WZP38+lixZgrCwMLi5uWHq1Knw9fXFuXPnYGZmBgAICAjAnTt3EBUVhdzcXAwcOBBDhw7Fhg0bSvwYiIiIqOzTetr9s0++f/LkCXJyctTqFQrF60f1/82bNw/Ozs5Ys2aNVPbsY0OEEFi0aBGmTJmC7t27AwDWrl0LR0dHREREoE+fPjh//jx2796No0ePSmeVli5dis6dO+Pbb7+Fk5OTzuIlIiKi8knrQdVZWVkYMWIEHBwcYGlpCTs7O7VFl7Zt2wYvLy98+OGHcHBwQMOGDfHjjz9K9YmJiUhKSoKPj49UZmNjg6ZNmyIuLg4AEBcXB1tbWykZAgAfHx8YGRnh8OHDxe47OzsbGRkZagsRERG9mbROiMaNG4eYmBisWLECcrkcP/30E2bOnAknJyesXbtWp8Fdu3ZNGg/0559/Yvjw4Rg5ciTCwsIAAElJSQAAR0dHtfUcHR2luqSkJDg4OKjVm5iYwN7eXmpTlJCQENjY2EiLs7OzLg+NiIiIyhCtL5lFRkZi7dq1aNu2LQYOHIhWrVrB3d0dLi4uWL9+PQICAnQWnEqlgpeXF+bMmQMAaNiwIc6cOYOVK1dKY5pKyqRJkzB27FjpdUZGBpMiIiKiN5TWZ4hSU1NRrVo1AE/HC6WmpgIAWrZsif379+s0uCpVqsDT01OtrFatWrhx4wYAQKlUAgCSk5PV2iQnJ0t1SqUSKSkpavV5eXlITU2V2hRFLpdDoVCoLURERPRm0johqlatGhITEwEAHh4e2Lx5M4CnZ45sbW11GlyLFi1w8eJFtbJLly5Jz01zc3ODUqlEdHS0VJ+RkYHDhw9LtwDw9vZGWloa4uPjpTYxMTFQqVRo2rSpTuMlIiKi8knrhGjgwIE4efIkAGDixIlYtmwZzMzMMGbMGIwbN06nwY0ZMwaHDh3CnDlzcOXKFWzYsAGrVq1CUFAQAEAmk2H06NH4+uuvsW3bNpw+fRr9+/eHk5MTevToAeDpGaX3338fQ4YMwZEjR/DPP/9gxIgR6NOnD2eYEREREYBXGEM0ZswY6WcfHx9cuHAB8fHxcHd3R7169XQa3LvvvoutW7di0qRJCA4OhpubGxYtWqQ2Tmn8+PF49OgRhg4dirS0NLRs2RK7d++W7kEEAOvXr8eIESPQoUMH6caMS5Ys0WmsREREVH5pnRA9z8XFRbqEVRK6dOmCLl26FFsvk8kQHByM4ODgYtvY29vzJoxERERUrFdKiI4ePYrY2FikpKRApVKp1S1YsEAngRERERGVFq0Tojlz5mDKlCmoWbMmHB0d1R7y+uzPREREROWF1gnR4sWLsXr1agwYMKAEwiEiIiIqfVrPMjMyMkKLFi1KIhYiIiIivdA6IRozZgyWLVtWErEQERER6YXWl8y+/PJL+Pn5oXr16vD09ESFChXU6sPDw3UWHBEREVFp0DohGjlyJGJjY9GuXTtUrFiRA6mJiIio3NM6IQoLC8Pvv/8OPz+/koiHiIiIqNRpPYbI3t4e1atXL4lYiIiIiPRC64RoxowZmD59OrKyskoiHiIiIqJSp/UlsyVLluDq1atwdHSEq6troUHVx48f11lwRERERKVB64So4CnyRERERG8KrROi6dOnl0QcRERERHqj9RgiIiIiojcNEyIiIiIyeEyIiIiIyOBplBBlZGSUdBxEREREeqNRQmRnZ4eUlBQAQPv27ZGWllaSMRERERGVKo0SIisrK9y/fx8AsHfvXuTm5pZoUERERESlSaNp9z4+PmjXrh1q1aoFAOjZsydMTU2LbBsTE6O76IiIiIhKgUYJ0bp16xAWFoarV69i3759qF27NiwsLEo6NiIiIqJSoVFCZG5ujmHDhgEAjh07hnnz5sHW1rYk4yIiIgPiOnGHvkMgA6f1napjY2Oln4UQAACZTKa7iIiIiIhKmdYJEQCsXbsW33zzDS5fvgwAeOeddzBu3Dj069dPp8GRYeB/hkREpG9aJ0QLFizA1KlTMWLECLRo0QIAcODAAQwbNgz37t3DmDFjdB4k0ZtO30nh9bl+et0/EZG+aZ0QLV26FCtWrED//v2lsm7duqF27dqYMWMGEyIiIiIqd7R+dMedO3fQvHnzQuXNmzfHnTt3dBIUERERUWnSOiFyd3fH5s2bC5Vv2rQJNWrU0ElQRERERKVJ60tmM2fORO/evbF//35pDNE///yD6OjoIhMlIiIiorJO6zNE/v7+OHz4MCpVqoSIiAhERESgUqVKOHLkCHr27FkSMRIRERGVqFeadt+4cWOsW7dO17EQERER6YXWZ4j0ae7cuZDJZBg9erRU9uTJEwQFBaFixYqwsrKCv78/kpOT1da7ceMG/Pz8YGFhAQcHB4wbNw55eXmlHD0RERGVVeUmITp69Ch++OEH1KtXT618zJgxiIyMxJYtW7Bv3z7cvn0bvXr1kurz8/Ph5+eHnJwcHDx4EGFhYQgNDcW0adNK+xCIiIiojCoXCVFmZiYCAgLw448/ws7OTipPT0/Hzz//jAULFqB9+/Zo3Lgx1qxZg4MHD+LQoUMAgL/++gvnzp3DunXr0KBBA3Tq1AmzZs3CsmXLkJOTo69DIiIiojKkXCREQUFB8PPzg4+Pj1p5fHw8cnNz1co9PDxQtWpVxMXFAQDi4uJQt25dODo6Sm18fX2RkZGBs2fPFrvP7OxsZGRkqC1ERET0ZnqlQdWlaePGjTh+/DiOHj1aqC4pKQmmpqawtbVVK3d0dERSUpLU5tlkqKC+oK44ISEhmDlz5mtGT0REROWBzs4QLV++HMHBwbraHADg5s2bGDVqFNavXw8zMzOdbvtlJk2ahPT0dGm5efNmqe6fiIiISo/OEqLff/8doaGhutocgKeXxFJSUtCoUSOYmJjAxMQE+/btw5IlS2BiYgJHR0fk5OQgLS1Nbb3k5GQolUoAgFKpLDTrrOB1QZuiyOVyKBQKtYWIiIjeTDpLiKKjo3Ht2jVdbQ4A0KFDB5w+fRoJCQnS4uXlhYCAAOnnChUqIDo6Wlrn4sWLuHHjBry9vQEA3t7eOH36NFJSUqQ2UVFRUCgU8PT01Gm8REREVD691hgiIQQAQCaT6SSY51lbW6NOnTpqZZaWlqhYsaJUPnjwYIwdOxb29vZQKBT4/PPP4e3tjWbNmgEAOnbsCE9PT/Tr1w/z589HUlISpkyZgqCgIMjl8hKJm4iIiMqXVzpDtHbtWtStWxfm5uYwNzdHvXr18Msvv+g6No0sXLgQXbp0gb+/P1q3bg2lUonw8HCp3tjYGNu3b4exsTG8vb3xv//9D/3799f5eCciIiIqv7Q+Q7RgwQJMnToVI0aMkB7ueuDAAQwbNgz37t3DmDFjdB7ks/bu3av22szMDMuWLcOyZcuKXcfFxQU7d+4s0biIiIio/NI6IVq6dClWrFiB/v37S2XdunVD7dq1MWPGjBJPiIiIiIh0TetLZnfu3EHz5s0LlTdv3hx37tzRSVBEREREpUnrhMjd3R2bN28uVL5p0ybUqFFDJ0ERERERlSatL5nNnDkTvXv3xv79+6UxRP/88w+io6OLTJSIiIiIyjqtzxD5+/vj8OHDqFSpEiIiIhAREYFKlSrhyJEj6NmzZ0nESERERFSiXuk+RI0bN8a6det0HQsRERGRXpSLp90TERERlSSNzxAZGRm99I7UMpkMeXl5rx0UERERUWnSOCHaunVrsXVxcXFYsmQJVCqVToIiIiIiKk0aJ0Tdu3cvVHbx4kVMnDgRkZGRCAgI4OMwiIiIqFx6pTFEt2/fxpAhQ1C3bl3k5eUhISEBYWFhcHFx0XV8RERERCVOq4QoPT0dEyZMgLu7O86ePYvo6GhERkYWeiI9ERERUXmi8SWz+fPnY968eVAqlfj111+LvIRGROWT68Qdet3/9bl+et0/EZHGCdHEiRNhbm4Od3d3hIWFISwsrMh24eHhOguOiIiIqDRonBD179//pdPuiYiIiMojjROi0NDQEgyDiIiISH94p2oiIiIyeEyIiIiIyOAxISIiIiKDx4SIiIiIDB4TIiIiIjJ4TIiIiIjI4DEhIiIiIoPHhIiIiIgMHhMiIiIiMnhMiIiIiMjgMSEiIiIig6fxs8yIiEqK68Qd+g4B1+f66TsEItIjniEiIiIig8eEiIiIiAweEyIiIiIyeGU+IQoJCcG7774La2trODg4oEePHrh48aJamydPniAoKAgVK1aElZUV/P39kZycrNbmxo0b8PPzg4WFBRwcHDBu3Djk5eWV5qEQERFRGVXmE6J9+/YhKCgIhw4dQlRUFHJzc9GxY0c8evRIajNmzBhERkZiy5Yt2LdvH27fvo1evXpJ9fn5+fDz80NOTg4OHjyIsLAwhIaGYtq0afo4JCIiIipjyvwss927d6u9Dg0NhYODA+Lj49G6dWukp6fj559/xoYNG9C+fXsAwJo1a1CrVi0cOnQIzZo1w19//YVz585hz549cHR0RIMGDTBr1ixMmDABM2bMgKmpqT4OjYiIiMqIMn+G6Hnp6ekAAHt7ewBAfHw8cnNz4ePjI7Xx8PBA1apVERcXBwCIi4tD3bp14ejoKLXx9fVFRkYGzp49W4rRExERUVlU5s8QPUulUmH06NFo0aIF6tSpAwBISkqCqakpbG1t1do6OjoiKSlJavNsMlRQX1BXlOzsbGRnZ0uvMzIydHUYREREVMaUqzNEQUFBOHPmDDZu3Fji+woJCYGNjY20ODs7l/g+iYiISD/KTUI0YsQIbN++HbGxsXj77belcqVSiZycHKSlpam1T05OhlKplNo8P+us4HVBm+dNmjQJ6enp0nLz5k0dHg0RERGVJWU+IRJCYMSIEdi6dStiYmLg5uamVt+4cWNUqFAB0dHRUtnFixdx48YNeHt7AwC8vb1x+vRppKSkSG2ioqKgUCjg6elZ5H7lcjkUCoXaQkRERG+mMj+GKCgoCBs2bMAff/wBa2tracyPjY0NzM3NYWNjg8GDB2Ps2LGwt7eHQqHA559/Dm9vbzRr1gwA0LFjR3h6eqJfv36YP38+kpKSMGXKFAQFBUEul+vz8IiIiKgMKPMJ0YoVKwAAbdu2VStfs2YNBgwYAABYuHAhjIyM4O/vj+zsbPj6+mL58uVSW2NjY2zfvh3Dhw+Ht7c3LC0tERgYiODg4NI6DCIiIirDynxCJIR4aRszMzMsW7YMy5YtK7aNi4sLdu7cqcvQiIiI6A1R5scQEREREZU0JkRERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRERERGTwmBARERGRwWNCRERERAaPCREREREZPCZEREREZPCYEBEREZHBY0JEREREBo8JERERERk8JkRERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRERERGTwmBARERGRwWNCRERERAaPCREREREZPCZEREREZPCYEBEREZHBY0JEREREBo8JERERERk8JkRERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRERERGTwmBARERGRwTOohGjZsmVwdXWFmZkZmjZtiiNHjug7JCIiIioDDCYh2rRpE8aOHYvp06fj+PHjqF+/Pnx9fZGSkqLv0IiIiEjPDCYhWrBgAYYMGYKBAwfC09MTK1euhIWFBVavXq3v0IiIiEjPDCIhysnJQXx8PHx8fKQyIyMj+Pj4IC4uTo+RERERUVlgou8ASsO9e/eQn58PR0dHtXJHR0dcuHChyHWys7ORnZ0tvU5PTwcAZGRk6Dw+VXaWzrdJRNopic82aY7fg/p/D+r7d1BSx1+wXSHEC9sZREL0KkJCQjBz5sxC5c7OznqIhohKms0ifUdAhs7Q34MlffwPHz6EjY1NsfUGkRBVqlQJxsbGSE5OVitPTk6GUqkscp1JkyZh7Nix0muVSoXU1FRUrFgRMplMZ7FlZGTA2dkZN2/ehEKh0Nl2DRX7U7fYn7rF/tQt9qfuvYl9KoTAw4cP4eTk9MJ2BpEQmZqaonHjxoiOjkaPHj0APE1woqOjMWLEiCLXkcvlkMvlamW2trYlFqNCoXhj3nxlAftTt9ifusX+1C32p+69aX36ojNDBQwiIQKAsWPHIjAwEF5eXmjSpAkWLVqER48eYeDAgfoOjYiIiPTMYBKi3r174+7du5g2bRqSkpLQoEED7N69u9BAayIiIjI8BpMQAcCIESOKvUSmL3K5HNOnTy90eY5eDftTt9ifusX+1C32p+4Zcp/KxMvmoRERERG94QzixoxEREREL8KEiIiIiAweEyIiIiIyeEyIiIiIyOAxIdKjZcuWwdXVFWZmZmjatCmOHDmi75DKpJCQELz77ruwtraGg4MDevTogYsXL6q1efLkCYKCglCxYkVYWVnB39+/0J3Jb9y4AT8/P1hYWMDBwQHjxo1DXl5eaR5KmTR37lzIZDKMHj1aKmN/aufWrVv43//+h4oVK8Lc3Bx169bFsWPHpHohBKZNm4YqVarA3NwcPj4+uHz5sto2UlNTERAQAIVCAVtbWwwePBiZmZmlfSh6l5+fj6lTp8LNzQ3m5uaoXr06Zs2apfYcKvbni+3fvx9du3aFk5MTZDIZIiIi1Op11X+nTp1Cq1atYGZmBmdnZ8yfP7+kD61kCdKLjRs3ClNTU7F69