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1
Introduction to the topic of this book

ch
:i
nt
ro Poincaré sagte gelegentlich, dass alle Mathematik eine Gruppenge-

schichte war. Ich erzählte ihm dann über dein Programm, das er
nicht kannte.

Poincaré was saying that all of mathematics was a tale about groups.
I then told him about your program, which he didn’t know about.

(Letter from Sophus Lie to Felix Klein, October 1882)

This book is about symmetry and its many manifestations in mathe-
matics. There are many kinds of symmetry and many ways of studying
it. Euclidean plane geometry is the study of properties that are invariant
under rigid motions of the plane. Other kinds of geometry arise by
considering other notions of transformation. Univalent mathematics
gives a new perspective on symmetries: Motions of the plane are forms
of identifying the plane with itself in possibly non-trivial ways. It
may also be useful to consider different presentations of planes (for in-
stance as embedded in a common three-dimensional space) and different
identifications between them. For instance, when drawing images in
perspective we identify planes in the scene with the image plane, not in
a rigid Euclidean way, but rather via a perspectivity (see Fig. ?). This
gives rise to projective geometry.

Does that mean that a plane from the point of view of Euclidean
geometry is not the same as a plane from the point of view of projective
or affine geometry? Yes. These are of different types, because they
have different notions of identification, and thus they have different
properties.

Here we follow Quine’s dictum: No entity without identity! To know
a type of objects is to know what it means to identify representatives of
the type. The collection of self-identifications (self-transformations) of a
given object form a group.

Group theory emerged from many different directions in the latter
half of the 19th century. Lagrange initiated the study of the invariants
under permutations of the roots of a polynomial equation 𝑓 (𝑥) = 0,
which culminated in the celebrated work of Abel and Galois. In number
theory, Gauss had made detailed studies of modular arithmetic, proving
for instance that the group of units of ℤ/𝑝ℤ is cyclic. Klein was bringing
order to geometry by considering groups of transformation, while
Lie was applying group theory in analysis to the study of differential
equations.

1
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Galois was the first to use the word “group” in a technical sense,
speaking of collections of permutations closed under composition. He
realized that the existence of resolvent equation is equivalent to the
existence of a normal subgroup of prime index in the group of the
equation.

Groupoids vs groups. The type of all squares in a euclidean plane
form a groupoid. It is connected, because between any two there exist
identifications between them. But there is no canonical identification.

When we say “the symmetry group of the square”, we can mean two
things: 1) the symmetry group of a particular square; this is indeed a
group, or 2) the connected groupoid of all squares; this is a “group up
to conjugation”.

Vector spaces. Constructions and fields. Descartes and cartesian
geometry.

Klein’s EP:

Given a manifold and a transformation group acting on it, to
investigate those properties of figures on that manifold that
are invariant under transformations of that group.

and

Given a manifold, and a transformation group acting on it,
to study its invariants.

Invariant theory had previously been introduced in algebra and studied
by Clebsch and Gordan.

(Mention continuity, differentiability, analyticity and Hilbert’s 5th

problem?)
Any finite automorphism group of the Riemann sphere is conjugate

to a rotation group (automorphism group of the Euclidean sphere).
[Dependency: diagonalizability] (Any complex representation of a finite
group is conjugate to a unitary representation.)

All of mathematics is a tale, not about groups, but about ∞-groupoids.
However, a lot of the action happens already with groups.
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Glossary of coercions

MOVE TO BETTER PLACE Throughout this book we will use the
following coercions to make the text more readable.

• If 𝑋 is the pointed type (𝐴, 𝑎), then 𝑥 : 𝑋 means 𝑥 : 𝐴.
• On hold, lacking context: If 𝑝 and 𝑞 are paths, then (𝑝 , 𝑞) means

(𝑝 , 𝑞)=.
• If 𝑒 is a pair of a function and a proof, we also use 𝑒 for the function.
• If 𝑒 is an equivalence between types 𝐴 and 𝐵, we use 𝑒 for the

identification of 𝐴 and 𝐵 induced by univalence.
• If 𝑝 : 𝐴 = 𝐵 with 𝐴 and 𝐵 types, then we use 𝑝̃ for the canonical

equivalence from 𝐴 to 𝐵 (also only as function).
• If 𝑋 is (𝐴, 𝑎 , . . .) with 𝑎 : 𝐴, then pt𝑋 and even just pt mean 𝑎.

How to read this book

. . .
A word of warning. We include a lot of figures to make it easier to follow
the material. But like all mathematical writing, you’ll get the most out of
it, if you maintain a skeptical attitude: Do the pictures really accurately
represent the formal constructions? Don’t just believe us: Think about it!

The same goes for the proofs: When we say that something clearly
follows, it should be clear to you. So clear, in fact, that you could go and
convince a proof assistant, should you so desire.

Acknowledgement
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1The grammar of a programming lan-
guage consists of all the language’s
rules. A statement or expression in a
programming language is grammati-
cally well formed if it follows all the
rules.

2A string is a sequence of characters,
such as “abcdefgh”.

3In a programming language, the well
formed expression 1/𝑥 may produce
a run-time error if 𝑥 happens to have
the value 0.

4A Boolean value is either true or false.

5An example of a floating point number
is . 625 × 233 – the mantissa . 625 and
the exponent 33 are stored inside the
floating point number. The “point”,
when the number is written in base 2
notation, is called “floating”, because
its position is easily changed by
modifying the exponent.

6In mathematics there are no “run-
time” errors; rather, it is legitimate
to write the expression 1/𝑥 only if
we already know that 𝑥 is a non-zero
real number.
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An introduction to univalent mathematics
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�.� What is a type?

se
c:
wh
at
-i
s-
a-
ty
pe In some computer programming languages, all variables are introduced

along with a declaration of the type of thing they will refer to. Knowing
the type of thing a variable refers to allows the computer to determine
which expressions in the language are grammatically well formed1, and
hence valid. For example, if 𝑠 is a string2 and 𝑥 is a real number, we may
write 1/𝑥, but we may not write 1/𝑠.3

To enable the programmer to express such declarations, names are
introduced to refer to the various types of things. For example, the
name Bool may be used to declare that a variable is a Boolean value4, Int
may refer to 32 bit integers, and Real may refer to 64 bit floating point
numbers5.

Types occur in mathematics, too, and are used in the same way: all
variables are introduced along with a declaration of the type of thing
they will refer to. For example, one may say “consider a real number
𝑥”, “consider a natural number 𝑛”, “consider a point 𝑃 of the plane”,
or “consider a line 𝐿 of the plane”. After that introduction, one may say
that the type of 𝑛 is natural number and that the type of 𝑃 is point of the
plane. Just as in a computer program, type declarations such as those are
used to determine which mathematical statements are grammatically
well formed. Thus one may write “𝑃 lies on 𝐿” or 1/𝑥, but not “𝐿 lies on
𝑃” nor 1/𝐿.6

Often ordinary English writing is good enough for such declarations in
mathematics expositions, but, for convenience, mathematicians usually
introduce symbolic names to refer to the various types of things under
discussion. For example, the name ℕ is usually used when declaring
that a variable is a natural number, the name ℤ is usually used when
declaring that a variable is an integer, and the name ℝ is usually used
when declaring that a variable is a real number. Ways are also given
for constructing new type names from old ones: for example, the name
ℝ×ℝ may be used when declaring that a variable is a point of the plane,
for it conveys the information that a point of the plane is a pair of real
numbers.

Once one becomes accustomed to the use of names such as ℕ in
mathematical writing and speaking, it is natural to take the next step
and regard those names as denoting things that exist. Thus, we shall
refer to ℕ as the type of all natural numbers, and we will think of it as a
mathematical object in its own right. Intuitively and informally, it is a
collection whose members (or elements) are the natural numbers.

4
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7TO DO : Include some pointers to
discussions of potential infinity and
actual infinity, perhaps.

8The term “univalent” is a word
coined by Vladimir Voevodsky, who
introduced it to describe his prin-
ciple that types that are equivalent
in a certain sense can be identified
with each other. The principle is
stated precisely in Principle 2.13.2.
As Voevodsky explained, the word
comes from a Russian translation
of a mathematics book, where the
English mathematical term “faith-
ful” was translated into Russian as
the Russian word that sounds like
“univalent”. He also said “Indeed
these foundations seem to be faithful
to the way in which I think about
mathematical objects in my head.”

9The notation in mathematics based
on set theory that corresponds (sort
of) to this is 𝑎 ∈ 𝑋.

10Well, either we should suppose 𝑛 ≥
3, or make some other stipulation
about 𝑃𝑛 for 𝑛 < 3.

Once we view the various types as existing as mathematical objects,
they become worthy of study. The language of mathematics is thereby
improved, and the scope of mathematics is broadened. For example, we
can consider statements such as “ℕ is infinite” and to try to prove it.

Historically, there was some hesitation7 about introducing the collec-
tion of all natural numbers as a mathematical object, perhaps because
if one were to attempt to build the collection from nothing by adding
numbers to it one at a time, it would take an eternity to complete the
assembly. We won’t regard that as an obstacle.

We have said that the types of things are used to determine whether
mathematical statements are well formed. Therefore, if we expect “ℕ is
infinite” to be a well-formed statement, we’ll have to know what type of
thing ℕ is, and we’ll have to have a name for that type. Similarly, we’ll
have to know what type of thing that type is, and we’ll have to have a
name for it, and so on forever. Indeed, all of that is part of what will be
presented in this chapter.

�.� Types, elements, families, and functions

un
iv
al
en
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s

In this section we build on the intuition imparted in the previous section.
In univalent mathematics,8 types are used to classify all mathematical

objects. Every mathematical object is an element (or a member) of some
(unique) type. Before one can talk about an object of a certain type, one
must introduce the type itself. There are enough ways to form new types
from old ones to provide everything we need to write mathematics.

One expresses the declaration that an object 𝑎 is an element of the type
𝑋 by writing 𝑎 : 𝑋.9

Using that notation, each variable 𝑥 is introduced along with a decla-
ration of the form 𝑥 : 𝑋, which declares that 𝑥 will refer to something of
type 𝑋, but provides no other information about 𝑥. The declared types
of the variables are used to determine which statements of the theory
are grammatically well formed.

After introducing a variable 𝑥 : 𝑋, it may be possible to form an
expression 𝑇 representing a type, all of whose components have been
already been given a meaning. (Here the variable 𝑥 is regarded also
as having already been given a meaning, even though the only thing
known about it is its type.) To clarify the dependence of 𝑇 on 𝑥 primarily,
we may write 𝑇(𝑥) (or 𝑇𝑥) instead of 𝑇. Such an expression will be called
a family of types parametrized by the variable 𝑥 of type 𝑋. Such a family
provides a variety of types, for, if 𝑎 is any expression denoting an object
of 𝑋, one may replace all occurrences of 𝑥 by 𝑎 in 𝑇, thereby obtaining a
new expression representing a type, which may be regarded as a member
of the family, and which may be denoted by 𝑇(𝑎).

Naturally, if the expression 𝑇 doesn’t actually involve the variable 𝑥,
then the members of the family are all the same, and we’ll refer to the
family as a constant family of types.

Here’s an example of a family of types: we let 𝑛 be a natural number
and 𝑃𝑛 be the type of 𝑛-sided polygons in the plane. It gives a family of
types parametrized by the natural numbers.10 One of the members of
the family is the type 𝑃5 of all pentagons in the plane.

Marc
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A family of types may be parametrized by more than one variable.
For example, after introducing a variable 𝑥 : 𝑋 and a family of types
𝑇 parametrized by 𝑥, we may introduce a variable 𝑡 :𝑇. Then it may
be possible to form an expression 𝑆 representing a type that involves
the variables 𝑥 and 𝑡. Such an expression will be called a family of
types parametrized by 𝑥 and 𝑡, and we may write 𝑆(𝑥 , 𝑡) instead of 𝑆 to
emphasize the dependence on 𝑥 and 𝑡. The same sort of thing works
with more variables.

After introducing a variable 𝑥 : 𝑋 and a family of types 𝑇, it may be
possible to form an expression 𝑒 of type 𝑇, all of whose components
have been already been given a meaning. Such an expression will also
be called a family of elements of 𝑇 parametrized by the elements of 𝑋,
when we wish to focus on the dependence of 𝑒 (and perhaps 𝑇) on the
variable 𝑥. To clarify the dependence of 𝑒 on 𝑥 primarily, we may write
𝑒(𝑥) (or 𝑒𝑥) instead of 𝑒. Such a family provides a variety of elements of
𝑇, for, if 𝑎 is any expression denoting an object of 𝑋, one may replace
all occurrences of 𝑥 by 𝑎 in 𝑒 and in 𝑇, thereby obtaining an element of
𝑇(𝑎), which may be regarded as a member of the family and which will
be denoted by 𝑒(𝑎).

Naturally, if the expressions 𝑒 and 𝑇 don’t actually involve the variable
𝑥, then the members of the family are all the same, and we’ll refer to the
family as a constant family of elements.

Here’s an example of a family of elements in a constant family of
types: we let 𝑛 be a natural number and consider the real number

√
𝑛.

It gives a family of real numbers parametrized by the natural numbers.
(The family may also be called a sequence of real numbers). One of the
members of the family is

√
11.

Here’s an example of a family of elements in a (non-constant) family
of types: we let 𝑛 be a natural number and 𝑃𝑛 be the type of 𝑛-sided
polygons in the plane, as we did above. Then we consider the regular
𝑛-sided polygon 𝑝𝑛 of radius 1 with a vertex on the positive 𝑥-axis. We
see that 𝑝𝑛 : 𝑃𝑛 . One of the members of the family is the regular pentagon
𝑝5 : 𝑃5 of radius 1 with a vertex on the positive 𝑥-axis.

The type 𝑋 containing the variable for a family of types or a family of
elements is called the parameter type of the family.

Just as a family of types may depend on more than one variable, a
family of elements may also depend on more than one variable.

Families of elements can be enclosed in mathematical objects called
functions (or maps), as one might expect. Let 𝑒 be a family of elements of
a family of types 𝑇, both of which are parametrized by the elements 𝑥
of 𝑋. We use the notation 𝑥 ↦→ 𝑒 for the function that sends an element
𝑎 of 𝑋 to the element 𝑒(𝑎) of 𝑇(𝑎); the notation 𝑥 ↦→ 𝑒 can be read as
“𝑥 maps to 𝑒” or “𝑥 goes to 𝑒”. (Recall that 𝑒(𝑎) is the expression that
is obtained from 𝑒 by replacing all occurrences of 𝑥 in 𝑒 by 𝑎.) If we
name the function 𝑓 , then that element of 𝑇 will be denoted by 𝑓 (𝑎). The
type of the function 𝑥 ↦→ 𝑒 is called a product type and will be denoted
by ∏𝑥 : 𝑋 𝑇; if 𝑇 is a constant family of types, then the type will also be
called a function type and will be denoted by 𝑋 → 𝑇. Thus when we
write 𝑓 : 𝑋 → 𝑇, we mean that 𝑓 is an element of the type 𝑋 → 𝑇, and
we are saying that 𝑓 is a function from 𝑋 to 𝑇. The type 𝑋 may be called
the domain of 𝑓 , and the type 𝑇 may be called the codomain of 𝑓 .

