This is a demo script to scale up or down cluster based on cluster cpu and memory usage
Install requests using pip:
$ pip install requests
Install Azure CLI 1.0 (Azure CLI 2.0 does not support HDinsight cluster) Click Link to see installlation instruction
After install Azure CLI 1.0 Run the following command to login:
$ azure login
Once you login azure you should see existing HDinsight clusters using:
$ azure hdinsight cluster list
open unravel_HDInsight_autoscaling.py
and edit these variables:
unravel_base_url e.g. 'http://localhost:3000'
memory_threshold e.g. 80; scale up/down when memory_usage higher/lower 80%
cpu_threshold e.g. 10; scale up when cpu_usage higher/lower 10%
min_nodes e.g. 4; min worker nodes
max_nodes e.g. 10; max worker nodes can scale up to
resource_group e.g. 'UNRAVEL01'
cluster_name e.g. 'estspk2rh75'
cluster name and resource group name can be retrieved using azure command:
$ azure hdinsight cluster list
Run the script:
python unravel_HDInsight_autoscaling.py