Wpx9uxZMWTIEGFrayuSk5P1HVqZ4+vrK9asWSPOnDkjEhISROfOnUXVqlVFZmam1GbYsGHC2dlZREdHi2PHjolmzZqJ5s2bS/V5eXmiTp06wsfHR5w4cULs3LlTVKpUSUyaNEkfh1RmHDlyRLi6uop69eqJUaNGSeXsT82lpqYKFxcXMWDAAHH48GFx7do18eeff4orV65IbebOnStsbGxERESEOHnypOjWrZtwc3MTjx8/ltq8//77on79+uLQoUPi77//Fu7u7uLjjz/WxyHp1ezZs0XFihXF9u3bRWJiotiyZYuwsrISixcvltqwP19s586dYvLkySI8PFwAEFu3blWr10X/paenC0dHRxEQECDOnDkjfv31V2Fubi5++OGH0jpMnWNCpCdNmjQRQUFB0uv8/Hzh5OQkQkJC9BhV+ZCSkiIAiH379gkhhEhLSxMVKlQQW7ZskdqcP39eABBxcXFCiKdfEEZGRiIpKUlqs2LFCqFQKER2dnbpHkAZ8fDhQ1GjRg0RFRUl2rRpIyVE7E/tTJgwQbRs2bLYepVKJZRKpfjmm2+ksrS0NCGXy8Wvv/4qhBDi3LlzAoA4evSo1GbXrl1CJpOJW7dulVzwZZCfn58YNGiQWlmvXr1EQECAEIL9qa3nEyJd9d/y5cuFnZ2d2ud9woQJombNmiV8RCWHl8z0ICcnB/Hx8fDx8ZHKjIyM4OPjg7i4OD1GVj6kp6cDAOzt7QEA8fHxyM3NVetPDw8PVK1aVerPuLg41K1bV+3O5L6+vsjIyMDZs2dLMfqyIygoCH5+fmr9BrA/tbVt2zZ4eXnhww8/hIODAxo2bIgff/xRqk9MTERSUpJaf9rY2KBp06Zq/WlrawsvLy+pjY+PD4yMjHD48OHSO5gyoHnz5oiOjsalS5cAACdPnsSBAwfQqVMnAOzP16Wr/ouLi0Pr1q1hamoqtfH19cXFixfx4MGDUjoa3TKoO1WXFffu3UN+fn6hx4Y4OjriwoULeoqqfFCpVBg9ejRatGiBOnXqAACSkpJgampa6OG7jo6OSEpKktoU1d8FdYZm48aNOH78OI4ePVqojv2pnWvXrmHFihUYO3YsvvrqKxw9ehQjR46EqakpAgMDpf4oqr+e7U8HBwe1ehMTE9jb2xtcf06cOBEZGRnw8PCAsbEx8vPzMXv2bAQEBAAA+/M16ar/kpKS4ObmVmgbBXV2dnYlEn9JYkJE5UpQUBDOnDmDAwcO6DuUcuvmzZsYNWoUoqKiYGZmpu9wyj2VSgUvLy/MmTMHANCwYUOcOXMGK1euRGBgoJ6jK382b96M9evXY8OGDahduzYSEhIwevRoODk5sT+pRPGSmR5UqlQJxsbGhWbtJCcnQ6lU6imqsm/EiBHYvn07YmNj8fbbb0vlSqUSOTk5SEtLU2v/bH8qlcoi+7ugzpDEx8cjJSUFjRo1gomJCUxMTLBv3z4sWbIEJiYmcHR0ZH9qoUqVKvD09FQrq1WrFm7cuAHg//rjRZ93pVKJlJQUtfq8vDykpqYaXH+OGzcOEydORJ8+fVC3bl3069cPY8aMQUhICAD25+vSVf+9id8BTIj0wNTUFI0bN0Z0dLRUplKpEB0dDW9vbz1GVjYJITBixAhs3boVMTExhU7TNm7cGBUqVFDrz4sXL+LGjRtSf3p7e+P06dNqH/KoqCgoFIpCf8zedB06dMDp06eRkJAgLV5eXggICJB+Zn9qrkWLFoVuA3Hp0iW4uLgAANzc3KBUKtX6MyMjA4cPH1brz7S0NMTHx0ttYmJioFKp0LRp01I4irIjKysLRkbqf5qMjY2hUqkAsD9fl676z9vbG/v370dubq7UJioqCjVr1iyXl8sAcNq9vmzcuFHI5XIRGhoqzp07J4YOHSpsbW3VZu3QU8OHDxc2NjZi79694s6dO9KSlZUltRk2bJioWrWqiImJEceOHRPe3t7C29tbqi+YJt6xY0eRkJAgdu/eLSpXrmyQ08SL8uwsMyHYn9o4cuSIMDExEbNnzxaXL18W69evFxYWFmLdunVSm7lz5wpbW1vxxx9/iFOnTonu3bsXOc25YcOG4vDhw+LAgQOiRo0aBjNN/FmBgYHirbfekqbdh4eHi0qVKonx48dLbdifL/bw4UNx4sQJceLECQFALFiwQJw4cUL8+++/Qgjd9F9aWppwdHQU/fr1E2fOnBEbN24UFhYWnHZPr2bp0qWiatWqwtTUVDRp0kQcOnRI3yGVSQCKXNasWSO1efz4sfjss8+EnZ2dsLCwED179hR37txR287169dFp06dhLm5uahUqZL44osvRG5ubikfTdn0fELE/tROZGSkqFOnjpDL5cLDw0OsWrVKrV6lUompU6cKR0dHIZfLRYcOHcTFixfV2ty/f198/PHHwsrKSigUCjFw4EDx8OHD0jyMMiEjI0OMGjVKVK1aVZiZmYlq1aqJyZMnq03vZn++WGxsbJHfmYGBgUII3fXfyZMnRcuWLYVcLhdvvfWWmDt3bmkdYomQCfHM7T+JiIiIDBDHEBEREZHBY0JEREREBo8JERERERk8JkRERERk8JgQERERkcFjQkREREQGjwkRERERGTwmRET0WrKysuDv7w+FQgGZTFboGWjlzd69e3VyHDKZDBEREcXWX79+HTKZDAkJCa+0/bZt22L06NGvtC4RFcaEiKicGTBgAGQyGebOnatWHhERAZlMVurxhIWF4e+//8bBgwdx584d2NjYFGoTGhoKW1vbItd/WeJARQsPD8esWbNeaxt3797F8OHDUbVqVcjlciiVSvj6+uKff/6R2ri6ukImk0Emk8HS0hKNGjXCli1b1LaTkZGByZMnw8PDA2ZmZlAqlfDx8UF4eDh4718qL5gQEZVDZmZmmDdvHh48eKDvUHD16lXUqlULderUgVKp1EtSZojs7e1hbW39Wtvw9/fHiRMnEBYWhkuXLmHbtm1o27Yt7t+/r9YuODgYd+7cwYkTJ/Duu++id+/eOHjwIAAgLS0NzZs3x9q1azFp0iQcP34c+/fvR+/evTF+/Hikp6e/VoxEpYUJEVE55OPjA6VSiZCQkBe2+/3331G7dm3I5XK4urriu+++03pfL9pG27Zt8d1332H//v2QyWRo27at1tt/3unTp9G+fXuYm5ujYsWKGDp0KDIzM9X2+fyloh49emDAgAHS6+XLl6NGjRowMzODo6MjPvjgA6lOpVIhJCQEbm5uMDc3R/369fHbb78ViiM+Ph5eXl6wsLBA8+bNCz3RfsWKFahevTpMTU1Rs2ZN/PLLLy88riNHjqBhw4YwMzODl5cXTpw4oVb/4MEDBAQEoHLlyjA3N0eNGjWwZs2aYrf3fD+4urpizpw5GDRoEKytrVG1alWsWrWq2PXT0tLw999/Y968eWjXrh1cXFzQpEkTTJo0Cd26dVNra21tDaVSiXfeeQfLli2Dubk5IiMjAQBfffUVrl+/jsOHDyMwMBCenp545513MGTIECQkJMDKyuqF/UJUVjAhIiqHjI2NMWfOHCxduhT//fdfkW3i4+Px0UcfoU+fPjh9+jRmzJiBqVOnIjQ0VOP9vGwb4eHhGDJkCLy9vXHnzh2Eh4e/1nE9evQIvr6+sLOzw9GjR7Flyxbs2bMHI0aM0Hgbx44dw8iRIxEcHIyLFy9i9+7daN26tVQfEhKCtWvXYuXKlTh79izGjBmD//3vf9i3b5/adiZPnozvvvsOx44dg4mJCQYNGiTVbd26FaNGjcIXX3yBM2fO4NNPP8XAgQMRGxtbZEyZmZno0qULPD09ER8fjxkzZuDLL79UazN16lScO3cOu3btwvnz57FixQpUqlRJ4+MGgO+++05Ktj777DMMHz68UCJXwMrKClZWVoiIiEB2drbG+zAxMUGFChWQk5MDlUqFjRs3IiAgAE5OTkXuw8TERKtjINIbPT9cloi0FBgYKLp37y6EEKJZs2Zi0KBBQgghtm7dKp79SPft21e89957auuOGzdOeHp6arwvTbYxatQo0aZNmxduZ82aNQKAsLS0LLQAEFu3bhVCCLFq1SphZ2cnMjMzpXV37NghjIyMRFJSkhBCiDZt2ohRo0apbb979+7Sk7x///13oVAoREZGRqE4njx5IiwsLMTBgwfVygcPHiw+/vhjIcT/PSl8z549ajEAEI8fPxZCCNG8eXMxZMgQtW18+OGHonPnztLrZ4/rhx9+EBUrVpTWF0KIFStWCADixIkTQgghunbtKgYOHPiiblTzfD+4uLiI//3vf9JrlUolHBwcxIoVK4rdxm+//Sbs7OyEmZmZaN68uZg0aZI4efKkWhsXFxexcOFCIYQQ2dnZYs6cOQKA2L59u0hOThYAxIIFCzSOm6is4hkionJs3rx5CAsLw/nz5wvVnT9/Hi1atFAra9GiBS5fvoz8/HyNtq+LbRSwtrZGQkJCoeX5/dWvXx+WlpZq+1OpVMWe6Xjee++9BxcXF1SrVg39+vXD+vXrkZWVBQC4cuUKsrKy8N5770lnSKysrLB27VpcvXpVbTv16tWTfq5SpQoAICUlRYqzqH4p6vdQ0L5evXowMzOTyry9vdXaDB8+HBs3bkSDBg0wfvx4aYyONp6NWSaTQalUSjEXxd/fH7dv38a2bdvw/vvvY+/evWjUqFGhs4gTJkyAlZUVLCwsMG/ePMydOxd+fn4cME1vFJ7LJCrHWrduDV9fX0yaNEltDE1ZZGRkBHd3d51s5/k/xLm5udLP1tbWOH78OPbu3Yu//voL06ZNw4wZM3D06FFpLNKOHTvw1ltvqW1DLperva5QoYL0c8FAcZVK9drxF6dTp074999/sXPnTkRFRaFDhw4ICgrCt99+q/E2no0ZeBr3y2I2MzPDe++9h/feew9Tp07FJ598gunTp6u9n8aNG4cBAwbAysoKjo6OUn9UrlwZtra2uHDhguYHSlRG8QwRUTk3d+5cREZGIi4uTq28Vq1aatOnAeCff/7BO++8A2NjY422rYttaKNWrVo4efIkHj16pLY/IyMj1KxZE8DTP8J37tyR6vPz83HmzBm17ZiYmMDHxwfz58/HqVOncP36dcTExMDT0xNyuRw3btyAu7u72uLs7KxVnEX1i6enZ7HtT506hSdPnkhlhw4dKtSucuXKCAwMxLp167Bo0aIXDoouKZ6enmr9DwCVKlWCu7t7oVmERkZG6NOnD9avX4/bt28X2lZmZiby8vJKPGYiXWBCRFTO1a1bFwEBAViyZIla+RdffIHo6GjMmjULly5dQlhYGL7//nu1wbwdOnTA999/X+y2NdmGLgUEBMDMzAyBgYE4c+YMYmNj8fnnn6Nfv35wdHQEALRv3x47duzAjh07cOHCBQwfPlztJorbt2/HkiVLkJCQgH///Rdr166FSqVCzZo1YW1tjS+//BJjxoxBWFgYrl69iuPHj2Pp0qUICwvTOM5x48YhNDQUK1aswOXLl7FgwQKEh4cX2y99+/aFTCbDkCFDcO7cOezcubPQmZ9p06bhjz/+wJUrV3D27Fls374dtWrV0r4TNXT//n20b98e69atw6lTp5CYmIgtW7Zg/vz56N69u8bbmT17NpydndG0aVOsXbsW586dw+XLl7F69Wo0bNhQbYYgUVnGS2ZEb4Dg4GBs2rRJraxRo0bYvHkzpk2bhlmzZqFKlSoIDg5WuxRy9epV3Lt3r9jtarINXbKwsMCff/6JUaNG4d1334WFhQX8/f2xYMECqc2gQYNw8uRJ9O/fHyYmJhgzZgzatWsn1dva2iI8PBwzZszAkydPUKNGDfz666+oXbs2AGDWrFmoXLkyQkJCcO3aNdja2qJRo0b46quvNI6zR48eWLx4Mb799luMGjUKbm5uWLNmTbG3HbCyskJkZCSGDRuGhg0bwtPTE/PmzYO/v7/UxtTUFJMmTcL169dhbm6OVq1aYePGjVr2oOasrKzQtGlTLFy4EFevXkVubi6cnZ0xZMgQrfrC3t4ehw4dwty5c/H111/j33//hZ2dHerWrYtvvvmmyBt1EpVFMsFRcURERGTgeMmMiIiIDB4TIiIiIjJ4TIiIiIjI4DEhIiIiIoPHhIiIiIgMHhMiIiIiMnhMiIiIiMjgMSEiIiIig8eEiIiIiAweEyIiIiIyeEyIiIiIyOAxISIiIiKD9/8Am/KqQGG4x0UAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Get the counts of each key\n", "counts = [len(v) for v in matches_hh_level.values()]\n", @@ -3233,18 +1186,9 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "266 households in the SPC had no match\n", - "4.0 % of households in the SPC had no match\n" - ] - } - ], + "outputs": [], "source": [ "# no. of keys where value is na\n", "na_count = sum([1 for v in matches_hh_level.values() if pd.isna(v).all()])\n", @@ -3257,17 +1201,9 