Marc
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11Students of trigonometry are already
familiar with the concept of function,
as something enclosed this way. The
sine and cosine functions, sin and
cos, are examples.

12Students of calculus are familiar with
the concept of dummy variable and
are accustomed to using identities
such as

� 𝑏
𝑎 𝑓 (𝑡) 𝑑𝑡 = � 𝑏

𝑎 𝑓 (𝑥) 𝑑𝑥.

An example of a function is the function 𝑛 ↦→ √
𝑛 of type ℕ → ℝ.

Another example of a function is the function 𝑛 ↦→ 𝑝𝑛 of type ∏𝑛 :ℕ 𝑃𝑛 ,
where 𝑃𝑛 is the type of polygons introduced above, and 𝑝𝑛 is the polygon
introduced above.

Another example of a function is the function 𝑚 ↦→ (𝑛 ↦→ 𝑚 + 𝑛) of
type ℕ → (ℕ → ℕ). It is a function that accepts a natural number as
argument and returns a function as its value. The function returned is
of type ℕ → ℕ. It accepts a natural number as argument and returns a
natural number as value.

The reader may wonder why the word “product” is used when
speaking of product types. To motivate that, we consider a simple
example informally. We take 𝑋 to be a type with just two elements, 𝑏 and
𝑐. We take 𝑇(𝑥) to be a family of types parametrized by the elements of
𝑋, with 𝑇(𝑏) being a type with 5 elements and 𝑇(𝑐) being a type with 11
elements. Then the various functions 𝑓 of type ∏𝑥 : 𝑋 𝑇(𝑥) are plausibly
obtained by picking a suitable element for 𝑓 (𝑏) from the 5 possibilities in
𝑇(𝑏) and by picking a suitable element for 𝑓 (𝑐) from the 11 possibilities
in 𝑇(𝑐). The number of ways to make both choices is 5 × 11, which is a
product of two numbers. Thus ∏𝑥 : 𝑋 𝑇(𝑥) is sort of like the product of
𝑇(𝑏) and 𝑇(𝑐), at least as far as counting is concerned.

The reader may wonder why we bother with functions at all: doesn’t
the expression 𝑒 serve just as well as the function 𝑥 ↦→ 𝑒, for all practical
purposes? The answer is no. One reason is that the expression 𝑒 doesn’t
inform the reader that the variable under consideration is 𝑥. Another
reason is that we may want to use the variable 𝑥 for elements of a different
type later on: then 𝑒(𝑥) is no longer well formed. For example, imagine
first writing this: “For a natural number 𝑛 we consider the real number√
𝑛” and then writing this: “Now consider a triangle 𝑛 in the plane.”

The result is that
√
𝑛 is no longer usable, whereas the function 𝑛 ↦→ √

𝑛
has enclosed the variable and the family into a single object and remains
usable.11

Once a family 𝑒 has been enclosed in the function 𝑥 ↦→ 𝑒, the variable
𝑥 is referred to as a dummy variable or as a bound variable.12 This signifies
that the name of the variable no longer matters, in other words, that
𝑥 ↦→ 𝑒(𝑥) and 𝑡 ↦→ 𝑒(𝑡) may regarded as identical. Moreover, the variable
𝑥 that occurs inside the function 𝑥 ↦→ 𝑒 is regarded as unrelated to
variables 𝑥 which may appear elsewhere in the discussion.

If the variable 𝑥 in our notation 𝑥 ↦→ 𝑒(𝑥) is a dummy variable, and
its name doesn’t matter, then we may consider the possibility of not
specifying a variable at all. We introduce now a methodical way to do
that, by replacing the occurrences of the variable 𝑥 in the expression 𝑒(𝑥)
by an underscore, yielding 𝑒(_) as alternative notation for the function
𝑥 ↦→ 𝑒(𝑥). For example, the notation

√
_ can serve as alternative notation

for the function 𝑛 ↦→ √
𝑛 introduced above, and 2 + _ can serve as

alternative notation for the function 𝑛 ↦→ 2 + 𝑛 of type ℕ → ℕ.
We have mentioned above the possibility of giving a name to a function.

We expand on that now by introducing notation for making and for
using definitions.

The notation 𝑥 :≡ 𝑧 will be an announcement that we are defining
the expression 𝑥 to be the expression 𝑧, all of whose components have
already been given a meaning; in that case, we will say that 𝑥 has been
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13The convention that 𝑓 ≡ (𝑎 ↦→ 𝑓 (𝑎))
is referred to as the 𝜂-rule in the
jargon of type theory.

14In fact, type theory can trace its ori-
gins to Russell’s paradox, announced
in a 1902 letter to Frege as follows:

There is just one point where I
have encountered a difficulty. You
state that a function too, can act
as the indeterminate element.
This I formerly believed, but now
this view seems doubtful to me
because of the following contra-
diction. Let 𝑤 be the predicate: to
be a predicate that cannot be pred-
icated of itself. Can 𝑤 be predi-
cated of itself? From each answer
its opposite follows. Therefore
we must conclude that 𝑤 is not
a predicate. Likewise there is no
class (as a totality) of those classes
which, each taken as a totality, do
not belong to themselves.

To which Frege replied:
Incidentally, it seems to me that
the expression “a predicate is
predicated of itself” is not exact. A
predicate is as a rule a first-level
function, and this function re-
quires an object as argument and
cannot have itself as argument
(subject).

Russell then quickly added Appen-
dex B to his Principles of Mathematics
(1903), in which he said that “it is the
distinction of logical types that is the
key to the whole mystery”, where
types are the ranges of significance of
variables. For more on the history of
type theory, see Coquand15.

15Thierry Coquand. “Type Theory”.
In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta.
Metaphysics Research Lab, Stan-
ford University, 2018. ���: https:
//plato.stanford.edu/archives/
fall2018/entries/type-theory/.

defined to be (or to mean) 𝑧. The forms allowed for the expression 𝑥 will
be made clear by the examples we give.

For example, after writing 𝑛 :≡ 12, we will say that 𝑛 has been defined
to be 12.

For another example, the function 𝑓 that we named above may be intro-
duced by writing 𝑓 :≡ (𝑥 ↦→ 𝑒(𝑥)). Alternatively and more traditionally,
we may write 𝑓 (𝑥) :≡ 𝑒(𝑥).

The notation 𝑏 ≡ 𝑐 will denote the statement that the expressions 𝑏
and 𝑐 become the same thing if all the subexpressions within 𝑏 or 𝑐 are
expanded according to their definitions, if any; in that case, we will say
that 𝑏 and 𝑐 are the same by definition. For example, after writing 𝑛 :≡ 12
and 𝑚 :≡ 𝑛, we may say that 𝑗 + 12 ≡ 𝑗 + 𝑚 and that 𝑚 × 11 ≡ 12 × 11.

Whenever two expressions are the same by definition, we may replace
one with the other inside any other expression, because the expansion
of definitions is regarded as trivial and transparent.

We proceed now to the promised example. Consider functions 𝑓 : 𝑋 →
𝑌 and 𝑔 :𝑌 → 𝑍. We define the composite function 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 by
setting 𝑔 ◦ 𝑓 :≡ (𝑎 ↦→ 𝑔( 𝑓 (𝑎))). In other words, it is the function that
sends an arbitrary element 𝑎 of 𝑋 to 𝑔( 𝑓 (𝑎)) in 𝑍. (The expression 𝑔 ◦ 𝑓
may be read as “𝑔 circle 𝑓 ” or as “𝑔 composed with 𝑓 ”.) The composite
function 𝑔 ◦ 𝑓 may also be denoted simply by 𝑔 𝑓 .

Now consider functions 𝑓 : 𝑋 → 𝑌, 𝑔 :𝑌 → 𝑍, and ℎ : 𝑍 → 𝑊 . Then
(ℎ ◦ 𝑔) ◦ 𝑓 and ℎ ◦ (𝑔 ◦ 𝑓 ) are the same by definition, since applying the
definitions within expands both expressions to 𝑎 ↦→ ℎ(𝑔( 𝑓 (𝑎))). In other
words, we have established that (ℎ ◦ 𝑔) ◦ 𝑓 ≡ ℎ ◦ (𝑔 ◦ 𝑓 ). Thus, we may
write ℎ ◦ 𝑔 ◦ 𝑓 for either expression, without danger of confusion.

One may define the identity function id𝑋 : 𝑋 → 𝑋 by setting id𝑋 :≡
(𝑎 ↦→ 𝑎). Application of definitions shows that 𝑓 ◦ id𝑋 is the same by
definition as 𝑎 ↦→ 𝑓 (𝑎), which, by a standard convention, which we
adopt13, is to be regarded as the same as 𝑓 . In other words, we have
established that 𝑓 ◦ id𝑋 ≡ 𝑓 . A similar computation applies to id𝑌 ◦ 𝑓 .

pa
ge
:i
do
fe
ta
f

In the following sections we will present various other elementary
types and elementary ways to make new types from old ones.

�.� Universes

se
c:
un
iv
er
se
s

In Section 2.2 we have introduced the objects known as types. They have
elements, and the type an element belongs to determines the type of thing
that it is. At various points in the sequel, it will be convenient for types
also to be elements, for that will allow us, for example, to define families
of types just as easily as we define families of elements. To achieve this
convenience, we introduce types that are universes. Some care is required,
for the first temptation is to posit a single new type U called the universe,
so that every type is realized as an element ofU . This universe would be
“the type of all types”, but introducing it would lead to an absurdity, for
roughly the same reason that introduction of a “set of all sets” leads to
the absurdity in traditional mathematics known as Russell’s paradox.14

Some later approaches to set theory included the notion of a class, with
the collection of all sets being the primary example of a class. Classes are
much like sets, and every set is a class, but not every class is a set. Then

Marc


Marc


Marc
mention instantiation
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Is it possible to define a family of types where the universe varies with the parameter? (I think not).
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16Giuseppe Peano. Arithmetices prin-
cipia� nova methodo. See also https:
//github.com/mdnahas/Peano_
Book/ for a parallel translation by
Vincent Verheyen. Fratres Bocca,
1889. ���: https://books.google.
com/books?id=z80GAAAAYAAJ.

one may wonder what sort of thing the collection of all classes would be.
Such musings are resolved in univalent mathematics as follows.

(1) There are some types called universes.

(2) If U is a universe, and 𝑋 :U is an element ofU , then 𝑋 is a type.

(3) If 𝑋 is a type, then it appears as an element in some universe U .
Moreover, if 𝑋 and 𝑌 are types, then there is a universeU containing
both of them.

(4) If U and U � are universes, U :U �, 𝑋 is a type, and 𝑋 :U , then also
𝑋 :U �. (Thus we may regard U � as being larger than U .)

(5) There is a particular universe U0, which we single out to serve as
a repository for certain basic types to be introduced in the sequel.
Moreover, U0 :U for every other universe U , and thus U0 is the
smallest universe.

It follows from the properties above that there are an infinite number
of universes, for each one is an element of a larger one.

Now suppose we have a type 𝑋 and a family𝑇(𝑥) of types parametrized
by a variable 𝑥 of type 𝑋. Choose a universe𝑈 with𝑇(𝑥) :𝑈 . Then we can
make a function of type 𝑋 → 𝑈 , namely 𝑓 :≡ (𝑥 ↦→ 𝑇(𝑥)). Conversely,
if 𝑓 � is a function of type 𝑋 →U , then we can make a family of types
parametrized by 𝑥, namely 𝑇� :≡ 𝑓 �(𝑥). The flexibility offered by this
correspondence between families of types inU and functions to U will
often be used.

�.� The type of natural numbers

se
c:
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Here are Peano’s rules16 for constructing the natural numbers in the
form that is used in type theory.

P1

(P1) there is a type called ℕ in the universe U0 (whose elements will be
called natural numbers);

P2

(P2) there is an element of ℕ called 0, called zero;

P3

(P3) if 𝑚 is a natural number, then there is also a natural number succ(𝑚),
called the successor of 𝑚;

P4

(P4) suppose we are given:

a) a family of types 𝑋(𝑚) parametrized by a variable 𝑚 of type
ℕ;

b) an element 𝑎 of 𝑋(0); and

c) a family of functions 𝑔𝑚 : 𝑋(𝑚) → 𝑋(succ(𝑚)).
Then from those data we are provided with a family of elements
𝑓 (𝑚) : 𝑋(𝑚).

The first three rules present few problems for the reader. They provide
us with the smallest natural number 0 :ℕ, and we may introduce as
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17Rule (P4) and our logical framework
are stronger than in Peano’s original
formulation, and this allows us to
omit some rules that Peano had to
include: that different natural num-
bers have different successors; and
that no number has 0 as its successor.
Those omitted rules remain true in
this formulation and can be proved
from the other rules, after we have
introduced the notion of equality in
our logical framework.

many others as we like with the following definitions.

1 :≡ succ(0)
2 :≡ succ(1)
3 :≡ succ(2)

...

You may recognize rule (P4) as “the principle of mathematical in-
duction” or as “defining a function by recursion”.17 We will refer to it
simply as “induction on ℕ”. The resulting family 𝑓 may be regarded as
having been defined inductively by the two declarations 𝑓 (0) :≡ 𝑎 and
𝑓 (succ(𝑚)) :≡ 𝑔𝑚( 𝑓 (𝑚)), and indeed, we will often simply write such a
pair of declarations as a shorthand way of applying rule (P4). The two
declarations cover the two ways of introducing elements of ℕ via the
use of the two rules (P2) and (P3). (In terms of computer programming,
those two declarations amount to the code for a recursive subroutine
that can handle any incoming natural number.)

With that notation in hand, speaking informally, we may regard (P4)
above as defining the family 𝑓 by the following infinite sequence of
definitions.

𝑓 (0) :≡ 𝑎

𝑓 (1) :≡ 𝑔0(𝑎)
𝑓 (2) :≡ 𝑔1(𝑔0(𝑎))
𝑓 (3) :≡ 𝑔2(𝑔1(𝑔0(𝑎)))

...