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "('E02002183_0091', [2019001902.0, 2019004101.0, 2019004092.0, 2019004108.0, 2019004125.0, 2019004121.0, 2019001719.0, 2019001714.0, 2019001119.0, 2019001130.0, 2019001148.0, 2019000880.0, 2019003240.0, 2019002767.0, 2019002775.0, 2019002769.0, 2019005597.0, 2019002770.0, 2019003252.0, 2019005438.0, 2019006462.0, 2019006475.0, 2019003208.0, 2019004196.0, 2019004191.0, 2019004200.0, 2019004197.0, 2019000839.0, 2019000350.0, 2019000855.0, 2019001091.0, 2019001721.0, 2019001716.0, 2019000813.0, 2019004159.0, 2019000823.0, 2019004177.0, 2019001167.0, 2019000633.0, 2019000536.0, 2019005323.0, 2019005356.0, 2019004637.0, 2019005612.0, 2019002547.0, 2019005638.0, 2019001816.0, 2019002329.0, 2019002894.0, 2019001865.0, 2019003329.0, 2019002919.0, 2019002929.0, 2019005553.0, 2019000307.0, 2019004714.0, 2019002980.0, 2019001202.0, 2019001205.0, 2019001210.0, 2019001782.0, 2019001788.0, 2019002721.0, 2019005579.0, 2019000863.0, 2019001896.0, 2019001909.0, 2019000589.0, 2019000701.0, 2019002368.0, 2019002369.0, 2019002374.0, 2019002378.0, 2019002376.0, 2019002366.0, 2019001012.0, 2019002405.0, 2019002392.0, 2019002712.0, 2019002711.0, 2019001044.0, 2019001066.0, 2019001084.0, 2019001268.0, 2019003070.0, 2019004770.0, 2019002288.0, 2019001949.0, 2019002312.0, 2019000961.0, 2019003385.0, 2019003394.0, 2019000244.0, 2019003381.0, 2019003384.0, 2019001373.0, 2019006564.0, 2019001450.0, 2019006569.0, 2019001371.0, 2019006568.0, 2019005410.0, 2019005415.0, 2019005417.0, 2019000491.0, 2019000187.0, 2019003333.0, 2019002952.0, 2019005752.0, 2019002951.0, 2019000199.0, 2019004994.0, 2019004997.0, 2019005174.0, 2019005909.0, 2019005185.0, 2019005177.0, 2019005914.0, 2019005558.0, 2019001437.0, 2019005574.0, 2019004547.0, 2019000074.0, 2019006080.0, 2019006090.0, 2019005020.0, 2019005024.0, 2019000088.0, 2019006273.0, 2019002705.0, 2019002203.0, 2019000762.0, 2019000759.0, 2019000655.0, 2019000661.0, 2019000662.0, 2019004035.0, 2019000660.0, 2019000767.0, 2019000529.0, 2019005311.0, 2019005342.0, 2019005501.0, 2019002739.0, 2019001245.0, 2019001286.0, 2019001255.0, 2019001246.0, 2019004776.0, 2019001261.0, 2019001259.0, 2019001295.0, 2019003022.0, 2019003023.0, 2019001269.0, 2019003725.0, 2019003726.0, 2019003737.0, 2019006300.0, 2019003738.0, 2019000518.0, 2019000523.0, 2019000525.0, 2019000212.0, 2019003411.0, 2019005772.0, 2019005779.0, 2019001284.0, 2019005849.0, 2019001596.0, 2019002044.0, 2019002039.0, 2019003127.0, 2019001490.0, 2019001493.0, 2019005972.0, 2019003150.0, 2019001959.0, 2019001964.0, 2019001966.0, 2019001543.0, 2019001983.0, 2019001524.0, 2019006505.0, 2019001350.0, 2019001349.0, 2019001352.0, 2019001355.0, 2019006549.0, 2019001367.0, 2019001400.0, 2019004598.0, 2019003484.0, 2019005143.0, 2019005152.0, 2019005172.0, 2019005810.0, 2019005039.0, 2019003494.0, 2019000052.0, 2019000056.0, 2019000081.0, 2019003540.0, 2019000134.0, 2019003554.0, 2019006630.0, 2019003560.0, 2019004432.0, 2019002492.0, 2019002518.0, 2019005498.0, 2019002519.0, 2019001670.0, 2019005821.0, 2019005869.0, 2019005116.0, 2019002058.0, 2019005864.0, 2019002061.0, 2019005069.0, 2019001826.0, 2019002872.0, 2019005708.0, 2019005693.0, 2019003294.0, 2019003297.0, 2019003273.0, 2019005654.0, 2019000907.0, 2019000913.0, 2019000904.0, 2019001823.0, 2019001839.0, 2019002861.0, 2019003365.0, 2019004669.0, 2019004660.0, 2019000293.0, 2019003910.0, 2019003911.0, 2019003921.0, 2019003801.0, 2019002075.0, 2019005823.0, 2019005218.0, 2019005226.0, 2019003630.0, 2019004305.0, 2019003648.0, 2019004314.0, 2019004315.0, 2019004291.0, 2019004303.0, 2019000247.0, 2019004579.0, 2019006669.0, 2019003730.0, 2019003713.0, 2019003618.0, 2019006291.0, 2019000021.0, 2019006077.0, 2019006110.0, 2019000030.0, 2019000041.0, 2019000025.0, 2019006127.0, 2019006764.0, 2019005947.0, 2019005959.0, 2019005812.0, 2019003831.0, 2019006755.0, 2019006754.0, 2019004601.0, 2019003077.0, 2019003104.0, 2019001320.0, 2019000452.0, 2019006436.0, 2019006446.0, 2019006425.0, 2019000459.0, 2019001318.0, 2019003125.0, 2019006375.0, 2019000329.0, 2019006406.0, 2019006409.0, 2019003164.0, 2019003220.0, 2019002599.0, 2019004341.0, 2019004327.0, 2019004349.0, 2019003683.0, 2019004334.0, 2019004343.0, 2019004354.0, 2019004854.0, 2019003777.0, 2019004802.0, 2019003968.0, 2019003944.0, 2019003962.0, 2019003754.0, 2019000038.0, 2019003699.0, 2019003694.0, 2019003704.0, 2019004385.0, 2019003706.0, 2019004367.0, 2019004379.0, 2019004387.0, 2019004819.0, 2019006822.0, 2019006239.0, 2019003571.0, 2019006642.0, 2019006229.0, 2019003586.0, 2019006248.0, 2019006663.0, 2019006677.0, 2019005784.0, 2019005793.0, 2019000224.0, 2019004485.0, 2019004981.0, 2019003821.0, 2019003852.0, 2019004508.0, 2019004515.0, 2019003858.0, 2019003864.0, 2019003889.0, 2021003917.0, 2021003873.0, 2021003878.0, 2021003879.0, 2021003008.0, 2021003874.0, 2021003880.0, 2021003633.0, 2021003020.0, 2021003914.0, 2021002626.0, 2021002635.0, 2021002656.0, 2021002664.0, 2021003779.0, 2021002082.0, 2021002092.0, 2021002220.0, 2021003126.0, 2021002234.0, 2021002531.0, 2021002249.0, 2021002546.0, 2021002959.0, 2021002954.0, 2021002968.0, 2021002844.0, 2021002595.0, 2021002598.0, 2021002858.0, 2021003704.0, 2021004011.0, 2021003082.0, 2021003707.0, 2021004022.0, 2021004025.0, 2021003745.0, 2021004057.0, 2021003800.0, 2021004098.0, 2021004102.0, 2021004100.0, 2021004110.0, 2021002538.0, 2021003180.0, 2021001152.0, 2021001179.0, 2021004549.0, 2021004176.0, 2021000529.0, 2021004303.0, 2021004567.0, 2021001893.0, 2021004313.0, 2021000557.0, 2021000523.0, 2021004209.0, 2021000563.0, 2021001900.0, 2021004572.0, 2021000556.0, 2021001203.0, 2021003945.0, 2021000172.0, 2021004792.0, 2021004791.0, 2021004794.0, 2021000165.0, 2021000159.0, 2021001661.0, 2021001907.0, 2021000199.0, 2021001724.0, 2021001954.0, 2021001736.0, 2021001721.0, 2021001967.0, 2021000464.0, 2021004234.0, 2021000514.0, 2021000987.0, 2021000997.0, 2021000976.0, 2021000775.0, 2021000804.0, 2021000797.0, 2021000801.0, 2021000789.0, 2021004514.0, 2021004260.0, 2021003028.0, 2021003746.0, 2021003027.0, 2021002703.0, 2021002706.0, 2021002394.0, 2021002159.0, 2021002379.0, 2021002147.0, 2021004317.0, 2021001450.0, 2021001242.0, 2021001435.0, 2021001429.0, 2021001456.0, 2021004591.0, 2021001224.0, 2021001499.0, 2021000582.0, 2021004371.0, 2021004375.0, 2021004373.0, 2021004379.0, 2021001036.0, 2021001305.0, 2021004397.0, 2021001083.0, 2021001100.0, 2021001335.0, 2021001081.0, 2021003792.0, 2021002083.0, 2021002210.0, 2021002525.0, 2021002353.0, 2021002511.0, 2021003061.0, 2021003694.0, 2021003685.0, 2021003978.0, 2021003692.0, 2021003500.0, 2021000307.0, 2021004668.0, 2021000072.0, 2021004703.0, 2021003511.0, 