(The need for the rule (P4) arises from our inability to write down an
infinite sequence of definitions in a finite amount of space, and from the
need for 𝑓 (𝑚) to be defined when 𝑚 is a variable of type ℕ, and thus is
not known to be equal to 0, nor to 1, nor to 2, etc.)

We may use induction on ℕ to define of iteration of functions. Let
𝑌 be a type, and suppose we have a function 𝑒 :𝑌 → 𝑌. We define by
induction on ℕ the 𝑚-fold iteration 𝑒𝑚 :𝑌 → 𝑌 by setting 𝑒0 :≡ id𝑌 and
𝑒succ(𝑚) :≡ 𝑒 ◦ 𝑒𝑚 . (Here we apply rule (P4) with the the type 𝑌 → 𝑌 as
the family of types 𝑋(𝑚), the identity function id𝑌 for 𝑎, and the function
𝑑 ↦→ 𝑒 ◦ 𝑑 for the family 𝑔𝑚 : (𝑌 → 𝑌) → (𝑌 → 𝑌) of functions.)

We may now define addition of natural numbers by induction on ℕ.
For natural numbers 𝑛 and 𝑚 we define 𝑛 + 𝑚 :ℕ by induction on ℕ

with respect to the variable 𝑚 by setting 𝑛 + 0 :≡ 𝑛 and 𝑛 + succ(𝑚) :≡
succ(𝑛 + 𝑚). (The reader should be able to extract the family 𝑋(𝑚), the
element 𝑎, and the family of functions 𝑔𝑚 from that pair of definitions.)
Application of definitions shows, for example, that 2 + 2 and 4 are the
same by definition, and thus we may write 2 + 2 ≡ 4, because both
expressions reduce to succ(succ(succ(succ(0)))).

Similarly we define the product 𝑚 · 𝑛 :ℕ by induction on 𝑚 by setting
setting 0 · 𝑛 :≡ 0 and succ(𝑚) · 𝑛 :≡ (𝑚 · 𝑛) + 𝑛.

Alternatively (and equivalently) we may use iteration of functions to
define addition and multiplication, by setting 𝑛 + 𝑚 :≡ succ𝑚(𝑛) and
𝑚 · 𝑛 :≡ (𝑖 ↦→ 𝑖 + 𝑛)𝑚(0).

Marc
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18Six, since we allow reflections, other-
wise there are only three.

Finally, we may define the factorial function fact :ℕ → ℕ by induction
on ℕ, setting fact(0) :≡ 1 and fact(succ(𝑚)) :≡ succ(𝑚) · fact(𝑚). (One
can see that this definition applies rule (P4) with 𝑋(𝑚) :≡ ℕ, with 1 for
𝑎, and with the function 𝑛 ↦→ succ(𝑚) · 𝑛 for 𝑔𝑚 .) Application of the
definitions shows, for example, that fact(3) ≡ 6, as the reader may verify.

�.� Identity types

se
c:
id
en
ti
ty
-t
yp
es One of the most important types is the identity type, which implements

the intuitive notion of equality. Identity between two elements may be
considered only when the two elements are of the same type; we shall
have no need to compare elements of different types.

Here are the rules for constructing and using identity types.

ru
le
s-
fo
r-
eq
ua
li
ty

E1

(E1) for any type 𝑋 and for any elements 𝑎 and 𝑏 of it, there is a identity
type 𝑎 =→ 𝑏; moreover, if 𝑋 is an element of a universe U , then so is
𝑎 =→ 𝑏.

E2

(E2) for any type 𝑋 and for any element 𝑎 of it, there is an element refl𝑎

of type 𝑎 =→ 𝑎 (the name refl comes from the word “reflexivity”)

E3

(E3) suppose we are given:

a) a type 𝑋 and an element 𝑎 : 𝑋;

b) a family of types 𝑃(𝑏 , 𝑒 , . . . ) parametrized by a variable 𝑏 of
type 𝑋, a variable 𝑒 of type 𝑎 =→ 𝑏, and perhaps some further
variables; and

c) an element 𝑝 of 𝑃(𝑎 , refl𝑎 , . . . ).
Then from those data we are provided with a family of elements
𝑓 (𝑏 , 𝑒 , . . . ) : 𝑃(𝑏 , 𝑒 , . . . ). Moreover, 𝑓 (𝑎 , refl𝑎 , . . . ) ≡ 𝑝.

We will refer to an element 𝑖 of 𝑎 =→ 𝑏 as an identification of 𝑎 with 𝑏,
or simply as an identity. Since the word “identification” is a long one,
we may also refer to 𝑖 as a path from 𝑎 to 𝑏 – this has the advantage of
incorporating the intuition that an identification may proceed gradually
through intermediate steps.

The need to record, using the element 𝑖, the way we identify 𝑎 with 𝑏
may come as a surprise, since normally, in mathematics, one is accus-
tomed to regarding 𝑎 as either equal to 𝑏 or not. However, this reflects
a situation commonly encountered in geometry when congruence of
geometric figures is considered. For example, in Euclidean space, two
equilateral triangles of the same size are congruent in six (different)
ways.18 The chief novelty of univalent mathematics is that the basic
logical notion of equality, as implemented by the identity types 𝑎 =→ 𝑏,
is carefully engineered to accommodate notions of congruence and sym-
metry from diverse areas of mathematics, including geometry. Exposing
that point of view in the context of geometry is the main point of this
book.

In light of the analogy with geometry just introduced, we will refer
to an element 𝑖 of 𝑎 =→ 𝑎 as a symmetry of 𝑎. Think, for example, of
a congruence of a triangle with itself. An example of a non-trivial
symmetry will be seen in Exercise 2.13.3.
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19We will see later that numbers don’t
have non-trivial symmetries, as
one would expect, so the possibility
that there are other ways to identify
fact(2) with 2 doesn’t arise.

20Notice that the single special case in
such an induction corresponds to the
single way of introducing elements
of identity types via rule (E2), and
compare that with (P4), which dealt
with the two ways of introducing
elements of ℕ.

21We can also use a geometric intu-
ition: when 𝑏 “freely ranges” over
elements of 𝐴, together with a path
𝑒 : 𝑎 =→ 𝑏, while we keep the element
𝑎 fixed, we can picture 𝑒 as a piece of
string winding through 𝐴, and the
“freeness” of the pair (𝑏 , 𝑒) allows
us to pull the string 𝑒, and 𝑏 with it,
until we have the constant path at 𝑎,
refl𝑎 .

𝑎 𝑏

𝐴

𝑒 ↦→
𝑎 refl𝑎

𝐴

Conversely, we can imagine 𝑏 start-
ing at 𝑎 and 𝑒 starting out as
refl𝑎 , and then think of 𝑏 roaming
throughout 𝐴, pulling the string 𝑒
along with it, until it finds every
path from 𝑎 to some other element.

Consider the identity type fact(2) =→ 2, where fact denotes the factorial
function defined in Section 2.4. Expansion of the definitions in the
equation fact(2) =→ 2 simplifies it to succ(succ(0)) =→ succ(succ(0)), so
we see from rule (E2) that reflsucc(succ(0)) serves as an element of it.19 We
may also write either refl2 or reflfact(2) for that element. A student might
want a more detailed derivation that fact(2) may be identified with 2,
but as a result of our convention above that definitions may be applied
without changing anything, the application of definitions, including
inductive definitions, is normally regarded as a trivial operation, and
the details are usually omitted.

We will refer to rule (E3) as “induction for identity”. To signal that we
wish to apply it, we may announce that we argue by induction on 𝑒.

The family 𝑓 resulting from an application of rule (E3) may be regarded
as having been completely defined by the single declaration 𝑓 (𝑎 , refl𝑎) :≡
𝑝, and indeed, we will often simply write such a declaration as a
shorthand way of applying rule (E3). The rule says that to construct
something from every identification 𝑒 of 𝑎 with something else, it suffices
to consider the special case where the identification 𝑒 is refl𝑎 : 𝑎 =→ 𝑎.20

Intuitively, the induction principle for identity amounts to saying that
the element refl𝑎 “generates” the system of types 𝑎 =→ 𝑏, as 𝑏 ranges over
elements of 𝐴.21

Equality is symmetric, in the sense that an identification of 𝑎 with 𝑏
may be reversed to give an identification of 𝑏 with 𝑎. In order to produce
an element of 𝑏 =→ 𝑎 from an element 𝑒 of 𝑎 =→ 𝑏, for any 𝑏 and 𝑒, we
argue by induction. We let 𝑃(𝑏 , 𝑒) be 𝑏 =→ 𝑎 for any 𝑏 of type 𝑋 and for
any 𝑒 of type 𝑎 =→ 𝑏, for use in rule (E3) above. Application of rule (E3)
reduces us to the case where 𝑏 is 𝑎 and 𝑝 is refl𝑎 , and our task is now to
produce an element of 𝑎 =→ 𝑎; we choose refl𝑎 for it.

Equality is also transitive, and is established the same way. For each
𝑎 , 𝑏 , 𝑐 : 𝑋 and for each 𝑝 : 𝑎 =→ 𝑏 and for each 𝑞 : 𝑏 =→ 𝑐 we want to
produce an element of type 𝑎 =→ 𝑐. By induction on 𝑞 we are reduced to
the case where 𝑐 is 𝑏 and 𝑞 is refl𝑏 , and we are to produce an element of
𝑎 =→ 𝑏. The element 𝑝 serves the purpose.

Now we state our symmetry result a little more formally.

de
f:
eq
-s
ym
m D��������� 2.5.1. For any type 𝑋 and for any 𝑎 , 𝑏 : 𝑋, let

symm𝑎 ,𝑏 : (𝑎 =→ 𝑏) → (𝑏 =→ 𝑎)
be the function defined by induction by setting symm𝑎 ,𝑎(refl𝑎) :≡ refl𝑎 .

This operation on paths is called path inverse, and we may abbreviate
symm𝑎 ,𝑏(𝑝) as 𝑝−1. �

Similarly, we formulate transitivity a little more formally, as follows.

de
f:
eq
-t
ra
ns

D��������� 2.5.2. For any type 𝑋 and for any 𝑎 , 𝑏 , 𝑐 : 𝑋, let

trans𝑎 ,𝑏 ,𝑐 : (𝑎 =→ 𝑏) → ((𝑏 =→ 𝑐) → (𝑎 =→ 𝑐))
be the function defined by induction by setting (trans𝑎 ,𝑏 ,𝑏(𝑝))(refl𝑏) :≡ 𝑝.

This binary operation is called path composition or path concatenation,
and we may abbreviate (trans𝑎 ,𝑏 ,𝑐(𝑝))(𝑞) as either 𝑝 ∗ 𝑞, or as 𝑞 · 𝑝, 𝑞𝑝, or
𝑞 ◦ 𝑝. �

The intuition that the path 𝑝 summarizes a gradual change from 𝑎 to
𝑏, and 𝑞 summarizes a gradual change from 𝑏 to 𝑐, leads to the intuition
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𝑋

𝑎

𝑏

𝑐
𝑞 ◦ 𝑝 ≡ 𝑝 ∗ 𝑞

𝑝 𝑞

F����� 2.1: Composition (also called
concatenation) of paths in 𝑋

fi
g:
pa
th
-c
on
ca
te
na
ti
on

22We haven’t yet assigned a mean-
ing to −𝑛, but after we introduce
the set of integers Z below in Def-
inition 3.2.1, we’ll be justified in
writing 𝑝𝑧 for any 𝑧 : Z. See also
Example 2.12.9.

that 𝑝 ∗ 𝑞 progresses gradually from 𝑎 to 𝑐 by first changing 𝑎 to 𝑏 and
then changing 𝑏 to 𝑐; see Fig. 2.1.

The notation 𝑞 ◦ 𝑝 for path composition, with 𝑝 and 𝑞 in reverse order,
fits our intution particularly well when the paths are related to functions
and the composition of the paths is related to the composition of the re-
lated functions in the same order, as happens, for example, in connection
with transport (defined below in Definition 2.5.4) in Exercise 2.5.5.

The types of symm𝑎 ,𝑏 and trans𝑎 ,𝑏 ,𝑐 express that identity is symmetric
and transitive. Another view of symm𝑎 ,𝑏 and trans𝑎 ,𝑏 ,𝑐 is that they are
operations on identifications, namely reversing an identification and
concatenating two identifications. The results of various combinations
of these operations can often be identified: we formulate some of these
identifications in the following exercise.

xc
a:
pa
th
-g
ro
up
oi
d-
la
ws

E������� 2.5.3. Let 𝑋 be a type and let 𝑎 , 𝑏 , 𝑐 , 𝑑 : 𝑋 be elements.

(1) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type 𝑝 ∗ refl𝑏
=→ 𝑝.

(2) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type refl𝑎 ∗ 𝑝 =→ 𝑝.

(3) For 𝑝 : 𝑎 =→ 𝑏, 𝑞 : 𝑏 =→ 𝑐, and 𝑟 : 𝑐 =→ 𝑑, construct an identification of
type (𝑝 ∗ 𝑞) ∗ 𝑟 =→ 𝑝 ∗ (𝑞 ∗ 𝑟).

(4) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type 𝑝−1 ∗ 𝑝 =→ refl𝑏 .

(5) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type 𝑝 ∗ 𝑝−1 =→ refl𝑎 .

(6) For 𝑝 : 𝑎 =→ 𝑏, construct an identification of type (𝑝−1)−1 =→ 𝑝. �

Given an element 𝑝 : 𝑎 =→ 𝑎, we may use concatenation to define powers
𝑝𝑛 : 𝑎 =→ 𝑎 by induction on 𝑛 :ℕ; we set 𝑝0 :≡ refl𝑎 and 𝑝𝑛+1 :≡ 𝑝 · 𝑝𝑛 .
Negative powers 𝑝−𝑛 are defined as (𝑝−1)𝑛 .22

One frequent use of elements of identity types is in substitution, which
is the logical principle that supports our intuition that when 𝑥 can by
identified with 𝑦, we may replace 𝑥 by 𝑦 in mathematical expressions
at will. A wrinkle new to students will likely be that, in our logical
framework where there may be various ways to identify 𝑥 with 𝑦, one
must specify the identification used in the substitution. Thus one may
prefer to speak of using an identification to transport properties and data
about 𝑥 to properties and data about 𝑦.

Here is a geometric example: if 𝑥 is a triangle of area 3 in the plane,
and 𝑦 is congruent to 𝑥, then 𝑦 also has area 3.

Here is another example: if 𝑥 is a right triangle in the plane, and 𝑦
is congruent to 𝑥, then 𝑦 is also a right triangle, and the congruence
informs us which of the 3 angles of 𝑦 is the right angle.