2021003529.0, 2021000372.0, 2021001979.0, 2021001983.0, 2021001978.0, 2021001552.0, 2021002003.0, 2021000634.0, 2021000638.0, 2021000629.0, 2021000491.0, 2021000632.0, 2021000649.0, 2021000296.0, 2021003478.0, 2021000064.0, 2021003362.0, 2021004673.0, 2021003360.0, 2021004676.0, 2021003371.0, 2021003377.0, 2021002406.0, 2021000222.0, 2021001692.0, 2021000422.0, 2021000414.0, 2021000418.0, 2021001707.0, 2021001955.0, 2021001911.0, 2021000206.0, 2021001680.0, 2021000020.0, 2021000225.0, 2021000226.0, 2021000025.0, 2021002482.0, 2021001802.0, 2021004223.0, 2021001803.0, 2021004641.0, 2021001809.0, 2021001800.0, 2021004642.0, 2021000736.0, 2021000745.0, 2021004233.0, 2021001820.0, 2021000945.0, 2021000972.0, 2021004666.0, 2021000969.0, 2021003546.0, 2021003554.0, 2021000371.0, 2021000388.0, 2021000826.0, 2021003855.0, 2021002073.0, 2021000814.0, 2021000816.0, 2021000850.0, 2021004137.0, 2021004533.0, 2021004144.0, 2021000835.0, 2021004526.0, 2021001400.0, 2021003417.0, 2021002259.0, 2021003242.0, 2021003269.0, 2021002286.0, 2021003281.0, 2021000599.0, 2021001274.0, 2021003603.0, 2021001590.0, 2021000501.0, 2021000881.0, 2021000889.0, 2021001562.0, 2021001595.0, 2021000879.0, 2021000887.0, 2021001612.0, 2021001594.0, 2021003270.0, 2021003282.0, 2021002294.0, 2021002293.0, 2021003307.0, 2021003308.0, 2021002297.0, 2021003467.0, 2021001356.0, 2021001347.0, 2021001326.0, 2021001114.0, 2021004441.0, 2021004445.0, 2021004430.0, 2021004460.0, 2021001132.0, 2021004436.0, 2021001128.0, 2021003096.0, 2021003097.0, 2021000130.0, 2021004781.0, 2021004776.0, 2021004785.0, 2021004772.0, 2022001047.0, 2022001062.0, 2022001110.0, 2022001120.0, 2022001123.0, 2022001176.0, 2022001215.0, 2022001217.0, 2022001223.0, 2022001228.0, 2022001255.0, 2022001300.0, 2022001301.0, 2022001310.0, 2022001375.0, 2022001376.0, 2022001381.0, 2022001402.0, 2022001410.0, 2022001415.0, 2022001419.0, 2022001429.0, 2022001434.0, 2022001449.0, 2022001549.0, 2022001552.0, 2022000006.0, 2022000010.0, 2022000014.0, 2022000064.0, 2022000107.0, 2022000110.0, 2022000116.0, 2022000123.0, 2022000126.0, 2022000181.0, 2022000218.0, 2022002651.0, 2022002676.0, 2022002688.0, 2022002698.0, 2022002707.0, 2022002722.0, 2022002757.0, 2022002777.0, 2022002778.0, 2022002787.0, 2022002848.0, 2022003170.0, 2022003226.0, 2022003247.0, 2022003274.0, 2022003279.0, 2022003295.0, 2022003300.0, 2022003315.0, 2022003324.0, 2022003340.0, 2022003388.0, 2022003394.0, 2022003414.0, 2022003423.0, 2022003427.0, 2022003430.0, 2022003476.0, 2022003515.0, 2022003525.0, 2022003536.0, 2022003539.0, 2022003579.0, 2022003600.0, 2022003627.0, 2022000552.0, 2022000556.0, 2022000579.0, 2022000596.0, 2022000624.0, 2022000633.0, 2022000653.0, 2022000659.0, 2022000662.0, 2022000668.0, 2022000695.0, 2022000718.0, 2022000719.0, 2022000720.0, 2022000735.0, 2022000758.0, 2022000815.0, 2022000816.0, 2022000823.0, 2022000844.0, 2022000867.0, 2022000874.0, 2022000887.0, 2022000918.0, 2022001652.0, 2022001663.0, 2022001669.0, 2022001678.0, 2022001681.0, 2022001682.0, 2022001684.0, 2022001685.0, 2022001708.0, 2022001734.0, 2022001745.0, 2022001759.0, 2022001765.0, 2022001767.0, 2022001828.0, 2022001856.0, 2022001934.0, 2022001937.0, 2022001944.0, 2022001953.0, 2022001988.0, 2022001998.0, 2022002009.0, 2022002098.0, 2022002136.0, 2022002140.0, 2022002166.0, 2022002174.0, 2022002197.0, 2022002211.0, 2022002256.0, 2022002336.0, 2022002346.0, 2022002356.0, 2022002358.0, 2022002363.0, 2022002364.0, 2022002380.0, 2022002429.0, 2022002435.0, 2022002460.0, 2022002509.0, 2022002522.0, 2022002525.0, 2022002531.0, 2022002571.0, 2022002582.0, 2022002590.0, 2022003660.0, 2022003669.0, 2022003720.0, 2022003727.0, 2022003759.0, 2022003808.0, 2022003813.0, 2022003817.0, 2022003841.0, 2022003844.0, 2022003872.0, 2022003881.0, 2022003890.0, 2022003892.0, 2022003904.0, 2022003912.0, 2022003913.0, 2022003916.0, 2022003921.0, 2022003932.0, 2022003935.0, 2022003937.0, 2022003940.0, 2022003945.0, 2022003961.0, 2022003976.0, 2022003978.0, 2022003984.0, 2022004015.0, 2022004048.0, 2022004075.0, 2022004078.0, 2022004096.0, 2022004130.0, 2022000262.0, 2022000268.0, 2022000269.0, 2022000284.0, 2022000357.0, 2022000439.0, 2022000444.0, 2022000461.0, 2022000484.0, 2022000485.0, 2022000517.0, 2022002869.0, 2022002872.0, 2022002878.0, 2022002897.0, 2022002907.0, 2022002908.0, 2022002931.0, 2022002937.0, 2022002967.0, 2022002974.0, 2022002987.0, 2022003004.0, 2022003042.0, 2022003049.0, 2022003056.0, 2022003058.0, 2022003065.0, 2022003067.0, 2022003104.0, 2022003106.0, 2022003114.0, 2022003116.0, 2022004222.0, 2022004240.0, 2022004255.0, 2022004305.0, 2022004329.0, 2022004359.0])\n" - ] - } - ], + "outputs": [], "source": [ "# print the 6th key, value in the matches_hh_level dictionary\n", "print(list(matches_hh_level.items())[90])" @@ -3275,387 +1211,9 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idhouseholdlocationpid_hsmsoaoamemberssic1d2007sic2d2007pwkstatsalary_yearlysalary_hourlyhidaccommodation_typecommunal_typenum_roomscentral_heattenurenum_carssexage_yearsethnicitynssec8salary_yearly_hhsalary_yearly_hh_catis_adultnum_adultsis_childnum_childrenis_pension_agenum_pension_agepwkstat_FT_hhpwkstat_PT_hhpwkstat_NTS_matchOA11CDRUC11RUC11CDSettlement2011EW_B03ID_spcSettlement2011EW_B04ID_spcSettlement2011EW_B03ID_spc_CDSettlement2011EW_B04ID_spc_CDtenure_spc_for_matchingnts_hh_id
000{'x': -1.7892179489135742, 'y': 53.91915130615...2905399E02002183E00053954[0]J58.06NaNNaNE02002183_00011.0NaN2.0True2.0218611.00.0000001110011001E00053954Urban city and townC1UrbanUrban City and Town121.0[2019004064.0, 2019000229.0, 2019002914.0, 201...
111{'x': -1.8262380361557007, 'y': 53.92028045654...2905308E02002183E00053953[1, 2]C25.06NaNNaNE02002183_00023.0NaN6.0True2.0217431.00.0000001120012001E00053953Urban city and townC1UrbanUrban City and Town121.0[2019004130.0, 2019004126.0, 2019004144.0, 201...
221{'x': -1.8262380361557007, 'y': 53.92028045654...2907681E02002183E00053953[1, 2]P85.06NaNNaNE02002183_00023.0NaN6.0True2.0226812.00.0000001120012001E00053953Urban city and townC1UrbanUrban City and Town121.0[2019004130.0, 2019004126.0, 2019004144.0, 201...
332{'x': -1.8749940395355225, 'y': 53.94298934936...2902817E02002183E00053689[3, 4]C31.0132857.85937514.360952E02002183_00033.0NaN6.0True2.0112714.051020.3105473120000206E00053689Rural town and fringeD1RuralRural Town and Fringe231.0[2019001923.0, 2019003253.0, 2019001755.0, 201...
442{'x': -1.8749940395355225, 'y': 53.94298934936...2900884E02002183E00053689[3, 4]J62.0118162.4511729.439944E02002183_00033.0NaN6.0True2.0122616.051020.3105473120000206E00053689Rural town and fringeD1RuralRural Town and Fringe231.0[2019001923.0, 2019003253.0, 2019001755.0, 201...