Now we introduce the notion more formally.
Let 𝑋 be a type, and let 𝑇(𝑥) be a family of types parametrized by a

variable 𝑥 : 𝑋 (as discussed in Section 2.2). Suppose 𝑎 , 𝑏 : 𝑋 and 𝑒 : 𝑎 =→ 𝑏.
Then we may construct a function of type 𝑇(𝑎) → 𝑇(𝑏). We define one
specific such function by induction on 𝑒, by taking its value on refl𝑎 of
type 𝑎 =→ 𝑎 to be the identity function on 𝑇(𝑎). We record that definition
as follows.

de
f:
tr
an
sp
or
t D��������� 2.5.4. The function

trp𝑇
𝑒 :𝑇(𝑎) → 𝑇(𝑏)

Marc
Repeat context, to make Def. independently readable.

Marc
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23We sometimes picture this schemat-
ically as follows: We draw 𝑋 as a
(mostly horizontal) line, and we
draw each type 𝑇(𝑥) as a vertical line
lying over 𝑥 : 𝑋. As 𝑥 moves around
in 𝑋, these lines can change shape,
and taken all together they form a
2-dimensional blob lying over 𝑋.
The transport functions map points
between the vertical lines.

𝑎
𝑏

𝑋

𝑇(𝑎) 𝑇(𝑏)

𝑒

𝑡
trp𝑇

𝑒 (𝑡)

is defined by induction setting trp𝑇
refl𝑎

:≡ id𝑇(𝑎). �

The function thus defined may be called the transport function in the
type family 𝑇 along the path 𝑒, or, less verbosely, transport.23 We may also
simplify the notation to just trp𝑒 . The transport functions behave as
expected: we may construct an identification of type trp𝑒’◦𝑒

=→ trp𝑒’ ◦ trp𝑒 .
In words: transport along the composition 𝑒 ◦ 𝑒� can be identified with
the composition of the two transport functions. This may be proved by
induction in the following exercise.

xc
a:
tr
p-
co
mp
os
e E������� 2.5.5. Let 𝑋 be a type, and let𝑇(𝑥)be a family of types parametrized

by a variable 𝑥 : 𝑋. Suppose we are given elements 𝑎 , 𝑏 , 𝑐 : 𝑋, 𝑒 : 𝑎 =→ 𝑏,
and 𝑒� : 𝑏 =→ 𝑐. Construct an identification of type

trp𝑒’◦𝑒
=→ trp𝑒’ ◦ trp𝑒 . �

Yet another example of good behavior is given in the following exercise.

xc
a:
tr
p-
no
nd
ep

E������� 2.5.6. Let 𝑋 ,𝑌 be types. As discussed in Section 2.2, we may
regard the expression 𝑌 as a constant family of types parametrized by
a variable 𝑥 : 𝑋. Produce an identification of type trp𝑌

𝑝
=→ id𝑌 , for any

path 𝑝 : 𝑎 =→ 𝑏. �

In Section 2.15 below we will discuss what it means for a type to have at
most one element. When the types𝑇(𝑥)may have more than one element,
we may regard an element of 𝑇(𝑥) as providing additional structure on 𝑥.
In that case, we will refer to the transport function trp𝑒 :𝑇(𝑎) → 𝑇(𝑏) as
transport of structure from 𝑎 to 𝑏.

Take, for example, 𝑇(𝑥) :≡ (𝑥 =→ 𝑥). Then trp𝑒 is of type (𝑎 =→ 𝑎) →
(𝑏 =→ 𝑏) and transports a symmetry of 𝑎 to a symmetry of 𝑏.

By contrast, when the types 𝑇(𝑥) have at most one element, we may
regard an element of 𝑇(𝑥) as providing a proof of a property of 𝑥. In
that case, the transport function trp𝑒 :𝑇(𝑎) → 𝑇(𝑏) provides a way to
establish a claim about 𝑏 from a claim about 𝑎, so we will refer to it as
substitution. In other words, elements that can be identified have the
same properties.

�.� Product types

se
c:
pr
od
uc
t-
ty
pe
s

Functions and product types have been introduced in Section 2.2, where
we have also explained how to create a function by enclosing a family of
elements in one. In this section we treat functions and product types in
more detail.

Recall that if 𝑋 is a type and 𝑌(𝑥) is a family of types parametrized
by a variable 𝑥 of type 𝑋, then there is a product type ∏𝑥 : 𝑋 𝑌(𝑥) whose
elements 𝑓 are functions that provide elements 𝑓 (𝑎) of type 𝑌(𝑎), one
for each 𝑎 : 𝑋. We will refer to 𝑋 as the parameter type of the product. By
contrast, if 𝑌 happens to be a constant family of types, then ∏𝑥 : 𝑋 𝑌 will
also be denoted by 𝑋 → 𝑌, and it will also be called a function type.

If 𝑋 and 𝑌(𝑥) are elements of a universe U , then so is ∏𝑥 : 𝑋 𝑌(𝑥).
Functions preserve identity, and we will use this frequently later on.

More precisely, functions induce maps on identity types, as the following
definition makes precise.
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24The notation ptw is chosen to remind
the reader of the word “point-wise”,
because the identities are provided
just for each point 𝑥. An alternative
approach goes by considering, for
any 𝑥 : 𝑋, the evaluation function
ev𝑥 :

�
∏𝑥 : 𝑋 𝑌(𝑥)� → 𝑌(𝑥) defined

by ev𝑥( 𝑓 ) :≡ 𝑓 (𝑥). Then one could
define ptw 𝑓 ,𝑔(𝑝 , 𝑥) :≡ apev𝑥

(𝑝).
The functions provided by these
two definitions are not equal by
definition, but they can be identified,
and one can easily be used in place
of the other.

de
f:
ap

D��������� 2.6.1. For all types 𝑋, 𝑌, functions 𝑓 : 𝑋 → 𝑌 and elements
𝑥 , 𝑥� : 𝑋, the function

ap 𝑓 ,𝑥 ,𝑥� : (𝑥 =→ 𝑥�) → ( 𝑓 (𝑥) =→ 𝑓 (𝑥�))

is defined by induction by setting ap 𝑓 ,𝑥 ,𝑥(refl𝑥) :≡ refl 𝑓 (𝑥). �

The function ap 𝑓 ,𝑥 ,𝑥� , for any elements 𝑥 and 𝑥� of 𝑋, is called an
application of 𝑓 to paths or to identities, and this explains the choice of
the symbol ap in the notation for it. It may also be called the function
(or map) induced by 𝑓 on identity types.

When 𝑥 and 𝑥� are clear from the context, we may abbreviate ap 𝑓 ,𝑥 ,𝑥�

by writing ap 𝑓 instead. For convenience, we may abbreviate it even
further, writing 𝑓 (𝑝) for ap 𝑓 (𝑝).

The following lemma shows that ap 𝑓 is compatible with composition.

le
m:
ap
co
mp

L���� 2.6.2. Given a function 𝑓 : 𝑋 → 𝑌, and elements 𝑥 , 𝑥�, 𝑥�� : 𝑋, and
paths 𝑝 : 𝑥 =→ 𝑥� and 𝑝� : 𝑥� =→ 𝑥��, we may construct an identification of type
ap 𝑓 (𝑝� · 𝑝) =→ ap 𝑓 (𝑝�) · ap 𝑓 (𝑝).
Proof. By induction on 𝑝 and 𝑝�, one reduces to producing an identifica-
tion of type

ap 𝑓 (refl𝑥 · refl𝑥) =→ ap 𝑓 (refl𝑥) · ap 𝑓 (refl𝑥).

Both sides of the equation are equal to refl 𝑓 (𝑥) by definition, so the
element reflrefl 𝑓 (𝑥) has that type. �

In a similar way one shows that ap 𝑓 is compatible with path inverse,
by constructing an identity of type ap 𝑓 (𝑝−1) =→ (ap 𝑓 (𝑝))−1. One may
also construct an identity of type apid(𝑝) =→ 𝑝.

xc
a:
tr
p-
ap

E������� 2.6.3. Let 𝑋 be a type, and let𝑇(𝑥)be a family of types parametrized
by a variable 𝑥 : 𝑋. Furthermore, let 𝐴 be a type, let 𝑓 : 𝐴 → 𝑋 be a
function, let 𝑎 and 𝑎� be elements of 𝐴, and let 𝑝 : 𝑎 =→ 𝑎� be a path. Verify
that the two functions trp𝑇◦ 𝑓

𝑝 and trp𝑇
ap 𝑓 (𝑝) are of type 𝑇( 𝑓 (𝑎)) → 𝑇( 𝑓 (𝑎�)).

Then construct an identification between them, i.e., construct an element
of type trp𝑇◦ 𝑓

𝑝
=→ trp𝑇

ap 𝑓 (𝑝). �

If two functions 𝑓 and 𝑔 of type ∏𝑥 : 𝑋 𝑌(𝑥) can be identified, then
their values can be identified, i.e., for every element 𝑥 of 𝑋, we may
produce an identification of type 𝑓 (𝑥) =→ 𝑔(𝑥), which can be constructed
by induction, as follows.

de
f:
pt
w D��������� 2.6.4. Let 𝑓 , 𝑔 : ∏𝑥 : 𝑋 𝑌(𝑥). Define the function

ptw 𝑓 ,𝑔 : ( 𝑓 =→ 𝑔) →
�

∏
𝑥 : 𝑋

𝑓 (𝑥) =→ 𝑔(𝑥)
�

,

by induction by setting ptw 𝑓 , 𝑓 (refl 𝑓 ) :≡ 𝑥 ↦→ refl 𝑓 (𝑥). 24 �

Conversely, given 𝑓 , 𝑔 : ∏𝑥 : 𝑋 𝑌(𝑥), from a basic axiom called function
extensionality, postulated below in Principle 2.9.17, an identity 𝑓 =→ 𝑔 can
be produced from a family of identities of type 𝑓 (𝑥) =→ 𝑔(𝑥)parametrized
by a variable 𝑥 of type 𝑋.

de
f:
na
tu
ra
li
ty
-s
qu
ar
e-
co
mm
ut
at
iv
it
y D��������� 2.6.5. Let 𝑋 ,𝑌 be types and 𝑓 , 𝑔 : 𝑋 → 𝑌 functions. Given an

element ℎ of type ∏𝑥 : 𝑋 𝑓 (𝑥) =→ 𝑔(𝑥), elements 𝑥 and 𝑥� of 𝑋, and a path

Marc
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25

𝑓 (𝑥) 𝑓 (𝑥�)

𝑔(𝑥) 𝑔(𝑥�)

=

ap 𝑓 (𝑝)

=ℎ(𝑥) = ℎ(𝑥�)
=

ap𝑔 (𝑝)

26We picture this as follows: the path

ft
:p
at
h-
ov
er
-p
ic from 𝑦 to 𝑦� over 𝑝 travels through

the vertical lines representing the
types 𝑌(𝑥) as 𝑥 : 𝑋 moves along the
path 𝑝 in 𝑋 from 𝑎 to 𝑎�:

𝑎
𝑎� 𝑋

𝑌(𝑎) 𝑌(𝑎�)

𝑝

𝑦 𝑦�𝑞

𝑝 : 𝑥 =→ 𝑥�, we have two elements ℎ(𝑥�) · ap 𝑓 (𝑝) and ap𝑔(𝑝) · ℎ(𝑥) of type
𝑓 (𝑥) =→ 𝑔(𝑥�). We construct an identification

ns(ℎ , 𝑝) : ℎ(𝑥�) · ap 𝑓 (𝑝) =→ ap𝑔(𝑝) · ℎ(𝑥),
between them by induction, by setting ns(ℎ , refl𝑥) to be some previously
constructed element of ℎ(𝑥) · refl 𝑓 (𝑥) =→ ℎ(𝑥). The type of ns(ℎ , 𝑝) can be
depicted as a square25 and ns(ℎ , 𝑝) is called a naturality square. �

�.� Identifying elements in members of families of types

If 𝑌(𝑥) is a family of types parametrized by a variable 𝑥 of type 𝑋, and 𝑎
and 𝑎� are elements of type 𝑋, then after identifying 𝑎 with 𝑎� it turns
out that it is possible to “identify” an element of 𝑌(𝑎) with an element of
𝑌(𝑎�), in a certain sense. That is the idea of the following definition.

de
f:
pa
th
so
ve
rp
at
hs

D��������� 2.7.1. Suppose we are given a type 𝑋 in a universeU and a
family of types 𝑌(𝑥), also inU , parametrized by a variable 𝑥 of type 𝑋.
Given elements 𝑎 , 𝑎� : 𝑋, 𝑦 :𝑌(𝑎), and 𝑦� :𝑌(𝑎�) and a path 𝑝 : 𝑎 =→ 𝑎�, we
define a new type 𝑦

=−→
𝑝

𝑦� in U as follows. We proceed by induction

on 𝑎� and 𝑝, which reduces us to the case where 𝑎� is 𝑎 and 𝑝 is refl𝑎 ,
rendering 𝑦 and 𝑦� of the same type 𝑌(𝑎) in U , allowing us to define
𝑦

=−−−→
refl𝑎

𝑦� to be 𝑦 =→ 𝑦�, which is also in U . �

An element 𝑞 : 𝑦
=−→
𝑝

𝑦� is called an identification of 𝑦 with 𝑦� over 𝑝, or a

path from 𝑦 to 𝑦� over 𝑝. Intuitively, we regard 𝑝 as specifying a way for
𝑎 to change gradually into 𝑎�, and this provides a way for 𝑌(𝑎) to change
gradually into 𝑌(𝑎�); then 𝑞 charts a way for 𝑦 to change gradually into
𝑦� as 𝑌(𝑎) changes gradually into 𝑌(𝑎�).26

The following definition identifies the type of paths over 𝑝 with a type
of paths using transport along 𝑝.

de
f:
pa
th
ov
er
-t
rp

D��������� 2.7.2. In the context of Definition 2.7.1, define by induction on

𝑝 an identification po𝑝 :
�

𝑦
=−→
𝑝

𝑦�
�

=→
�

trp𝑌
𝑝 (𝑦) =→ 𝑦�

�
in U , by setting

porefl𝑥
:≡ refl𝑦 =→𝑦� . �

Many of the operations on paths have counterparts for paths over
paths. For example, we may define composition of paths over paths as
follows.

de
f:
pa
th
ov
er
co
mp
os
it
io
n D��������� 2.7.3. Suppose we are given a type 𝑋 and a family of types

𝑌(𝑥) parametrized by the elements 𝑥 of 𝑋. Suppose also that we have
elements 𝑥 , 𝑥�, 𝑥�� : 𝑋, a path 𝑝 : 𝑥 =→ 𝑥�, and a path 𝑝� : 𝑥� =→ 𝑥��. Suppose
further that we have elements 𝑦 :𝑌(𝑥), 𝑦� :𝑌(𝑥�), and 𝑦�� :𝑌(𝑥��), with
paths 𝑞 : 𝑦

=−→
𝑝

𝑦� over 𝑝 and 𝑞� : 𝑦�
=−→
𝑝�

𝑦�� over 𝑝�. Then we define the

composite path 𝑞� ◦ 𝑞 : 𝑦
=−−−→

𝑝�◦𝑝 𝑦�� over 𝑝� ◦ 𝑝 as follows. First we apply

path induction on 𝑥�� and 𝑝� to reduce to the case where 𝑥�� is 𝑥� and 𝑝� is
refl𝑥� . That also reduces the type 𝑦�

=−→
𝑝�

𝑦�� to the identity type 𝑦� =→ 𝑦��,

so we may apply path induction on 𝑦�� and 𝑞� to reduce to the case where
𝑦�� is 𝑦� and 𝑞� is refl𝑦� . Now observe that 𝑝� ◦ 𝑝 is 𝑝, so 𝑞 provides the
element we need. �

Similarly, one can define the inverse of a path over a path, writing
𝑞−1 : 𝑏�

=−−→
𝑝−1

𝑏 for the inverse of 𝑞 : 𝑏
=−→
𝑝

𝑏�. These operations on paths over

Marc
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Marc
Rem./Exc about constant family Y that type of paths over p = type of paths in Y

Marc


Marc
Cf. E3 on p. 11,12. The "on x''" seems superfluous, and "path induction" could be introduced in E3.
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27Exercise: Try to state some of these
laws yourself.

28We picture 𝑓 via its graph of the
values 𝑓 (𝑥) as 𝑥 varies in 𝑋. The
dependent application of 𝑓 to 𝑝 is
then the piece of the graph that lies
over 𝑝:

𝑥
𝑥� 𝑋

𝑌(𝑥) 𝑌(𝑥�)

𝑝

𝑓 (𝑥) 𝑓 (𝑥�)
apd 𝑓 (𝑝)

29Also known as a Sigma-type.

30We also call ∑𝑥 : 𝑋 𝑌(𝑥) the total type
of the family, and we picture it, in
the style of the pictures above, as
the entire blob lying over 𝑋. (Each
𝑌(𝑥) is a vertical line over 𝑥 : 𝑋, and a
point 𝑦 :𝑌(𝑥) becomes a point (𝑥 , 𝑦)
in the blob.)

𝑥
𝑋

∑𝑥 : 𝑋 𝑌(𝑥)𝑌(𝑥)

(𝑥 , 𝑦)

fst

paths satisfy many of the laws satisfied by the corresponding operations
on paths, after some modification. We will state these laws when we
need them.27

The following construction shows how to handle application of a
dependent function 𝑓 to paths using the definition above.

de
f:
ap
d D��������� 2.7.4. Suppose we are given a type 𝑋, a family of types 𝑌(𝑥)

parametrized by the elements 𝑥 of 𝑋, and a function 𝑓 : ∏𝑥 𝑌(𝑥). Given
elements 𝑥 , 𝑥� : 𝑋 and a path 𝑝 : 𝑥 =→ 𝑥�, we define

apd 𝑓 (𝑝) : 𝑓 (𝑥) =−→
𝑝

𝑓 (𝑥�)

by induction on 𝑝, setting

apd 𝑓 (refl𝑥) :≡ refl 𝑓 (𝑥). �

The function apd 𝑓 is called dependent application of 𝑓 to paths.28 For
convenience, we may abbreviate apd 𝑓 (𝑝) to 𝑓 (𝑝), when there is no risk
of confusion.

The following construction shows how functions of two variables may
be applied to paths over paths.

de
f:
ap
pl
fu
n2

D��������� 2.7.5. Suppose we are given a type 𝑋, a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋, and a type 𝑍. Suppose also we are
given a function 𝑔 : ∏𝑥 : 𝑋(𝑌(𝑥) → 𝑍) of two variables. Given elements
𝑥 , 𝑥� : 𝑋, 𝑦 :𝑌(𝑥), and 𝑦� :𝑌(𝑥�), a path 𝑝 : 𝑥 =→ 𝑥�, and a path 𝑞 : 𝑦

=−→
𝑝

𝑦�

over 𝑝, we may construct a path

apap𝑔(𝑝)(𝑞) : 𝑔(𝑥)(𝑦) =→ 𝑔(𝑥�)(𝑦�)

by induction on 𝑝 and 𝑞, setting

apap𝑔(refl𝑥)(refl𝑦) :≡ refl𝑔(𝑥)(𝑦). �

The function 𝑝 ↦→ 𝑞 ↦→ apap𝑔(𝑝)(𝑞) is called application of 𝑔 to paths
over paths. For convenience, we may abbreviate apap𝑔(𝑝)(𝑞) to 𝑔(𝑝)(𝑞).

The following simple lemma will be useful later.

de
f:
ap
pl
fu
n2
co
mp

D��������� 2.7.6. Suppose we are given a type 𝑋, a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋, and a type 𝑍. Suppose also we are
given a function 𝑔 : ∏𝑥 : 𝑋(𝑌(𝑥) → 𝑍) of two variables. Given an element
𝑥 : 𝑋, elements 𝑦 , 𝑦� :𝑌(𝑥), and an identity 𝑞 : 𝑦 =→ 𝑦�, then we define
an identification of type apap𝑔(refl𝑥)(𝑞) =→ ap𝑔(𝑥)(𝑞), by induction on 𝑞,
thereby reducing to the case where 𝑦� is 𝑦 and 𝑞 is refl𝑦 , rendering the
two sides of the equation equal, by definition, to refl𝑔(𝑥)(𝑦). �

�.� Sum types

se
c:
su
m-
ty
pe
s

There are sums of types. By this we mean if 𝑋 is a type and 𝑌(𝑥) is a
family of types parametrized by a variable 𝑥 of type 𝑋, then there will be
a type29 ∑𝑥 : 𝑋 𝑌(𝑥) whose elements are all pairs (𝑎 , 𝑏), where 𝑎 : 𝑋 and
𝑏 :𝑌(𝑎). Since the type of 𝑏 may depend on 𝑎 we also call such a pair a
dependent pair. We may refer to 𝑋 as the parameter type of the sum.30

If 𝑋 and 𝑌(𝑥) are elements of a universe U , then so is ∑𝑥 : 𝑋 𝑌(𝑥).
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Proving something about (or constructing something from) every
element of ∑𝑥 : 𝑋 𝑌(𝑥) is done by performing the construction on elements
of the form (𝑎 , 𝑏), for every 𝑎 : 𝑋 and 𝑏 :𝑌(𝑎). Two important examples
of such constructions are:

(1) first projection, fst : (∑𝑥 : 𝑋 𝑌(𝑥)) → 𝑋, fst(𝑎 , 𝑏) :≡ 𝑎;

it
:s
ec
on
d-
pr
oj
ec
ti
on

(2) second projection, snd(𝑎 , 𝑏) :𝑌(𝑎), snd(𝑎 , 𝑏) :≡ 𝑏.

In (2), the type of snd is, in full, ∏𝑧 : ∑𝑥 : 𝑋 𝑌(𝑥) 𝑌(fst(𝑧)).

it
er
at
ed
-s
um
s R����� 2.8.1. One may consider sums of sums. For example, suppose 𝑋

is a type, suppose 𝑌(𝑥) is a family of types parametrized by a variable 𝑥 of
type 𝑋, and suppose 𝑍(𝑥 , 𝑦) is a family of types parametrized by variables
𝑥 : 𝑋 and 𝑦 :𝑌(𝑥). In this case, the iterated sum ∑𝑥 : 𝑋 ∑𝑦 :𝑌(𝑥) 𝑍(𝑥 , 𝑦)
consists of pairs of the form (𝑥 , (𝑦 , 𝑧)). For simplicity, we introduce the
notation (𝑥 , 𝑦 , 𝑧) :≡ (𝑥 , (𝑦 , 𝑧)), and refer to (𝑥 , 𝑦 , 𝑧) as a triple or as a
3-tuple.

That process can be repeated: suppose 𝑋1 is a type, suppose 𝑋2(𝑥1)
is a family of types parametrized by a variable 𝑥1 of type 𝑋1, suppose
𝑋3(𝑥1 , 𝑥2) is a family of types parametrized by variables 𝑥1 : 𝑋1 and
𝑥2 : 𝑋2(𝑥1), and so on, up to a family 𝑋𝑛(𝑥1 , . . . , 𝑥𝑛−1) of types. In this
case, the iterated sum

∑
𝑥1 : 𝑋1

∑
𝑥2 : 𝑋2(𝑥1)

· · · ∑
𝑥𝑛−1 : 𝑋𝑛−1(𝑥1 ,...,𝑥𝑛−2)

𝑋𝑛(𝑥1 , . . . , 𝑥𝑛−1)

consists of elements of the form (𝑥1 , (𝑥2 , (. . . (𝑥𝑛−1 , 𝑥𝑛) . . . ))); each such
element is a pair whose second member is a pair, and so on, so we may
refer to it as an iterated pair. For simplicity, we introduce the notation
(𝑥1 , 𝑥2 , . . . , 𝑥𝑛) for such an iterated pair, and refer to it as an 𝑛-tuple. �

�.� Equivalences

se
c:
eq
ui
va
le
nc
e

Using a combination of sum, product, and identity types allows us to
express important notions, as done in the following definitions.

The property that a type 𝑋 has “exactly one element” may be made
precise by saying that 𝑋 has an element such that every other element is
equal to it. This property is encoded in the following definition.

de
f:
co
nt
ra
ct
ib
le

D��������� 2.9.1. Given a type 𝑋, define a type isContr(𝑋) by setting

isContr(𝑋) :≡ ∑
𝑐 : 𝑋

∏
𝑥 : 𝑋

(𝑐 =→ 𝑥). �

If (𝑐 , ℎ) : isContr(𝑋), then 𝑐 will be called the center of the the contraction
ℎ, and we call the type 𝑋 contractible.

By path composition, one sees that any element 𝑥 : 𝑋 can serve as the
center of a contraction of a contractible type 𝑋.

The following lemma gives an important example of a contractible
type.

Give a type 𝑋 and an element 𝑎 of 𝑋, the singleton type ∑𝑥 : 𝑋(𝑎 =→ 𝑥)
consists of pairs (𝑥 , 𝑖) with 𝑖 : 𝑎 =→ 𝑥. The following lemma shows that a
singleton type has exactly one element, justifying the name.

le
m:
th
ep
at
hs
pa
ce
is
co
nt
ra
ct
ib
le

L���� 2.9.2. For any type 𝑋 and 𝑎 : 𝑋, the singleton type ∑𝑥 : 𝑋(𝑎 =→ 𝑥) is
contractible.
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31Note that fst(𝑡(𝑦)) : 𝑓 −1(𝑦),
so fst(fst(𝑡(𝑦))) : 𝑋 with
snd(fst(𝑡(𝑦))) : 𝑦 =→ 𝑓 (fst(fst(𝑡(𝑦)))).

Proof. Take as center the pair (𝑎 , refl𝑎). We have to produce, for any
element 𝑥 of 𝑋 and for any identification 𝑖 : 𝑎 =→ 𝑥, an identification
of type (𝑎 , refl𝑎) =→ (𝑥 , 𝑖). This is done by path induction on 𝑥 and 𝑖,
which reduces us to producing an identity of type (𝑎 , refl𝑎) =→ (𝑎 , refl𝑎);
reflexivity provides one, namely refl(𝑎 ,refl𝑎 ). �

de
f:
fi
be
r D��������� 2.9.3. Given a function 𝑓 : 𝑋 → 𝑌 and an element 𝑦 :𝑌, the

fiber (or preimage) 𝑓 −1(𝑦) is encoded by defining

𝑓 −1(𝑦) :≡ ∑
𝑥 : 𝑋

(𝑦 =→ 𝑓 (𝑥)).

In other words, an element of the fiber 𝑓 −1(𝑦) is a pair consisting of an
element 𝑥 of 𝑋 and an identification of type 𝑦 =→ 𝑓 (𝑥). �

In set theory, a function 𝑓 : 𝑋 → 𝑌 is a bĳection if and only if all
preimages 𝑓 −1(𝑦) consist of exactly one element. We can also express
this in type theory, in a definition due to Voevodsky, for types in general.

de
f:
eq
ui
va
le
nc
e D��������� 2.9.4. A function 𝑓 : 𝑋 → 𝑌 is called an equivalence if 𝑓 −1(𝑦)

is contractible for all 𝑦 :𝑌. The condition is encoded by the type

isEquiv( 𝑓 ) :≡ ∏
𝑦 :𝑌

isContr( 𝑓 −1(𝑦)). �

We may say that 𝑋 and 𝑌 are equivalent if there is an equivalence
between them.

de
f:
ty
pe
-o
f-
eq
ui
va
le
nc
es

D��������� 2.9.5. We define the type 𝑋 �→ 𝑌 of equivalences from 𝑋 to 𝑌
by the following definition.

(𝑋 �→ 𝑌) :≡ ∑
𝑓 : 𝑋→𝑌

isEquiv( 𝑓 ). �

Suppose 𝑓 : 𝑋 �→ 𝑌 is an equivalence, and let 𝑡(𝑦) : isContr( 𝑓 −1(𝑦)),
for each 𝑦 :𝑌, be the corresponding witness to contractibility of the
fiber. Using 𝑡 we can define an inverse function 𝑔 :𝑌 → 𝑋 by setting
𝑔(𝑦) :≡ fst(fst(𝑡(𝑦))).31

There is an identification of type 𝑓 (𝑔(𝑦)) =→ 𝑦, which can be seen by
unfolding all the definitions. Moreover, we have (𝑥 , refl 𝑓 (𝑥)) : 𝑓 −1( 𝑓 (𝑥)),
with the latter as the fiber that 𝑡( 𝑓 (𝑥)) proves contractible. Hence the
center of contraction fst(𝑡( 𝑓 (𝑥)) is equal to (𝑥 , refl 𝑓 (𝑥)), and so 𝑔( 𝑓 (𝑥)) ≡
(fst(fst(𝑡( 𝑓 (𝑥))) =→ 𝑥.

We have shown that 𝑓 and 𝑔 are inverse functions. When it won’t
cause confusion with the notation for the fibers of 𝑓 , we will write 𝑓 −1

instead of 𝑔.
For any type 𝑋, the identity function id𝑋 is an equivalence from 𝑋 to 𝑋.