\n", - "
" - ], - "text/plain": [ - " id household location pid_hs \\\n", - "0 0 0 {'x': -1.7892179489135742, 'y': 53.91915130615... 2905399 \n", - "1 1 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2905308 \n", - "2 2 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2907681 \n", - "3 3 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2902817 \n", - "4 4 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2900884 \n", - "\n", - " msoa oa members sic1d2007 sic2d2007 pwkstat salary_yearly \\\n", - "0 E02002183 E00053954 [0] J 58.0 6 NaN \n", - "1 E02002183 E00053953 [1, 2] C 25.0 6 NaN \n", - "2 E02002183 E00053953 [1, 2] P 85.0 6 NaN \n", - "3 E02002183 E00053689 [3, 4] C 31.0 1 32857.859375 \n", - "4 E02002183 E00053689 [3, 4] J 62.0 1 18162.451172 \n", - "\n", - " salary_hourly hid accommodation_type communal_type \\\n", - "0 NaN E02002183_0001 1.0 NaN \n", - "1 NaN E02002183_0002 3.0 NaN \n", - "2 NaN E02002183_0002 3.0 NaN \n", - "3 14.360952 E02002183_0003 3.0 NaN \n", - "4 9.439944 E02002183_0003 3.0 NaN \n", - "\n", - " num_rooms central_heat tenure num_cars sex age_years ethnicity \\\n", - "0 2.0 True 2.0 2 1 86 1 \n", - "1 6.0 True 2.0 2 1 74 3 \n", - "2 6.0 True 2.0 2 2 68 1 \n", - "3 6.0 True 2.0 1 1 27 1 \n", - "4 6.0 True 2.0 1 2 26 1 \n", - "\n", - " nssec8 salary_yearly_hh salary_yearly_hh_cat is_adult num_adults \\\n", - "0 1.0 0.000000 1 1 1 \n", - "1 1.0 0.000000 1 1 2 \n", - "2 2.0 0.000000 1 1 2 \n", - "3 4.0 51020.310547 3 1 2 \n", - "4 6.0 51020.310547 3 1 2 \n", - "\n", - " is_child num_children is_pension_age num_pension_age pwkstat_FT_hh \\\n", - "0 0 0 1 1 0 \n", - "1 0 0 1 2 0 \n", - "2 0 0 1 2 0 \n", - "3 0 0 0 0 2 \n", - "4 0 0 0 0 2 \n", - "\n", - " pwkstat_PT_hh pwkstat_NTS_match OA11CD RUC11 RUC11CD \\\n", - "0 0 1 E00053954 Urban city and town C1 \n", - "1 0 1 E00053953 Urban city and town C1 \n", - "2 0 1 E00053953 Urban city and town C1 \n", - "3 0 6 E00053689 Rural town and fringe D1 \n", - "4 0 6 E00053689 Rural town and fringe D1 \n", - "\n", - " Settlement2011EW_B03ID_spc Settlement2011EW_B04ID_spc \\\n", - "0 Urban Urban City and Town \n", - "1 Urban Urban City and Town \n", - "2 Urban Urban City and Town \n", - "3 Rural Rural Town and Fringe \n", - "4 Rural Rural Town and Fringe \n", - "\n", - " Settlement2011EW_B03ID_spc_CD Settlement2011EW_B04ID_spc_CD \\\n", - "0 1 2 \n", - "1 1 2 \n", - "2 1 2 \n", - "3 2 3 \n", - "4 2 3 \n", - "\n", - " tenure_spc_for_matching nts_hh_id \n", - "0 1.0 [2019004064.0, 2019000229.0, 2019002914.0, 201... \n", - "1 1.0 [2019004130.0, 2019004126.0, 2019004144.0, 201... \n", - "2 1.0 [2019004130.0, 2019004126.0, 2019004144.0, 201... \n", - "3 1.0 [2019001923.0, 2019003253.0, 2019001755.0, 201... \n", - "4 1.0 [2019001923.0, 2019003253.0, 2019001755.0, 201... " - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "## add matches_hh_level as a column in spc_edited\n", "spc_edited['nts_hh_id'] = spc_edited['hid'].map(matches_hh_level)\n", @@ -3674,7 +1232,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3697,17 +1255,9 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "('E02002183_0595', 2019003190.0)\n" - ] - } - ], + "outputs": [], "source": [ "print(list(matches_hh_level_sample.items())[568])" ] @@ -3721,7 +1271,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3789,288 +1339,9 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IndividualIDHouseholdIDPSUIDAge_B01IDAge_B04IDSex_B01IDOfPenAge_B01IDHRPRelation_B01IDEdAttn1_B01IDEdAttn2_B01IDEdAttn3_B01IDOwnCycle_B01IDDrivLic_B02IDCarAccess_B01IDIndIncome2002_B02IDIndWkGOR_B02IDEcoStat_B02IDEcoStat_B03IDNSSec_B03IDSC_B01IDStat_B01IDWkMode_B01IDWkHome_B01IDPossHom_B01IDOftHome_B01IDTravSh_B01IDSchDly_B01IDSchTrav_B01IDSchAcc_B01IDFdShp_B01ID
34087220190053762019002277201900025342123-9-9-9-10-94-9-9.0-9-9-9-9-9-9-10-10-9-10191-10
34087320190053772019002278201900025312522991-9-9-101238.0111111-10-102-10-9-9-9-10
3408742019005378201900227820190002531361221-9-9-101237.0111218-10-107-10-9-9-9-10
34087520190053792019002279201900025320921991-9-9-10361-9.043331-9-10-10-9-10-9-9-9-10
34087620190053802019002280201900025313612991-9-9-10152-9.0113411-10-107-10-9-9-9-10
\n", - "
" - ], - "text/plain": [ - " IndividualID HouseholdID PSUID Age_B01ID Age_B04ID \\\n", - "340872 2019005376 2019002277 2019000253 4 2 \n", - "340873 2019005377 2019002278 2019000253 12 5 \n", - "340874 2019005378 2019002278 2019000253 13 6 \n", - "340875 2019005379 2019002279 2019000253 20 9 \n", - "340876 2019005380 2019002280 2019000253 13 6 \n", - "\n", - " Sex_B01ID OfPenAge_B01ID HRPRelation_B01ID EdAttn1_B01ID \\\n", - "340872 1 2 3 -9 \n", - "340873 2 2 99 1 \n", - "340874 1 2 2 1 \n", - "340875 2 1 99 1 \n", - "340876 1 2 99 1 \n", - "\n", - " EdAttn2_B01ID EdAttn3_B01ID OwnCycle_B01ID DrivLic_B02ID \\\n", - "340872 -9 -9 -10 -9 \n", - "340873 -9 -9 -10 1 \n", - "340874 -9 -9 -10 1 \n", - "340875 -9 -9 -10 3 \n", - "340876 -9 -9 -10 1 \n", - "\n", - " CarAccess_B01ID IndIncome2002_B02ID IndWkGOR_B02ID EcoStat_B02ID \\\n", - "340872 4 -9 -9.0 -9 \n", - "340873 2 3 8.0 1 \n", - "340874 2 3 7.0 1 \n", - "340875 6 1 -9.0 4 \n", - "340876 5 2 -9.0 1 \n", - "\n", - " EcoStat_B03ID NSSec_B03ID SC_B01ID Stat_B01ID WkMode_B01ID \\\n", - "340872 -9 -9 -9 -9 -9 \n", - "340873 1 1 1 1 1 \n", - "340874 1 1 2 1 8 \n", - "340875 3 3 3 1 -9 \n", - "340876 1 3 4 1 1 \n", - "\n", - " WkHome_B01ID PossHom_B01ID OftHome_B01ID TravSh_B01ID \\\n", - "340872 -10 -10 -9 -10 \n", - "340873 -10 -10 2 -10 \n", - "340874 -10 -10 7 -10 \n", - "340875 -10 -10 -9 -10 \n", - "340876 -10 -10 7 -10 \n", - "\n", - " SchDly_B01ID SchTrav_B01ID SchAcc_B01ID FdShp_B01ID \n", - "340872 1 9 1 -10 \n", - "340873 -9 -9 -9 -10 \n", - "340874 -9 -9 -9 -10 \n", - "340875 -9 -9 -9 -10 \n", - "340876 -9 -9 -9 -10 " - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "nts_individuals.head()" ] @@ -4084,7 +1355,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -4116,7 +1387,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -4152,29 +1423,9 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{0: 349184,\n", - " 1: 368506,\n", - " 2: 368505,\n", - " 3: 355607,\n", - " 4: 355606,\n", - " 5: 344330,\n", - " 9: 352777,\n", - " 10: 354879,\n", - " 11: 354878,\n", - " 12: 354880}" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import itertools\n", "\n", @@ -4184,7 +1435,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -4197,406 +1448,9 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idhouseholdlocationpid_hsmsoaoamemberssic1d2007sic2d2007pwkstatsalary_yearlysalary_hourlyhidaccommodation_typecommunal_typenum_roomscentral_heattenurenum_carssexage_yearsethnicitynssec8salary_yearly_hhsalary_yearly_hh_catis_adultnum_adultsis_childnum_childrenis_pension_agenum_pension_agepwkstat_FT_hhpwkstat_PT_hhpwkstat_NTS_matchOA11CDRUC11RUC11CDSettlement2011EW_B03ID_spcSettlement2011EW_B04ID_spcSettlement2011EW_B03ID_spc_CDSettlement2011EW_B04ID_spc_CDtenure_spc_for_matchingnts_hh_idage_groupnts_ind_id
000{'x': -1.7892179489135742, 'y': 53.91915130615...2905399E02002183E00053954[0]J58.06NaNNaNE02002183_00011.0NaN2.0True2.0218611.00.0000001110011001E00053954Urban city and townC1UrbanUrban City and Town121.0[2019004064.0, 2019000229.0, 2019002914.0, 201...92.019009e+09
111{'x': -1.8262380361557007, 'y': 53.92028045654...2905308E02002183E00053953[1, 2]C25.06NaNNaNE02002183_00023.0NaN6.0True2.0217431.00.0000001120012001E00053953Urban city and townC1UrbanUrban City and Town121.0[2019004130.0, 2019004126.0, 2019004144.0, 201...92.021011e+09
221{'x': -1.8262380361557007, 'y': 53.92028045654...2907681E02002183E00053953[1, 2]P85.06NaNNaNE02002183_00023.0NaN6.0True2.0226812.00.0000001120012001E00053953Urban city and townC1UrbanUrban City and Town121.0[2019004130.0, 2019004126.0, 2019004144.0, 201...92.021011e+09
332{'x': -1.8749940395355225, 'y': 53.94298934936...2902817E02002183E00053689[3, 4]C31.0132857.85937514.360952E02002183_00033.0NaN6.0True2.0112714.051020.3105473120000206E00053689Rural town and fringeD1RuralRural Town and Fringe231.0[2019001923.0, 2019003253.0, 2019001755.0, 201...52.019010e+09
442{'x': -1.8749940395355225, 'y': 53.94298934936...2900884E02002183E00053689[3, 4]J62.0118162.4511729.439944E02002183_00033.0NaN6.0True2.0122616.051020.3105473120000206E00053689Rural town and fringeD1RuralRural Town and Fringe231.0[2019001923.0, 2019003253.0, 2019001755.0, 201...52.019010e+09
\n", - "