To see that, observe that for every element 𝑎 in 𝑋, id−1
𝑋 (𝑎) is a singleton

type and hence is contractible. This observation, combined with the fact
that trp𝑇

refl𝑥
≡ id𝑇(𝑥), gives that the function trp𝑇

𝑒 from Definition 2.5.4 is
an equivalence from 𝑇(𝑥) to 𝑇(𝑦), for all 𝑒 : 𝑥 =→ 𝑦.

xc
a:
eq
ui
va
le
nc
e-
in
ve
rs

E������� 2.9.6. Make sure you understand the two applications of fst
in the definition 𝑓 −1(𝑦) :≡ fst(fst(𝑡(𝑦))) above. Show that 𝑓 −1 is an
equivalence from 𝑌 to 𝑋. Give a function (𝑋 � 𝑌) → (𝑌 � 𝑋). �

xc
a:
eq
ui
va
le
nc
e-
co
mp

E������� 2.9.7. Give a function (𝑋 � 𝑌) → ((𝑌 � 𝑍) → (𝑋 � 𝑍)). �
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32The Univalent Foundations Program.
Homotopy Type Theory� Univalent
Foundations of Mathematics. Institute
for Advanced Study: https://
homotopytypetheory.org/book,
2013.

33In fact, an alternative proof would go
as follows: First, we use Lemma 2.9.9
to show associativity of sum
types, i.e., ∑𝑥 : 𝑋 ∑𝑦 :𝑌(𝑥) 𝑍(𝑥 , 𝑦) �
∑𝑤 : (∑𝑥 : 𝑋 𝑌(𝑥)) 𝑍(fst 𝑤 , snd 𝑤), where
𝑋 is a type, 𝑌(𝑥) is a family of types
depending on 𝑥 : 𝑋, and 𝑍(𝑥 , 𝑦) is a
family of types depending on 𝑥 : 𝑋
and 𝑦 :𝑌(𝑥). Then, we show for any
contractible type 𝑋 and for any fam-
ily of types 𝑌(𝑥) depending on 𝑥 : 𝑋,
that there is an equivalence between
∑𝑥 : 𝑋 𝑌(𝑥) and 𝑌(𝑐), where 𝑐 is the
center of contraction.

We will allow ourselves to drop the
“fiberwise” and talk simply about
maps and equivalences between type
families.

xc
a:
2-
ou
t-
of
-3

E������� 2.9.8. Consider types 𝐴, 𝐵, and 𝐶, functions 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐴 →
𝐶 and ℎ : 𝐵 → 𝐶, together with an element 𝑒 : ℎ 𝑓 =→ 𝑔. Prove that if two
of the three functions are equivalences, then so is the third one. �

The following lemma gives an equivalent characterization of equiva-
lence that is sometimes easy to use.

le
m:
we
q-
is
o L���� 2.9.9. Let 𝑋 ,𝑌 be types. For each equivalence 𝑓 : 𝑋 → 𝑌, we have a

function 𝑔 :𝑌 → 𝑋 such that for all 𝑥 : 𝑋 we have 𝑔( 𝑓 (𝑥)) =→ 𝑥 and for all
𝑦 :𝑌 we have 𝑓 (𝑔(𝑦)) =→ 𝑦. Conversely, if we have such a function 𝑔, then 𝑓 is
an equivalence.

Proof. Since 𝑓 : 𝑋 → 𝑌 is an equivalence we can take 𝑔 :≡ 𝑓 −1. For the
converse, see Chapter 4 of the HoTT Book,32 or isweq_iso. �

We put Lemma 2.9.9 immediately to good use.

le
m:
co
nt
ra
ct
-a
wa
y L���� 2.9.10. Let 𝑋 be a type with element 𝑎, and let 𝐵(𝑥 , 𝑖) be a type for all

𝑥 : 𝑋 and 𝑖 : 𝑎 =→ 𝑥. Define 𝑓 (𝑥 , 𝑖) : 𝐵(𝑥 , 𝑖) → 𝐵(𝑎 , refl𝑎) by induction on 𝑖,
setting 𝑓 (𝑎 , refl𝑎 , 𝑏) :≡ 𝑏 for all 𝑏 : 𝐵(𝑎 , refl𝑎). Then 𝑓 defines an equivalence

𝑓 : ∑
𝑥 : 𝑋

∑
𝑖 : 𝑎 =→𝑥

𝐵(𝑥 , 𝑖) → 𝐵(𝑎 , refl𝑎).

Proof. We can also define 𝑔 : 𝐵(𝑎 , refl𝑎) → ∑𝑥 : 𝑋 ∑𝑖 : 𝑎 =→𝑥 𝐵(𝑥 , 𝑖) mapping
𝑏 : 𝐵(𝑎 , refl𝑎) to (𝑎 , refl𝑎 , 𝑏). Clearly 𝑓 (𝑔(𝑏)) =→ 𝑏 for all 𝑏 : 𝐵(𝑎 , refl𝑎).
Moreover, 𝑔( 𝑓 (𝑥 , 𝑖 , 𝑏)) =→ (𝑥 , 𝑖 , 𝑏) is clear by induction on 𝑖, for all
𝑏 : 𝐵(𝑥 , 𝑖). By Lemma 2.9.9 it follows that 𝑓 is an equivalence. �

The above lemma clearly reflects the contractibility of the singleton
type ∑𝑥 : 𝑋(𝑎 =→ 𝑥).33 For this reason we call application of this lemma
‘to contract away’ the prefix ∑𝑥 : 𝑋 ∑𝑖 : 𝑎 =→𝑥 , in order to obtain a simpler
type. It is often applied in the following simpler form.

co
r:
co
nt
ra
ct
-a
wa
y C�������� 2.9.11. With conditions as above, but with 𝐵 not depending on 𝑖,

the same 𝑓 establishes an equivalence

∑
𝑥 : 𝑋

((𝑎 =→ 𝑥) × 𝐵(𝑥)) � 𝐵(𝑎).

In the direction of further generality, we offer the following exercise.

xc
a:
su
m-
eq
ui
v-
ba
se

E������� 2.9.12. Suppose 𝑋 ,𝑌 are types related by an equivalence 𝑓 : 𝑋 →
𝑌. Let 𝐵(𝑥) be a type for all 𝑥 : 𝑋. Construct an equivalence between
∑𝑥 : 𝑋 𝐵(𝑥) and ∑𝑦 :𝑌 𝐵( 𝑓 −1(𝑦)). �

We proceed now to define the notion of fiberwise equivalence.

de
f:
fi
be
rw
is
e D��������� 2.9.13. Let 𝑋 be a type, and let 𝑌(𝑥), 𝑍(𝑥) be families of types

parameterised by 𝑥 : 𝑋. A map 𝑓 of type ∏𝑥 : 𝑋(𝑌(𝑥) → 𝑍(𝑥)) can be
viewed as a family of maps 𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥) and is called a fiberwise
map. The totalization of 𝑓 is defined as

tot( 𝑓 ) :
�

∑
𝑥 : 𝑋

𝑌(𝑥)
�
→ ∑

𝑥 : 𝑋
𝑍(𝑥),

setting tot( 𝑓 )(𝑥 , 𝑦) :≡ (𝑥 , 𝑓 (𝑥)(𝑦)). �

le
m:
fi
be
rw
is
e L���� 2.9.14. Let conditions be as in Definition �.�.��. If 𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥)

is an equivalence for every 𝑥 : 𝑋 �we say that 𝑓 is a fiberwise equivalence�,
then tot( 𝑓 ) is an equivalence.
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34Univalent Foundations Program,
Homotopy Type Theory� Univalent
Foundations of Mathematics.

We picture paths between pairs
much in the same way as paths
over paths, cf. Footnote 26. Just
as, to give a pair in the sum type
∑𝑥 : 𝑋 𝑌(𝑥), we need both the point
𝑥 in the parameter type 𝑋 as well
as the point 𝑦 in 𝑌(𝑥), to give a
path from (𝑥 , 𝑦) to (𝑥�, 𝑦�), we need
both a path 𝑝 : 𝑥 =→ 𝑥� as well as
a path 𝑞 : 𝑦

=−→
𝑝

𝑦� over 𝑝. Here’s

a similar picture, where we de-
pict the types in the family as be-
ing 2-dimensional for a change.

𝑥
𝑥� 𝑋𝑝

𝑦 𝑦�𝑞

Proof. If 𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥) is an equivalence for all 𝑥 in 𝑋, then the
same is true of all 𝑓 (𝑥)−1 : 𝑍(𝑥) → 𝑌(𝑥). Then we have the totalization
tot(𝑥 ↦→ 𝑓 (𝑥)−1), which can easily be proved to be an inverse of tot( 𝑓 )
(see the next exercise). Now apply Lemma 2.9.9. �

xc
a:
fi
be
rw
is
e E������� 2.9.15. Complete the details of the proof of Lemma 2.9.14. �

The converse to Lemma 2.9.14 also holds.

le
m:
fi
be
rw
is
e-
eq
ui
v-
fr
om
-t
ot

L���� 2.9.16. Continuing with the setup of Definition �.�.��, if tot( 𝑓 ) is an
equivalence, then 𝑓 is a fiberwise equivalence.

For a proof see Theorem 4.7.7 of the HoTT Book34.
Yet another application of the notion of equivalence is to postulate

axioms.

de
f:
fu
ne
xt

P�������� 2.9.17. The axiom of function extensionality postulates that the
function ptw 𝑓 ,𝑔 : 𝑓 =→ 𝑔 → ∏𝑥 : 𝑋 𝑓 (𝑥) =→ 𝑔(𝑥) in Definition 2.6.4 is
an equivalence. Formally, we postulate the existence of an element
funext : isEquiv(ptw 𝑓 ,𝑔). From that we can construct the corresponding
inverse function.

ptw−1
𝑓 ,𝑔 :

�
∏
𝑥 : 𝑋

𝑓 (𝑥) =→ 𝑔(𝑥)
�
→ 𝑓 =→ 𝑔.

Thus two functions whose values can all be identified can themselves be
identified. This supports the intuition that there is nothing more to a
function than the values it sends its arguments to. �

E������� 2.9.18. Let 𝑋 be a type. Construct an equivalence of type
(True → 𝑋) �→ 𝑋. �

E������� 2.9.19. Let 𝑋 be a type, and regard True as a constant family of
types over 𝑋. Construct an equivalence of type (∑𝑥 : 𝑋 True) �→ 𝑋. �

�.�� Identifying pairs

se
c:
pa
ir
pa
th
s

Equality of two elements of ∑𝑥 : 𝑋 𝑌(𝑥) is inductively defined in Section 2.5,
as for any other type, but one would like to express identity between
pairs in terms of identifications in the constituent types. This would
explain better what it means for two pairs to be identified. We start with
a definition.

de
f:
pa
ir
to
pa
th

D��������� 2.10.1. Suppose we are given a type 𝑋 and a family of types
𝑌(𝑥) parametrized by the elements 𝑥 of 𝑋. Consider the function

pair : ∏
𝑥 : 𝑋

�
𝑌(𝑥) → ∑

𝑥� : 𝑋
𝑌(𝑥�)

�

defined by
pair(𝑥)(𝑦) :≡ (𝑥 , 𝑦).

For any elements (𝑥 , 𝑦) and (𝑥�, 𝑦�) of ∑𝑥 : 𝑋 𝑌(𝑥), we define the map
�

∑
𝑝 : 𝑥 =→𝑥�

𝑦
=−→
𝑝

𝑦�
�
→ �(𝑥 , 𝑦) =→ (𝑥�, 𝑦�)�

by
(𝑝 , 𝑞) ↦→ apappair(𝑝)(𝑞).
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35These cartesian products we illustrate
as usual by rectangles where one
side represents 𝑋 and the other 𝑌.

𝑥
𝑋

𝑦

𝑌

𝑋 × 𝑌

(𝑥 , 𝑦)

fst

snd

(Refer to Definition 2.7.1 for the meaning of the type 𝑦
=−→
𝑝

𝑦�, and

to Definition 2.7.5 for the definition of apap.) We introduce (𝑝 , 𝑞) as
notation for apappair(𝑝)(𝑞). �

co
r:
is
Eq
-p
ai
r=

L���� 2.10.2. In the situation of Definition �.��.�, if 𝑥� is 𝑥, so that we have
(𝑦 =−−−→

refl𝑥
𝑦�) ≡ (𝑦 =→ 𝑦�), then for any 𝑞 : 𝑦 =→ 𝑦�, we can construct an

identification of type
(refl𝑥 , 𝑞) =→ appair(𝑥) 𝑞

holds.

Proof. By induction on 𝑞 it suffices to establish the identity

(refl𝑥 , refl𝑦) =→ appair(𝑥)(refl𝑦),

both sides of which are equal to refl(𝑥 ,𝑦) by definition. �

The following lemma gives the desired characterization of paths
between pairs.

le
m:
is
Eq
-p
ai
r=

L���� 2.10.3. Suppose we are given a type 𝑋 and a family of types 𝑌(𝑥)
parametrized by the elements 𝑥 of 𝑋. For any elements (𝑥 , 𝑦) and (𝑥�, 𝑦�) of
∑𝑥 : 𝑋 𝑌(𝑥), the map defined in Definition �.��.� defined by

(𝑝 , 𝑞) ↦→ (𝑝 , 𝑞)

is an equivalence of type
�

∑
𝑝 : 𝑥 =→𝑥�

𝑦
=−→
𝑝

𝑦�
�

� �(𝑥 , 𝑦) =→ (𝑥�, 𝑦�)� .

Proof. Call the map Φ. A map the other way,

Ψ : ((𝑥 , 𝑦) =→ (𝑥�, 𝑦�)) → ∑
𝑝 : 𝑥 =→𝑥�

𝑦
=−→
𝑝

𝑦�,

can be defined by induction, by setting

Ψ(refl(𝑥 ,𝑦)) :≡ (refl𝑥 , refl𝑦).

One proves, by induction on paths, the identitiesΨ(Φ(𝑝 , 𝑞)) =→ (𝑝 , 𝑞) and
Φ(Ψ(𝑟)) =→ 𝑟, so Ψ and Φ are inverse functions. Applying Lemma 2.9.9,
we see that Φ and Ψ are inverse equivalences, thereby obtaining the
desired result. �

We often use fst((𝑝 , 𝑞)) =→ 𝑝 and snd((𝑝 , 𝑞)) =→ 𝑞, which follow by
induction on 𝑝 and 𝑞 from the definitions of ap and (_, _). Similarly,
𝑟 =→ (fst(𝑟), snd(𝑟)) by induction on 𝑟.