" - ], - "text/plain": [ - " id household location pid_hs \\\n", - "0 0 0 {'x': -1.7892179489135742, 'y': 53.91915130615... 2905399 \n", - "1 1 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2905308 \n", - "2 2 1 {'x': -1.8262380361557007, 'y': 53.92028045654... 2907681 \n", - "3 3 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2902817 \n", - "4 4 2 {'x': -1.8749940395355225, 'y': 53.94298934936... 2900884 \n", - "\n", - " msoa oa members sic1d2007 sic2d2007 pwkstat salary_yearly \\\n", - "0 E02002183 E00053954 [0] J 58.0 6 NaN \n", - "1 E02002183 E00053953 [1, 2] C 25.0 6 NaN \n", - "2 E02002183 E00053953 [1, 2] P 85.0 6 NaN \n", - "3 E02002183 E00053689 [3, 4] C 31.0 1 32857.859375 \n", - "4 E02002183 E00053689 [3, 4] J 62.0 1 18162.451172 \n", - "\n", - " salary_hourly hid accommodation_type communal_type \\\n", - "0 NaN E02002183_0001 1.0 NaN \n", - "1 NaN E02002183_0002 3.0 NaN \n", - "2 NaN E02002183_0002 3.0 NaN \n", - "3 14.360952 E02002183_0003 3.0 NaN \n", - "4 9.439944 E02002183_0003 3.0 NaN \n", - "\n", - " num_rooms central_heat tenure num_cars sex age_years ethnicity \\\n", - "0 2.0 True 2.0 2 1 86 1 \n", - "1 6.0 True 2.0 2 1 74 3 \n", - "2 6.0 True 2.0 2 2 68 1 \n", - "3 6.0 True 2.0 1 1 27 1 \n", - "4 6.0 True 2.0 1 2 26 1 \n", - "\n", - " nssec8 salary_yearly_hh salary_yearly_hh_cat is_adult num_adults \\\n", - "0 1.0 0.000000 1 1 1 \n", - "1 1.0 0.000000 1 1 2 \n", - "2 2.0 0.000000 1 1 2 \n", - "3 4.0 51020.310547 3 1 2 \n", - "4 6.0 51020.310547 3 1 2 \n", - "\n", - " is_child num_children is_pension_age num_pension_age pwkstat_FT_hh \\\n", - "0 0 0 1 1 0 \n", - "1 0 0 1 2 0 \n", - "2 0 0 1 2 0 \n", - "3 0 0 0 0 2 \n", - "4 0 0 0 0 2 \n", - "\n", - " pwkstat_PT_hh pwkstat_NTS_match OA11CD RUC11 RUC11CD \\\n", - "0 0 1 E00053954 Urban city and town C1 \n", - "1 0 1 E00053953 Urban city and town C1 \n", - "2 0 1 E00053953 Urban city and town C1 \n", - "3 0 6 E00053689 Rural town and fringe D1 \n", - "4 0 6 E00053689 Rural town and fringe D1 \n", - "\n", - " Settlement2011EW_B03ID_spc Settlement2011EW_B04ID_spc \\\n", - "0 Urban Urban City and Town \n", - "1 Urban Urban City and Town \n", - "2 Urban Urban City and Town \n", - "3 Rural Rural Town and Fringe \n", - "4 Rural Rural Town and Fringe \n", - "\n", - " Settlement2011EW_B03ID_spc_CD Settlement2011EW_B04ID_spc_CD \\\n", - "0 1 2 \n", - "1 1 2 \n", - "2 1 2 \n", - "3 2 3 \n", - "4 2 3 \n", - "\n", - " tenure_spc_for_matching nts_hh_id \\\n", - "0 1.0 [2019004064.0, 2019000229.0, 2019002914.0, 201... \n", - "1 1.0 [2019004130.0, 2019004126.0, 2019004144.0, 201... \n", - "2 1.0 [2019004130.0, 2019004126.0, 2019004144.0, 201... \n", - "3 1.0 [2019001923.0, 2019003253.0, 2019001755.0, 201... \n", - "4 1.0 [2019001923.0, 2019003253.0, 2019001755.0, 201... \n", - "\n", - " age_group nts_ind_id \n", - "0 9 2.019009e+09 \n", - "1 9 2.021011e+09 \n", - "2 9 2.021011e+09 \n", - "3 5 2.019010e+09 \n", - "4 5 2.019010e+09 " - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "spc_edited.head(5)" ] @@ -4610,465 +1464,9 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idhouseholdlocationpid_hsmsoaoamemberssic1d2007sic2d2007pwkstatsalary_yearlysalary_hourlyhidaccommodation_typecommunal_typenum_roomscentral_heattenurenum_carssexage_yearsethnicitynssec8salary_yearly_hhsalary_yearly_hh_catis_adultnum_adultsis_childnum_childrenis_pension_agenum_pension_agepwkstat_FT_hhpwkstat_PT_hhpwkstat_NTS_matchOA11CDRUC11RUC11CDSettlement2011EW_B03ID_spcSettlement2011EW_B04ID_spcSettlement2011EW_B03ID_spc_CDSettlement2011EW_B04ID_spc_CDtenure_spc_for_matchingnts_hh_idage_groupnts_ind_id
11711761{'x': -1.887002944946289, 'y': 53.944278717041...2904126E02002183E00053688[116, 117]G47.010NaNNaNE02002183_00623.0NaN4.0True5.0217111.05020.7880861120012012E00053688Rural town and fringeD1RuralRural Town and Fringe232.0[2019000929.0, 2019003194.0, 2019003199.0, 201...92022001198.0
11811862{'x': -1.8956769704818726, 'y': 53.94247055053...2908490E02002183E00053691[118, 119]J61.0118557.2460949.391318E02002183_00631.0NaN5.0True1.0113014.018557.2460941120000103E00053691Rural town and fringeD1RuralRural Town and Fringe231.0[2019001923.0, 2019003253.0, 2019001755.0, 201...62019007422.0
11911962{'x': -1.8956769704818726, 'y': 53.94247055053...2911873E02002183E00053691[118, 119]M70.04NaNNaNE02002183_00631.0NaN5.0True1.0122912.018557.2460941120000103E00053691Rural town and fringeD1RuralRural Town and Fringe231.0[2019001923.0, 2019003253.0, 2019001755.0, 201...52019007423.0
12012063{'x': -1.7892179489135742, 'y': 53.91915130615...2911879E02002183E00053954[120, 121]C27.0153864.95312525.896612E02002183_00644.0NaN6.0True1.0214211.053864.9531253120000103E00053954Urban city and townC1UrbanUrban City and Town121.0[2019001902.0, 2019004101.0, 2019004092.0, 201...72022006066.0
12112163{'x': -1.7892179489135742, 'y': 53.91915130615...2904728E02002183E00053954[120, 121]C14.04NaNNaNE02002183_00644.0NaN6.0True1.0224215.053864.9531253120000103E00053954Urban city and townC1UrbanUrban City and Town121.0[2019001902.0, 2019004101.0, 2019004092.0, 201...72022006067.0
12212264{'x': -1.8792779445648193, 'y': 53.94593048095...2910111E02002183E00053696[122]M71.0151522.85156224.770601E02002183_00652.0NaN3.0True4.0115332.051522.8515623110000103E00053696Rural town and fringeD1RuralRural Town and Fringe232.0[2019000933.0, 2019001918.0, 2019001705.0, 201...82022004957.0
\n", - "
" - ], - "text/plain": [ - " id household location \\\n", - "117 117 61 {'x': -1.887002944946289, 'y': 53.944278717041... \n", - "118 118 62 {'x': -1.8956769704818726, 'y': 53.94247055053... \n", - "119 119 62 {'x': -1.8956769704818726, 'y': 53.94247055053... \n", - "120 120 63 {'x': -1.7892179489135742, 'y': 53.91915130615... \n", - "121 121 63 {'x': -1.7892179489135742, 'y': 53.91915130615... \n", - "122 122 64 {'x': -1.8792779445648193, 'y': 53.94593048095... \n", - "\n", - " pid_hs msoa oa members sic1d2007 sic2d2007 pwkstat \\\n", - "117 2904126 E02002183 E00053688 [116, 117] G 47.0 10 \n", - "118 2908490 E02002183 E00053691 [118, 119] J 61.0 1 \n", - "119 2911873 E02002183 E00053691 [118, 119] M 70.0 4 \n", - "120 2911879 E02002183 E00053954 [120, 121] C 27.0 1 \n", - "121 2904728 E02002183 E00053954 [120, 121] C 14.0 4 \n", - "122 2910111 E02002183 E00053696 [122] M 71.0 1 \n", - "\n", - " salary_yearly salary_hourly hid accommodation_type \\\n", - "117 NaN NaN E02002183_0062 3.0 \n", - "118 18557.246094 9.391318 E02002183_0063 1.0 \n", - "119 NaN NaN E02002183_0063 1.0 \n", - "120 53864.953125 25.896612 E02002183_0064 4.0 \n", - "121 NaN NaN E02002183_0064 4.0 \n", - "122 51522.851562 24.770601 E02002183_0065 2.0 \n", - "\n", - " communal_type num_rooms central_heat tenure num_cars sex age_years \\\n", - "117 NaN 4.0 True 5.0 2 1 71 \n", - "118 NaN 5.0 True 1.0 1 1 30 \n", - "119 NaN 5.0 True 1.0 1 2 29 \n", - "120 NaN 6.0 True 1.0 2 1 42 \n", - "121 NaN 6.0 True 1.0 2 2 42 \n", - "122 NaN 3.0 True 4.0 1 1 53 \n", - "\n", - " ethnicity nssec8 salary_yearly_hh salary_yearly_hh_cat is_adult \\\n", - "117 1 1.0 5020.788086 1 1 \n", - "118 1 4.0 18557.246094 1 1 \n", - "119 1 2.0 18557.246094 1 1 \n", - "120 1 1.0 53864.953125 3 1 \n", - "121 1 5.0 53864.953125 3 1 \n", - "122 3 2.0 51522.851562 3 1 \n", - "\n", - " num_adults is_child num_children is_pension_age num_pension_age \\\n", - "117 2 0 0 1 2 \n", - "118 2 0 0 0 0 \n", - "119 2 0 0 0 0 \n", - "120 2 0 0 0 0 \n", - "121 2 0 0 0 0 \n", - "122 1 0 0 0 0 \n", - "\n", - " pwkstat_FT_hh pwkstat_PT_hh pwkstat_NTS_match OA11CD \\\n", - "117 0 1 2 E00053688 \n", - "118 1 0 3 E00053691 \n", - "119 1 0 3 E00053691 \n", - "120 1 0 3 E00053954 \n", - "121 1 0 3 E00053954 \n", - "122 1 0 3 E00053696 \n", - "\n", - " RUC11 RUC11CD Settlement2011EW_B03ID_spc \\\n", - "117 Rural town and fringe D1 Rural \n", - "118 Rural town and fringe D1 Rural \n", - "119 Rural town and fringe D1 Rural \n", - "120 Urban city and town C1 Urban \n", - "121 Urban city and town C1 Urban \n", - "122 Rural town and fringe D1 Rural \n", - "\n", - " Settlement2011EW_B04ID_spc Settlement2011EW_B03ID_spc_CD \\\n", - "117 Rural Town and Fringe 2 \n", - "118 Rural Town and Fringe 2 \n", - "119 Rural Town and Fringe 2 \n", - "120 Urban City and Town 1 \n", - "121 Urban City and Town 1 \n", - "122 Rural Town and Fringe 2 \n", - "\n", - " Settlement2011EW_B04ID_spc_CD tenure_spc_for_matching \\\n", - "117 3 2.0 \n", - "118 3 1.0 \n", - "119 3 1.0 \n", - "120 2 1.0 \n", - "121 2 1.0 \n", - "122 3 2.0 \n", - "\n", - " nts_hh_id age_group nts_ind_id \n", - "117 [2019000929.0, 2019003194.0, 2019003199.0, 201... 9 2022001198.0 \n", - "118 [2019001923.0, 2019003253.0, 2019001755.0, 201... 6 2019007422.0 \n", - "119 [2019001923.0, 2019003253.0, 2019001755.0, 201... 5 2019007423.0 \n", - "120 [2019001902.0, 2019004101.0, 2019004092.0, 201... 7 2022006066.0 \n", - "121 [2019001902.0, 2019004101.0, 2019004092.0, 201... 7 2022006067.0 \n", - "122 [2019000933.0, 2019001918.0, 2019001705.0, 201... 8 2022004957.0 " - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "#ids = [99, 100, 101, 102]\n", "ids = [109, 110, 111, 112, 113, 114]\n", @@ -5099,393 +1497,9 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
idhouseholdpwkstatsalary_yearlysalary_hourlyhidtenurenum_carssexage_yearsage_groupnssec8salary_yearly_hhsalary_yearly_hh_catis_adultis_childis_pension_agepwkstat_FT_hhpwkstat_PT_hhpwkstat_NTS_matchSettlement2011EW_B03ID_spcSettlement2011EW_B04ID_spcSettlement2011EW_B03ID_spc_CDSettlement2011EW_B04ID_spc_CD
1171176110NaNNaNE02002183_00625.0217191.05020.7880861101012RuralRural Town and Fringe23
11811862118557.2460949.391318E02002183_00631.0113064.018557.2460941100103RuralRural Town and Fringe23
119119624NaNNaNE02002183_00631.0122952.018557.2460941100103RuralRural Town and Fringe23
12012063153864.95312525.896612E02002183_00641.0214271.053864.9531253100103UrbanUrban City and Town12
121121634NaNNaNE02002183_00641.0224275.053864.9531253100103UrbanUrban City and Town12
12212264151522.85156224.770601E02002183_00654.0115382.051522.8515623100103RuralRural Town and Fringe23
\n", - "
" - ], - "text/plain": [ - " id household pwkstat salary_yearly salary_hourly hid tenure \\\n", - "117 117 61 10 NaN NaN E02002183_0062 5.0 \n", - "118 118 62 1 18557.246094 9.391318 E02002183_0063 1.0 \n", - "119 119 62 4 NaN NaN E02002183_0063 1.0 \n", - "120 120 63 1 53864.953125 25.896612 E02002183_0064 1.0 \n", - "121 121 63 4 NaN NaN E02002183_0064 1.0 \n", - "122 122 64 1 51522.851562 24.770601 E02002183_0065 4.0 \n", - "\n", - " num_cars sex age_years age_group nssec8 salary_yearly_hh \\\n", - "117 2 1 71 9 1.0 5020.788086 \n", - "118 1 1 30 6 4.0 18557.246094 \n", - "119 1 2 29 5 2.0 18557.246094 \n", - "120 2 1 42 7 1.0 53864.953125 \n", - "121 2 2 42 7 5.0 53864.953125 \n", - "122 1 1 53 8 2.0 51522.851562 \n", - "\n", - " salary_yearly_hh_cat is_adult is_child is_pension_age pwkstat_FT_hh \\\n", - "117 1 1 0 1 0 \n", - "118 1 1 0 0 1 \n", - "119 1 1 0 0 1 \n", - "120 3 1 0 0 1 \n", - "121 3 1 0 0 1 \n", - "122 3 1 0 0 1 \n", - "\n", - " pwkstat_PT_hh pwkstat_NTS_match Settlement2011EW_B03ID_spc \\\n", - "117 1 2 Rural \n", - "118 0 3 Rural \n", - "119 0 3 Rural \n", - "120 0 3 Urban \n", - "121 0 3 Urban \n", - "122 0 3 Rural \n", - "\n", - " Settlement2011EW_B04ID_spc Settlement2011EW_B03ID_spc_CD \\\n", - "117 Rural Town and Fringe 2 \n", - "118 Rural Town and Fringe 2 \n", - "119 Rural Town and Fringe 2 \n", - "120 Urban City and Town 1 \n", - "121 Urban City and Town 1 \n", - "122 Rural Town and Fringe 2 \n", - "\n", - " Settlement2011EW_B04ID_spc_CD \n", - "117 3 \n", - "118 3 \n", - "119 3 \n", - "120 2 \n", - "121 2 \n", - "122 3 " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IndividualIDHouseholdIDAge_B01IDage_groupsexOfPenAge_B01IDIndIncome2002_B02ID
3758942.022001e+092.022001e+0918.09.01.01.01.0
3519192.019007e+092.019003e+0916.09.01.02.01.0
3519202.019007e+092.019003e+0916.09.01.02.03.0
3806752.022006e+092.022003e+0914.07.01.02.01.0
3806762.022006e+092.022003e+0914.07.02.02.03.0
3784012.022005e+092.022002e+0917.09.02.02.01.0
\n", - "
" - ], - "text/plain": [ - " IndividualID HouseholdID Age_B01ID age_group sex OfPenAge_B01ID \\\n", - "375894 2.022001e+09 2.022001e+09 18.0 9.0 1.0 1.0 \n", - "351919 2.019007e+09 2.019003e+09 16.0 9.0 1.0 2.0 \n", - "351920 2.019007e+09 2.019003e+09 16.0 9.0 1.0 2.0 \n", - "380675 2.022006e+09 2.022003e+09 14.0 7.0 1.0 2.0 \n", - "380676 2.022006e+09 2.022003e+09 14.0 7.0 2.0 2.0 \n", - "378401 2.022005e+09 2.022002e+09 17.0 9.0 2.0 2.0 \n", - "\n", - " IndIncome2002_B02ID \n", - "375894 1.0 \n", - "351919 1.0 \n", - "351920 3.0 \n", - "380675 1.0 \n", - "380676 3.0 \n", - "378401 1.0 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from IPython.display import display\n", "\n", @@ -5572,1321 +1586,9 @@ }, { "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TripIDDayIDIndividualIDHouseholdIDPSUIDPersNoTravDayJourSeqShortWalkTrip_B01IDNumStagesMainMode_B03IDMainMode_B04IDTripPurpFrom_B01IDTripPurpTo_B01IDTripPurpose_B04IDTripStartTripEndTripDisIncSWTripDisExSWTripTotalTimeTripTravTimeTripOrigGOR_B02IDTripDestGOR_B02IDW5W5xHH
46595832019009707201900450820190007022019000291201900003227121532322810.0840.04.04.03030.077.00.7561841.000000
465958420190097092019004508201900070220190002912019000032273215342341050.01060.01.01.01010.077.01.0046881.328628
46595852019009711201900451220190007032019000291201900003234221187102371200.01230.03.03.03030.077.00.7676221.015126
465958620190103622019004797201900074420190003062019000033223217412237990.0995.02.02.055.022.01.0484381.000000
4659587201901037720190048022019000744201900030620190000332722126123127925.0958.06.96.93333.022.01.1234511.071548
46595882019010379201900480320190007472019000308201900003311122532311450.0470.02.22.02020.022.00.8172871.000000
465958920190109132019005097201900079520190003282019000036312218410157800.0820.010.010.02020.088.01.0599171.000000
46595902019010628201900494520190007712019000319201900003513321534234795.0810.06.16.11515.088.00.9979671.227954
465959120190106302019004946201900077120190003192019000035142212115238460.0480.01.01.02020.088.00.9135601.124095
4659592201901064320190049492019000771201900031920190000351732153231271040.01050.03.03.0107.088.00.8708541.071548
\n", - "
" - ], - "text/plain": [ - " TripID DayID IndividualID HouseholdID PSUID \\\n", - "4659583 2019009707 2019004508 2019000702 2019000291 2019000032 \n", - "4659584 2019009709 2019004508 2019000702 2019000291 2019000032 \n", - "4659585 2019009711 2019004512 2019000703 2019000291 2019000032 \n", - "4659586 2019010362 2019004797 2019000744 2019000306 2019000033 \n", - "4659587 2019010377 2019004802 2019000744 2019000306 2019000033 \n", - "4659588 2019010379 2019004803 2019000747 2019000308 2019000033 \n", - "4659589 2019010913 2019005097 2019000795 2019000328 2019000036 \n", - "4659590 2019010628 2019004945 2019000771 2019000319 2019000035 \n", - "4659591 2019010630 2019004946 2019000771 2019000319 2019000035 \n", - "4659592 2019010643 2019004949 2019000771 2019000319 2019000035 \n", - "\n", - " PersNo TravDay JourSeq ShortWalkTrip_B01ID NumStages \\\n", - "4659583 2 7 1 2 1 \n", - "4659584 2 7 3 2 1 \n", - "4659585 3 4 2 2 1 \n", - "4659586 2 2 3 2 1 \n", - "4659587 2 7 2 2 1 \n", - "4659588 1 1 1 2 2 \n", - "4659589 3 1 2 2 1 \n", - "4659590 1 3 3 2 1 \n", - "4659591 1 4 2 2 1 \n", - "4659592 1 7 3 2 1 \n", - "\n", - " MainMode_B03ID MainMode_B04ID TripPurpFrom_B01ID TripPurpTo_B01ID \\\n", - "4659583 5 3 23 2 \n", - "4659584 5 3 4 23 \n", - "4659585 18 7 10 23 \n", - "4659586 7 4 12 23 \n", - "4659587 26 12 3 12 \n", - "4659588 5 3 23 1 \n", - "4659589 8 4 10 15 \n", - "4659590 5 3 4 23 \n", - "4659591 2 1 15 23 \n", - "4659592 5 3 23 12 \n", - "\n", - " TripPurpose_B04ID TripStart TripEnd TripDisIncSW TripDisExSW \\\n", - "4659583 2 810.0 840.0 4.0 4.0 \n", - "4659584 4 1050.0 1060.0 1.0 1.0 \n", - "4659585 7 1200.0 1230.0 3.0 3.0 \n", - "4659586 7 990.0 995.0 2.0 2.0 \n", - "4659587 7 925.0 958.0 6.9 6.9 \n", - "4659588 1 450.0 470.0 2.2 2.0 \n", - "4659589 7 800.0 820.0 10.0 10.0 \n", - "4659590 4 795.0 810.0 6.1 6.1 \n", - "4659591 8 460.0 480.0 1.0 1.0 \n", - "4659592 7 1040.0 1050.0 3.0 3.0 \n", - "\n", - " TripTotalTime TripTravTime TripOrigGOR_B02ID TripDestGOR_B02ID \\\n", - "4659583 30 30.0 7 7.0 \n", - "4659584 10 10.0 7 7.0 \n", - "4659585 30 30.0 7 7.0 \n", - "4659586 5 5.0 2 2.0 \n", - "4659587 33 33.0 2 2.0 \n", - "4659588 20 20.0 2 2.0 \n", - "4659589 20 20.0 8 8.0 \n", - "4659590 15 15.0 8 8.0 \n", - "4659591 20 20.0 8 8.0 \n", - "4659592 10 7.0 8 8.0 \n", - "\n", - " W5 W5xHH \n", - "4659583 0.756184 1.000000 \n", - "4659584 1.004688 1.328628 \n", - "4659585 0.767622 1.015126 \n", - "4659586 1.048438 1.000000 \n", - "4659587 1.123451 1.071548 \n", - "4659588 0.817287 1.000000 \n", - "4659589 1.059917 1.000000 \n", - "4659590 0.997967 1.227954 \n", - "4659591 0.913560 1.124095 \n", - "4659592 0.870854 1.071548 " - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nts_trips.head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Rename columns and map actual modes and trip purposes to the trip table. \n", - "\n", - "Code taken from: https://github.com/arup-group/pam/blob/main/examples/07_travel_survey_to_matsim.ipynb" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TripIDDayIDIndividualIDHouseholdIDPSUIDPersNoTravDayseqShortWalkTrip_B01IDNumStagesMainMode_B03IDmodeoactdactTripPurpose_B04IDtsttetTripDisIncSWTripDisExSWTripTotalTimeTripTravTimeozonedzoneW5W5xHH
46595832019009707201900450820190007022019000291201900003227121532322810.0840.04.04.03030.077.00.7561841.000000
465958420190097092019004508201900070220190002912019000032273215342341050.01060.01.01.01010.077.01.0046881.328628
46595852019009711201900451220190007032019000291201900003234221187102371200.01230.03.03.03030.077.00.7676221.015126
465958620190103622019004797201900074420190003062019000033223217412237990.0995.02.02.055.022.01.0484381.000000
4659587201901037720190048022019000744201900030620190000332722126123127925.0958.06.96.93333.022.01.1234511.071548
46595882019010379201900480320190007472019000308201900003311122532311450.0470.02.22.02020.022.00.8172871.000000
465958920190109132019005097201900079520190003282019000036312218410157800.0820.010.010.02020.088.01.0599171.000000
46595902019010628201900494520190007712019000319201900003513321534234795.0810.06.16.11515.088.00.9979671.227954
465959120190106302019004946201900077120190003192019000035142212115238460.0480.01.01.02020.088.00.9135601.124095