�.�� Binary products

se
c:
bi
np
ro
d-
ty
pe
s

There is special case of sum types that deserves to be mentioned since
it occurs quite often. Let 𝑋 and 𝑌 be types, and consider the constant
family of types 𝑌(𝑥) :≡ 𝑌. In other words, 𝑌(𝑥) is a type that depends
on an element 𝑥 of 𝑋 that happens to be 𝑌 for any such 𝑥. (Recall
Exercise 2.5.6.) Then we can form the sum type ∑𝑥 : 𝑋 𝑌(𝑥) as above.
Elements of this sum type are pairs (𝑥 , 𝑦)with 𝑥 in 𝑋 and 𝑦 in 𝑌(𝑥) ≡ 𝑌.35
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In this case the type of 𝑦 doesn’t depend on 𝑥, and in this special case
the sum type is called the binary product, or cartesian product of the types
𝑋 and 𝑌, denoted by 𝑋 × 𝑌.

At first glance, it might seem odd that a sum is also a product, but
exactly the same thing happens with numbers, for the sum 5 + 5 + 5 is
also referred to as the product 3 × 5. Indeed, that’s one way to define
3 × 5.

Recall that we have seen something similar with the product type
∏𝑥 : 𝑋 𝑌(𝑥), which we let 𝑋 → 𝑍 denote in the case where 𝑌(𝑥) is a
constant family of the form 𝑌(𝑥) :≡ 𝑍, for some type 𝑍.

The type 𝑋 ×𝑌 inherits the functions fst, snd from ∑𝑥 : 𝑋 𝑌(𝑥), with the
same definitions fst(𝑥 , 𝑦) :≡ 𝑥 and snd(𝑥 , 𝑦) :≡ 𝑦. Their types can now be
denoted in a simpler way as fst : (𝑋×𝑌) → 𝑋 and snd : (𝑋×𝑌) → 𝑌, and
they are called as before the first and the second projection, respectively.

Again, proving something about (or constructing something from)
every element (𝑎 , 𝑏) of 𝑋 × 𝑌 is simply done for all 𝑎 : 𝑋 and 𝑏 :𝑌.

There is an equivalence between (𝑎1 , 𝑏1) =→ (𝑎2 , 𝑏2) and (𝑎1
=→ 𝑎2) ×

(𝑏1
=→ 𝑏2). This follows from Lemma 2.10.3 together with Exercise 2.5.6.

If 𝑓 : 𝑋 → 𝑌 and 𝑓 � : 𝑋� → 𝑌�, then we let 𝑓 × 𝑓 � denote the map of
type (𝑋 × 𝑋�) → (𝑌 × 𝑌�) that sends (𝑥 , 𝑥�) to ( 𝑓 (𝑥), 𝑓 �(𝑥�)).

The following lemma follows from Lemma 2.10.3, combined with
Definition 2.7.2 and Exercise 2.5.6.

le
m:
is
Eq
-p
ai
r-
bi
n=

L���� 2.11.1. Suppose we are given type 𝑋 and 𝑌. For any elements (𝑥 , 𝑦)
and (𝑥�, 𝑦�) of 𝑋 × 𝑌, the map defined in Definition �.��.� defined by

(𝑝 , 𝑞) ↦→ (𝑝 , 𝑞)

is an equivalence of type

(𝑥 =→ 𝑥�) × (𝑦 =→ 𝑦�) � �(𝑥 , 𝑦) =→ (𝑥�, 𝑦�)� .

xc
a:
bi
na
ry
-p
ro
d-
eq
ui
v E������� 2.11.2. Let 𝑋 ,𝑌 be types in a universe U , and consider the

type family 𝑇(𝑧) inU depending on 𝑧 : Bool defined by 𝑇(no) :≡ 𝑋 and
𝑇(yes) :≡ 𝑌. Show that the function (∏𝑏 : Bool 𝑇(𝑏)) → 𝑋 × 𝑌 sending 𝑓
to ( 𝑓 (no), 𝑓 (yes)), is an equivalence. �

E������� 2.11.3. Let 𝑋 be a type. Construct an equivalence of type
(𝑋 × True) �→ 𝑋. �

�.�� More inductive types

se
c:
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s

There are other examples of types that are conveniently introduced in
the same way as we have seen with the natural numbers and the identity
types. A type presented in this style shares some common features:
there are some ways to create new elements, and there is a way (called
induction) to prove something about every element of the type (or family
of types). We will refer to such types as inductive types, and we present
a few more of them in this section, including the finite types, and then
we present some other constructions for making new types from old
ones. For each of these constructions we explain what it means for two
elements of the newly constructed type to be equal in terms of identity
in the constituent types.
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36From falsehood, anything follows.

�.��.� Finite types

se
c:
fi
ni
te
-t
yp
es

Firstly, there is the empty type in the universe U0, denoted by ∅ or by
False. It is an inductive type, with no way to construct elements of it.
The induction principle for ∅ says that to prove something about (or to
construct something from) every element of ∅, it suffices to consider no
special cases (!). Hence, every statement about an arbitrary element of
∅ can be proven. (This logical principle is traditionally called ex falso
quodlibet.36) As an example, we may prove that any two elements 𝑥 and
𝑦 of ∅ are equal by using induction on 𝑥.

An element of ∅ will be called an absurdity. Of course, one expects that
there are no real absurdities in mathematics, nor in any logical system
(such as ours) that attempts to provide a language for mathematics, but
it is important to have such a name so we can discuss the possibility,
which might result inadvertently from the introduction of unwarranted
assumptions. For example, to assert that a type 𝑃 has no elements,
it would be sensible to assert that an element of 𝑃 would lead to an
absurdity. Providing a function of type 𝑃 → ∅ is a convenient way to
make that assertion. Hence we define the negation of a type by setting
¬𝑃 :≡ (𝑃 → ∅). Using it, we may define the type (𝑎 ≠ 𝑏) :≡ ¬(𝑎 =→ 𝑏); an
element of it asserts that 𝑎 and 𝑏 cannot be identified.

Secondly, there will also be an inductive type called True in the
universe U0 provided with a single element triv; (the name triv comes
from the word “trivial”). Its induction principle states that, in order to
prove something about (or to construct something from) every element
of True, it suffices to consider the special case where the element is triv.
As an example, we may construct, for any element 𝑢 : True, an identity
of type 𝑢 =→ triv; we use induction to reduce to the case where 𝑢 is triv,
and then refltriv provides the desired element. One may also construct,
for any elements 𝑥 and 𝑦 of True, an identity of type 𝑥 =→ 𝑦 by using
induction both on 𝑥 and on 𝑦.

There is a function 𝑋 → True, for any type 𝑋, namely: 𝑎 ↦→ triv. This
corresponds, for propositions, to the statement that an implication holds
if the conclusion is true.

xc
a:
Tr
ue
-u
ni
v-
pr
op

E������� 2.12.2. Let 𝑋 be a type. Define the function 𝑒 of type (True →
𝑋) → 𝑋 by 𝑒( 𝑓 ) :≡ 𝑓 (triv). Prove that 𝑒 is an equivalence. This is called
the universal property of True. �

Thirdly, there will be an inductive type called Bool in the universeU0,
provided with two elements, yes and no. Its induction principle states
that, in order to prove something about (or to construct something from)
every element of Bool, it suffices to consider two cases: the special case
where the element is yes and the special case where the element is no.

We may use substitution to construct an element of type yes ≠ no.
To do this, we introduce a family of types 𝑃(𝑏) in the universe U0

parametrized by a variable 𝑏 : Bool. We define 𝑃(𝑏) by induction on 𝑏
by setting 𝑃(yes) :≡ True and 𝑃(no) :≡ False. (The definition of 𝑃(𝑏)
is motivated by the expectation that we will be able to construct an
equivalence between 𝑃(𝑏) and 𝑏 =→ yes.) If there were an element
𝑒 : yes =→ no, we could substitute no for yes in triv : 𝑃(yes) to get an
element of 𝑃(no), which is absurd. Since 𝑒 was arbitrary, we have
defined a function (yes =→ no) → ∅, as desired.
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37In a case like this, we can thicken up
the lines denoting 𝑇(no) and 𝑇(yes)
in our picture, if we like:

no yes
Bool

𝑇(no) 𝑇(yes)

𝑥 𝑦

38Be aware that in a picture, the same
point may refer either to 𝑥 in 𝑋 or to
inl𝑥 in the sum 𝑋 � 𝑌:

𝑋 𝑌

𝑥 𝑦

𝑋 � 𝑌

In the same way, we may use substitution to prove that successors of
natural numbers are never equal to 0, i.e., for any 𝑛 :ℕ that 0 ≠ succ(𝑛).
To do this, we introduce a family of types 𝑃(𝑖) in U0 parametrized by
a variable 𝑖 :ℕ. Define 𝑃 recursively by specifying that 𝑃(0) :≡ True
and 𝑃(succ(𝑚)) :≡ False. (The definition of 𝑃(𝑖) is motivated by the
expectation that we will be able to construct an equivalence between 𝑃(𝑖)
and 𝑖 =→ 0.) If there were an element 𝑒 : 0 =→ succ(𝑛), we could substitute
succ(𝑛) for 0 in triv : 𝑃(0) to get an element of 𝑃(succ(𝑛)), which is absurd.
Since 𝑒 was arbitrary, we have defined a function (0 =→ succ(𝑛)) → ∅,
establishing the claim.

In a similar way we will in Section 2.24 define types 𝕟 for any 𝑛 in ℕ

such that 𝕟 is a type (set) of 𝑛 elements.

�.��.� Binary sums

se
c:
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For sum types of the form ∑𝑏 : Bool 𝑇(𝑏), with 𝑇(𝑏) a type depending on 𝑏
in Bool, there is an equivalence with a simpler type.37 After all, the type
family 𝑇(𝑏) is fully determined by two types, namely by the types 𝑇(no)
and 𝑇(yes). The elements of ∑𝑏 : Bool 𝑇(𝑏) are dependent pairs (no, 𝑥)
with 𝑥 in 𝑇(no) and (yes, 𝑦) with 𝑦 in 𝑇(yes). The resulting type can
be viewed as the disjoint union of 𝑇(no) and 𝑇(yes): from an element of
𝑇(no) or an element of 𝑇(yes) we can produce an element of ∑𝑏 : Bool 𝑇(𝑏).

These disjoint union types can be described more clearly in the
following way. The binary sum of two types 𝑋 and 𝑌, denoted 𝑋 � 𝑌,
is an inductive type with two constructors: inl : 𝑋 → 𝑋 � 𝑌 and
inr :𝑌 → 𝑋 � 𝑌.38 Proving a property of any element of 𝑋 � 𝑌 means
proving that this property holds of any inl𝑥 with 𝑥 : 𝑋 and any inr𝑦 with
𝑦 :𝑌. In general, constructing a function 𝑓 of type ∏𝑧 : 𝑋�𝑌 𝑇(𝑧), where
𝑇(𝑧) is a type depending on 𝑧, is done by defining 𝑓 (inl𝑥) for all 𝑥 in 𝑋
and 𝑓 (inr𝑦) for all 𝑦 in 𝑌.
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E������� 2.12.4. Let 𝑋 ,𝑌 be types in a universeU , and consider the type
family 𝑇(𝑧) in U depending on 𝑧 : Bool defined by induction on 𝑧 by
𝑇(no) :≡ 𝑋 and 𝑇(yes) :≡ 𝑌. Show that the map 𝑓 : 𝑋�𝑌 → ∑𝑏 : Bool 𝑇(𝑏),
defined by 𝑓 (inl𝑥) :≡ (no, 𝑥) and 𝑓 (inr𝑦) :≡ (yes, 𝑦), is an equivalence. �

Identification of two elements 𝑎 and 𝑏 in 𝑋 �𝑌 is only possible if they
are constructed with the same constructor. Thus inl𝑥

=→ inr𝑦 is always
empty, and there are equivalences of type (inl𝑥

=→ inl𝑥�) � (𝑥 =→ 𝑥�) and
(inr𝑦

=→ inr𝑦�) � (𝑦 =→ 𝑦�).

xc
a:
bi
na
ry
-s
um
-i
d E������� 2.12.5. Prove these statements using Exercise 2.12.4, Lemma 2.10.3,

and a characterization of the identity types of Bool. �

xc
a:
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n-
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p E������� 2.12.6. Let 𝑋, 𝑌, 𝑍 be types. Define a function 𝑒 from (𝑋�𝑌) →

𝑍 to (𝑋 → 𝑍)× (𝑌 → 𝑍) by precomposition with the constructors. Prove
that 𝑒 is an equivalence. This is called the universal property of the binary
sum. �

E������� 2.12.7. Let 𝑋 be a type. Construct an equivalence of type
(𝑋 � ∅) �→ 𝑋. �
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39A point 𝑥 : 𝑋 corresponds to the
point in𝑥 : Copy(𝑋):

𝑥
𝑋

↔ in𝑥

Copy(𝑋)
Note that Copy(𝑋) can alternatively
be defined as ∑𝑧 : True 𝑋.

40We implement this in Defini-
tion 3.2.1.

41Cast is here used in the sense of
“arranging into a suitable form”. A
more theatrical description would
be that an element 𝑥 of 𝑋 is cast in
the role of an element of 𝑌 as directed
by the path 𝑝 : 𝑋 =→ 𝑌. But beware
that some programming languages
use cast in a different sense: to take a
bit-pattern representing an object of
type 𝑋 and simply reinterpreting the
same bits as an object of type 𝑌.