4659592201901064320190049492019000771201900031920190000351732153231271040.01050.03.03.0107.088.00.8708541.071548
\n", - "
" - ], - "text/plain": [ - " TripID DayID IndividualID HouseholdID PSUID \\\n", - "4659583 2019009707 2019004508 2019000702 2019000291 2019000032 \n", - "4659584 2019009709 2019004508 2019000702 2019000291 2019000032 \n", - "4659585 2019009711 2019004512 2019000703 2019000291 2019000032 \n", - "4659586 2019010362 2019004797 2019000744 2019000306 2019000033 \n", - "4659587 2019010377 2019004802 2019000744 2019000306 2019000033 \n", - "4659588 2019010379 2019004803 2019000747 2019000308 2019000033 \n", - "4659589 2019010913 2019005097 2019000795 2019000328 2019000036 \n", - "4659590 2019010628 2019004945 2019000771 2019000319 2019000035 \n", - "4659591 2019010630 2019004946 2019000771 2019000319 2019000035 \n", - "4659592 2019010643 2019004949 2019000771 2019000319 2019000035 \n", - "\n", - " PersNo TravDay seq ShortWalkTrip_B01ID NumStages MainMode_B03ID \\\n", - "4659583 2 7 1 2 1 5 \n", - "4659584 2 7 3 2 1 5 \n", - "4659585 3 4 2 2 1 18 \n", - "4659586 2 2 3 2 1 7 \n", - "4659587 2 7 2 2 1 26 \n", - "4659588 1 1 1 2 2 5 \n", - "4659589 3 1 2 2 1 8 \n", - "4659590 1 3 3 2 1 5 \n", - "4659591 1 4 2 2 1 2 \n", - "4659592 1 7 3 2 1 5 \n", - "\n", - " mode oact dact TripPurpose_B04ID tst tet TripDisIncSW \\\n", - "4659583 3 23 2 2 810.0 840.0 4.0 \n", - "4659584 3 4 23 4 1050.0 1060.0 1.0 \n", - "4659585 7 10 23 7 1200.0 1230.0 3.0 \n", - "4659586 4 12 23 7 990.0 995.0 2.0 \n", - "4659587 12 3 12 7 925.0 958.0 6.9 \n", - "4659588 3 23 1 1 450.0 470.0 2.2 \n", - "4659589 4 10 15 7 800.0 820.0 10.0 \n", - "4659590 3 4 23 4 795.0 810.0 6.1 \n", - "4659591 1 15 23 8 460.0 480.0 1.0 \n", - "4659592 3 23 12 7 1040.0 1050.0 3.0 \n", - "\n", - " TripDisExSW TripTotalTime TripTravTime ozone dzone W5 \\\n", - "4659583 4.0 30 30.0 7 7.0 0.756184 \n", - "4659584 1.0 10 10.0 7 7.0 1.004688 \n", - "4659585 3.0 30 30.0 7 7.0 0.767622 \n", - "4659586 2.0 5 5.0 2 2.0 1.048438 \n", - "4659587 6.9 33 33.0 2 2.0 1.123451 \n", - "4659588 2.0 20 20.0 2 2.0 0.817287 \n", - "4659589 10.0 20 20.0 8 8.0 1.059917 \n", - "4659590 6.1 15 15.0 8 8.0 0.997967 \n", - "4659591 1.0 20 20.0 8 8.0 0.913560 \n", - "4659592 3.0 10 7.0 8 8.0 0.870854 \n", - "\n", - " W5xHH \n", - "4659583 1.000000 \n", - "4659584 1.328628 \n", - "4659585 1.015126 \n", - "4659586 1.000000 \n", - "4659587 1.071548 \n", - "4659588 1.000000 \n", - "4659589 1.000000 \n", - "4659590 1.227954 \n", - "4659591 1.124095 \n", - "4659592 1.071548 " - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "nts_trips = nts_trips.rename(\n", - " columns={ # rename data\n", - " \"JourSeq\": \"seq\",\n", - " \"TripOrigGOR_B02ID\": \"ozone\",\n", - " \"TripDestGOR_B02ID\": \"dzone\",\n", - " \"TripPurpFrom_B01ID\": \"oact\",\n", - " \"TripPurpTo_B01ID\": \"dact\",\n", - " \"MainMode_B04ID\": \"mode\",\n", - " \"TripStart\": \"tst\",\n", - " \"TripEnd\": \"tet\",\n", - " }\n", - ")\n", - "\n", - "nts_trips.head(10)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, + "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "mode_mapping = {\n", - " 1: \"walk\",\n", - " 2: \"bike\",\n", - " 3: \"car\", #'Car/van driver'\n", - " 4: \"car\", #'Car/van driver'\n", - " 5: \"motorcycle\", #'Motorcycle',\n", - " 6: \"car\", #'Other private transport',\n", - " 7: \"pt\", # Bus in London',\n", - " 8: \"pt\", #'Other local bus',\n", - " 9: \"pt\", #'Non-local bus',\n", - " 10: \"pt\", #'London Underground',\n", - " 11: \"pt\", #'Surface Rail',\n", - " 12: \"car\", #'Taxi/minicab',\n", - " 13: \"pt\", #'Other public transport',\n", - " -10: \"DEAD\",\n", - " -8: \"NA\",\n", - "}\n", - "\n", - "purp_mapping = {\n", - " 1: \"work\",\n", - " 2: \"work\", #'In course of work',\n", - " 3: \"education\",\n", - " 4: \"shop\", #'Food shopping',\n", - " 5: \"shop\", #'Non food shopping',\n", - " 6: \"medical\", #'Personal business medical',\n", - " 7: \"other\", #'Personal business eat/drink',\n", - " 8: \"other\", #'Personal business other',\n", - " 9: \"other\", #'Eat/drink with friends',\n", - " 10: \"visit\", #'Visit friends',\n", - " 11: \"other\", #'Other social',\n", - " 12: \"other\", #'Entertain/ public activity',\n", - " 13: \"other\", #'Sport: participate',\n", - " 14: \"home\", #'Holiday: base',\n", - " 15: \"other\", #'Day trip/just walk',\n", - " 16: \"other\", #'Other non-escort',\n", - " 17: \"escort\", #'Escort home',\n", - " 18: \"escort\", #'Escort work',\n", - " 19: \"escort\", #'Escort in course of work',\n", - " 20: \"escort\", #'Escort education',\n", - " 21: \"escort\", #'Escort shopping/personal business',\n", - " 22: \"escort\", #'Other escort',\n", - " 23: \"home\", #'Home',\n", - " -10: \"DEAD\",\n", - " -8: \"NA\",\n", - "}\n", - "\n", - "\n", - "nts_trips[\"mode\"] = nts_trips[\"mode\"].map(mode_mapping)\n", - "\n", - "nts_trips[\"oact\"] = nts_trips[\"oact\"].map(purp_mapping)\n", - "\n", - "nts_trips[\"dact\"] = nts_trips[\"dact\"].map(purp_mapping)" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
TripIDDayIDIndividualIDHouseholdIDPSUIDPersNoTravDayseqShortWalkTrip_B01IDNumStagesMainMode_B03IDmodeoactdactTripPurpose_B04IDtsttetTripDisIncSWTripDisExSWTripTotalTimeTripTravTimeozonedzoneW5W5xHH
465958320190097072019004508201900070220190002912019000032271215carhomework2810.0840.04.04.03030.077.00.7561841.000000
465958420190097092019004508201900070220190002912019000032273215carshophome41050.01060.01.01.01010.077.01.0046881.328628
4659585201900971120190045122019000703201900029120190000323422118ptvisithome71200.01230.03.03.03030.077.00.7676221.015126
465958620190103622019004797201900074420190003062019000033223217carotherhome7990.0995.02.02.055.022.01.0484381.000000
4659587201901037720190048022019000744201900030620190000332722126careducationother7925.0958.06.96.93333.022.01.1234511.071548
465958820190103792019004803201900074720190003082019000033111225carhomework1450.0470.02.22.02020.022.00.8172871.000000
465958920190109132019005097201900079520190003282019000036312218carvisitother7800.0820.010.010.02020.088.01.0599171.000000
465959020190106282019004945201900077120190003192019000035133215carshophome4795.0810.06.16.11515.088.00.9979671.227954
465959120190106302019004946201900077120190003192019000035142212walkotherhome8460.0480.01.01.02020.088.00.9135601.124095
465959220190106432019004949201900077120190003192019000035173215carhomeother71040.01050.03.03.0107.088.00.8708541.071548
\n", - "
" - ], - "text/plain": [ - " TripID DayID IndividualID HouseholdID PSUID \\\n", - "4659583 2019009707 2019004508 2019000702 2019000291 2019000032 \n", - "4659584 2019009709 2019004508 2019000702 2019000291 2019000032 \n", - "4659585 2019009711 2019004512 2019000703 2019000291 2019000032 \n", - "4659586 2019010362 2019004797 2019000744 2019000306 2019000033 \n", - "4659587 2019010377 2019004802 2019000744 2019000306 2019000033 \n", - "4659588 2019010379 2019004803 2019000747 2019000308 2019000033 \n", - "4659589 2019010913 2019005097 2019000795 2019000328 2019000036 \n", - "4659590 2019010628 2019004945 2019000771 2019000319 2019000035 \n", - "4659591 2019010630 2019004946 2019000771 2019000319 2019000035 \n", - "4659592 2019010643 2019004949 2019000771 2019000319 2019000035 \n", - "\n", - " PersNo TravDay seq ShortWalkTrip_B01ID NumStages MainMode_B03ID \\\n", - "4659583 2 7 1 2 1 5 \n", - "4659584 2 7 3 2 1 5 \n", - "4659585 3 4 2 2 1 18 \n", - "4659586 2 2 3 2 1 7 \n", - "4659587 2 7 2 2 1 26 \n", - "4659588 1 1 1 2 2 5 \n", - "4659589 3 1 2 2 1 8 \n", - "4659590 1 3 3 2 1 5 \n", - "4659591 1 4 2 2 1 2 \n", - "4659592 1 7 3 2 1 5 \n", - "\n", - " mode oact dact TripPurpose_B04ID tst tet \\\n", - "4659583 car home work 2 810.0 840.0 \n", - "4659584 car shop home 4 1050.0 1060.0 \n", - "4659585 pt visit home 7 1200.0 1230.0 \n", - "4659586 car other home 7 990.0 995.0 \n", - "4659587 car education other 7 925.0 958.0 \n", - "4659588 car home work 1 450.0 470.0 \n", - "4659589 car visit other 7 800.0 820.0 \n", - "4659590 car shop home 4 795.0 810.0 \n", - "4659591 walk other home 8 460.0 480.0 \n", - "4659592 car home other 7 1040.0 1050.0 \n", - "\n", - " TripDisIncSW TripDisExSW TripTotalTime TripTravTime ozone dzone \\\n", - "4659583 4.0 4.0 30 30.0 7 7.0 \n", - "4659584 1.0 1.0 10 10.0 7 7.0 \n", - "4659585 3.0 3.0 30 30.0 7 7.0 \n", - "4659586 2.0 2.0 5 5.0 2 2.0 \n", - "4659587 6.9 6.9 33 33.0 2 2.0 \n", - "4659588 2.2 2.0 20 20.0 2 2.0 \n", - "4659589 10.0 10.0 20 20.0 8 8.0 \n", - "4659590 6.1 6.1 15 15.0 8 8.0 \n", - "4659591 1.0 1.0 20 20.0 8 8.0 \n", - "4659592 3.0 3.0 10 7.0 8 8.0 \n", - "\n", - " W5 W5xHH \n", - "4659583 0.756184 1.000000 \n", - "4659584 1.004688 1.328628 \n", - "4659585 0.767622 1.015126 \n", - "4659586 1.048438 1.000000 \n", - "4659587 1.123451 1.071548 \n", - "4659588 0.817287 1.000000 \n", - "4659589 1.059917 1.000000 \n", - "4659590 0.997967 1.227954 \n", - "4659591 0.913560 1.124095 \n", - "4659592 0.870854 1.071548 " - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ "nts_trips.head(10)" ]