�.��.� Unary sums

se
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Sometimes it is useful to be able to make a copy of a type 𝑋: A new
type that behaves just like 𝑋, though it is not definitionally equal to
𝑋. The unary sum or wrapped copy of 𝑋 is an inductive type Copy(𝑋)
with a single constructor, in : 𝑋 → Copy(𝑋).39 Constructing a function
𝑓 : ∏𝑧 : Copy(𝑋) 𝑇(𝑧), where 𝑇(𝑧) is a type depending on 𝑧 : Copy(𝑋), is
done by defining 𝑓 (in𝑥) for all 𝑥 : 𝑋. Taking 𝑇(𝑧) to be the constant
family at 𝑋, we get a function, out : Copy(𝑋) → 𝑋, called the destructor,
with out(in𝑥) :≡ 𝑥 for 𝑥 : 𝑋, and the induction principle implies that
inout(𝑧) =→ 𝑧 for all 𝑧 : Copy(𝑋), so there is an equivalence of type
Copy(𝑋) � 𝑋, as expected. In fact, we will assume that the latter
equation even holds definitionally. It follows that there are equivalences
of type (in𝑥

=→ in𝑥�) � (𝑥 =→ 𝑥�) and (out(𝑧) =→ out(𝑧�)) � (𝑧 =→ 𝑧�).
Note that we can make several copies of 𝑋 that are not definitionally

equal to each other, for instance, by picking different names for the
constructor. We write Copycon(𝑋) for a copy of 𝑋 whose constructor is

con : 𝑋 → Copycon(𝑋).

ex
a:
nn
n E������ 2.12.9. Here’s an example to illustrate why it can be useful

to make such a wrapped type: We introduced the natural numbers
ℕ in Section 2.4. Suppose we want a type consisting of negations
of natural numbers, {. . . ,−2,−1, 0}, perhaps as an intermediate step
towards building the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.40 Of course,
the type ℕ itself would do, but then we would need to pay extra attention
to whether 𝑛 :ℕ is supposed to represent 𝑛 as an integer or its negation.
So instead we take the wrapped copy ℕ− :≡ Copy−(ℕ), with constructor
− :ℕ → ℕ−. There is no harm in also writing − :ℕ− → ℕ for the
destructor. This means that there is an equivalence of type ℕ− � ℕ,
for the elements of ℕ− are of the form −𝑛 for 𝑛 :ℕ. Indeed, −(−𝑛) ≡ 𝑛
for 𝑛 an element of either ℕ or ℕ−, and there is an equivalence of type
(−𝑛 =→ −𝑛�) � (𝑛 =→ 𝑛�). �

�.�� Univalence

se
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The univalence axiom, to be presented in this section, greatly enhances
our ability to produce identities between the two types and to use
the resulting identities to transport (in the sense of Definition 2.5.4)
properties and structure between the types. It asserts that if U is a
universe, and 𝑋 and 𝑌 are types in U , then there is an equivalence
between identities between 𝑋 and 𝑌 and equivalences between 𝑋 and 𝑌.

We now define the function that the univalence axiom postulates to
be an equivalence.

de
f:
id
to
eq

D��������� 2.13.1. For types 𝑋 and 𝑌 in a universeU and a path 𝑝 : 𝑋 =→
𝑌, we define an equivalence cast𝑋 ,𝑌(𝑝) : 𝑋 � 𝑌 by induction on 𝑌 and 𝑝,
setting cast𝑋 ,𝑋(refl𝑋) :≡ id𝑋 : 𝑋 � 𝑋. The result is a function

cast𝑋 ,𝑌 : (𝑋 =→ 𝑌) → (𝑋 � 𝑌). �

In expressions such as cast𝑋 ,𝑌(𝑝) we may abbreviate cast𝑋 ,𝑌 to cast if
no confusion will result. We may also write cast(𝑝) more briefly as 𝑝̃,
which we also use to denote the corresponding function from 𝑋 to 𝑌.41
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Let 𝑇 be a variable of type U ; then we may view 𝑇 as a family of
types parametrized by U , of the sort required for use with transport
as defined in Definition 2.5.4. One may construct an identity of type
cast(𝑝)(𝑥) =→ trp𝑇

𝑝 (𝑥), for 𝑥 : 𝑋, by induction on 𝑌 and 𝑝. As a corollary,
one sees that the function trp𝑇

𝑝 is an equivalence.
We are ready to state the univalence axiom.

de
f:
un
iv
al
en
ce

P�������� 2.13.2 (Univalence Axiom). Voevodsky’s univalence axiom pos-
tulates that cast𝑋 ,𝑌 is an equivalence for all 𝑋 ,𝑌 :U . Formally, we
postulate the existence of an element

ua𝑋 ,𝑌 : isEquiv(cast𝑋 ,𝑌). �

For an equivalence 𝑓 : 𝑋 � 𝑌, we will adopt the notation ua( 𝑓 ) : 𝑋 =→ 𝑌
to denote cast−1

𝑋 ,𝑌( 𝑓 ), the result of applying the inverse function of
cast𝑋 ,𝑌 to 𝑓 , if no confusion will result. Thus there are identities of type
cast(ua( 𝑓 )) =→ 𝑓 and ua(cast(𝑝)) =→ 𝑝.

We may also write ua( 𝑓 ) more briefly as 𝑓 . Thus there are identities
of type ¯̃𝑝 =→ 𝑝 and ˜̄𝑓 =→ 𝑓 . There are also identities of type id𝑋

=→ refl𝑋

and 𝑔 𝑓 =→ 𝑔̄ 𝑓 if 𝑔 :𝑌 � 𝑍.

xc
a:
C2

E������� 2.13.3. Prove that Bool =→ Bool has exactly two elements, reflBool

and twist (where twist is given by univalence from the equivalence
Bool → Bool interchanging the two elements of Bool), and that twist ·
twist =→ reflBool. �

�.�� Heavy transport

se
c:
he
av
y-
tr
an
sp
or
t

In this section we collect useful results on transport in type families that
are defined by a type constructor applied to families of types. Typical
examples of such ‘structured’ type families are 𝑌(𝑥) → 𝑍(𝑥) and 𝑥 =→ 𝑥
parametrized by 𝑥 : 𝑋.

de
f:
fu
nc
ti
on
-t
yp
e-
fa
mi
li
es

D��������� 2.14.1. Let 𝑋 be a type, and let 𝑌(𝑥) and 𝑍(𝑥) be families of
types parametrized by a variable 𝑥 : 𝑋. Define 𝑌 → 𝑍 to be the type
family with (𝑌 → 𝑍)(𝑥) :≡ 𝑌(𝑥) → 𝑍(𝑥). �

Recall from Definition 2.9.13 that an element 𝑓 : ∏𝑥 : 𝑋(𝑌 → 𝑍)(𝑥)
is called a fiberwise map, and 𝑓 is called a fiberwise equivalence, if
𝑓 (𝑥) :𝑌(𝑥) → 𝑍(𝑥) is an equivalence for all 𝑥 : 𝑋.

le
m:
tr
p-
in
-f
un
ct
io
n-
ty
pe

C����������� 2.14.2. Let 𝑋 be a type, and let 𝑌(𝑥) and 𝑍(𝑥) be types for
every 𝑥 : 𝑋. Then we have for every 𝑥 , 𝑥� : 𝑋, 𝑒 : 𝑥 =→ 𝑥�, 𝑓 :𝑌(𝑥) → 𝑍(𝑥), and
𝑦� :𝑌(𝑥�)�

trp𝑌→𝑍
𝑒 ( 𝑓 )(𝑦�) =→ trp𝑍

𝑒

�
𝑓
�
trp𝑌

𝑒-1(𝑦�)
��

.

Implementation of Construction 2.14.2. By induction on 𝑒 : 𝑥 =→ 𝑥�. For
𝑒 ≡ refl𝑥 , we have 𝑒−1 ≡ refl𝑥 , and all transports are identity functions of
appropriate type. �

An important special case of the above lemma is with U as parameter
type and type families 𝑌 :≡ 𝑍 :≡ idU . Then 𝑌 → 𝑍 is 𝑋 → 𝑋 as a type
depending on 𝑋 :U . Now, if 𝐴 :U and 𝑒 : 𝐴 =→ 𝐴 comes by applying the
univalence axiom to some equivalence 𝑔 : 𝐴 → 𝐴, then the above lemma
combined with function extensionality yields that for any 𝑓 : 𝐴 → 𝐴

trp𝑋 ↦→(𝑋→𝑋)
𝑒 ( 𝑓 ) =→ 𝑔 ◦ 𝑓 ◦ 𝑔−1.
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𝐴 𝐴

𝐴 𝐴

𝑓

𝑔 𝑔

trpua(𝑔)( 𝑓 )
𝑔◦ 𝑓 ◦𝑔−1

42We picture this in two stages. First,
we show the fiberwise situation as
follows:

𝑥
𝑥�

𝑋

𝑌(𝑥)
𝑌(𝑥�)

𝑒

𝑓

𝑔

𝑓 (𝑥)

𝑔(𝑥)

𝑓 (𝑥�)

𝑔(𝑥�)

trp𝑒 ( 𝑓 (𝑥))

trp𝑒 (𝑔(𝑥))

apd 𝑓 (𝑒)
apd𝑔(𝑒)

𝑖
trp𝑒 (𝑖)

Here, there’s not room to show all
that’s going on in the fiber 𝑌(𝑥�), so
we illustrate that as follows:

𝑌(𝑥�)

𝑓 (𝑥�)

𝑔(𝑥�)

trp𝑒 ( 𝑓 (𝑥))

trp𝑒 (𝑔(𝑥))

trp𝑍
𝑒 (𝑖)

aptrp𝑌
𝑒
(𝑖)

po𝑒

�
apd 𝑓 (𝑒)

�

po𝑒

�
apd𝑔(𝑒)

�

This equation is phrased as ‘transport by conjugation’. The following
lemma is proved by induction on 𝑒 : 𝑥 =→ 𝑥�.

le
m:
tr
p-
in
-f
x=
Yg
x C����������� 2.14.3. Let 𝑋 ,𝑌 be types, 𝑓 , 𝑔 : 𝑋 → 𝑌 functions, and let

𝑍(𝑥) :≡ ( 𝑓 (𝑥) =→ 𝑔(𝑥)) for every 𝑥 : 𝑋. Then for all 𝑥 , 𝑥� in 𝑋, 𝑒 : 𝑥 =→ 𝑥�,
and 𝑖 : 𝑓 (𝑥) =→ 𝑔(𝑥) we have�

trp𝑍
𝑒 (𝑖) =→ ap𝑔(𝑒) · 𝑖 · ap 𝑓 (𝑒)−1.

xc
a:
tr
p-
in
-a
/x
=b
/x

E������� 2.14.4. Implement Construction 2.14.3 in the following special
cases, where 𝑌 ≡ 𝑋 and 𝑎 , 𝑏 are elements of 𝑋:

(1) trp𝑥 ↦→𝑎 =→𝑏
𝑒 (𝑖) =→ 𝑖;

tr
p-
in
-a
=x

(2) trp𝑥 ↦→𝑎 =→𝑥
𝑒 (𝑖) =→ 𝑒 · 𝑖;

tr
p-
in
-x
=a

(3) trp𝑥 ↦→𝑥 =→𝑏
𝑒 (𝑖) =→ 𝑖 · 𝑒−1;

tr
p-
in
-x
=x

(4) trp𝑥 ↦→𝑥 =→𝑥
𝑒 (𝑖) =→ 𝑒 · 𝑖 · 𝑒−1 (also called conjugation). �

There is also a dependent version of Construction 2.14.3, which is
again proved by induction on 𝑒.42

le
m:
tr
p-
in
-f
x=
Yx
gx

C����������� 2.14.5. Let 𝑋 ,𝑌(𝑥) be types and 𝑓 (𝑥), 𝑔(𝑥) :𝑌(𝑥) for all 𝑥 : 𝑋.
Let 𝑍(𝑥) :≡ ( 𝑓 (𝑥) =→ 𝑔(𝑥)), with the identification in 𝑌(𝑥), for every 𝑥 : 𝑋.
Then for all 𝑥 , 𝑥� in 𝑋, 𝑒 : 𝑥 =→ 𝑥�, and 𝑖 : 𝑓 (𝑥) =→ 𝑔(𝑥) we have�

trp𝑍
𝑒 (𝑖) =→ po𝑒

�
apd𝑔(𝑒)

� · aptrp𝑌
𝑒
(𝑖) · po𝑒

�
apd 𝑓 (𝑒)

�−1.

The following construction will be used later in the book.

de
f:
Da
n’
s-
le
mm
a D��������� 2.14.6. Let 𝑋 ,𝑌(𝑥) be types and 𝑓 (𝑥) :𝑌(𝑥) for all 𝑥 : 𝑋. Given

elements 𝑥 , 𝑥� : 𝑋 and a path 𝑝 : 𝑥 =→ 𝑥�, we define an equivalence
( 𝑓 (𝑥) =−→

𝑒
𝑓 (𝑥�)) � ( 𝑓 (𝑥) =→ 𝑓 (𝑥)). We do this by inducion on 𝑝, using

Definition 2.7.1, thereby reducing to the case ( 𝑓 (𝑥) =→ 𝑓 (𝑥)) � ( 𝑓 (𝑥) =→
𝑓 (𝑥)), which we solve in the canonical way as before. �

�.�� Propositions, sets and groupoids

se
c:
pr
op
s-
se
ts
-g
rp
ds Let 𝑃 be a type. The property that 𝑃 has at most one element may be

expressed by saying that any two elements are equal. Hence it is encoded
by ∏𝑎 ,𝑏 : 𝑃(𝑎 =→ 𝑏). We shall call a type 𝑃 with that property a proposition,
and its elements will be called proofs of 𝑃. We will use them for doing
logic in type theory. The reason for doing so is that the most relevant
thing about a logical proposition is whether it has a proof or not. It
is therefore reasonable to require for any type representing a logical
proposition that all its members are equal.

Suppose 𝑃 is a proposition. Then English phrases such as “𝑃 holds”,
“we know 𝑃”, and “we have shown 𝑃”, will all mean that we have
an element of 𝑃. We will not use such phrases for types that are not
propositions, nor will we discuss knowing 𝑃 conditionally with a phrase
such as “whether 𝑃”. Similarly, if “𝑄” is the English phrase for a
statement encoded by the proposition 𝑃, then the English phrases “𝑄
holds”, “we know 𝑄”, and “we have shown 𝑄”, will all mean that we
have an element of 𝑃.

Typically, mathematical properties expressed in English as adjectives
will be encoded by types that are propositions, for in English speech,
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43Sets are thought to consist of points.
Points are entities of dimension 0,
which explains why the count starts
here. One of the contributions of
Vladimir Voevodsky is the extension
of the hierarchy downwards, with
the notion of proposition, including
logic in the same hierarchy. Some
authors therefore call propositions
(−1)-types, and they call contractible
types (−2)-types.

44Robert Recorde and John Kingston.
The whetstone of witte� whiche is the
seconde parte of Arithmetike, containyng
thextraction of rootes, the cossike prac-
tise, with the rule of equation, and the
woorkes of surde nombers. Imprynted
at London: By Ihon Kyngstone,
1557. ���: https://archive.org/
details/TheWhetstoneOfWitte.

45And to auoide the tediouse repetition of
these woordes : is equalle to : I will
sette as I doe often in woorke vse, a
paire of paralleles, or Gemowe lines of
one lengthe, thus: , bicause noe
.2. thynges, can be moare equalle.

when you assert that a certain adjective holds, you are simply asserting
it, and not providing further information. Examples: the number 6 is
even; the number 7 is prime; the number 28 is perfect; consider a regular
pentagon; consider an isosceles triangle.

Sometimes adjectives are used in mathematics, not to refer to properties
of an object, but to modify the meaning of a noun, producing a different
noun phrase denoting a different mathematical concept. For example, a
directed graph is a graph, each of whose edges is given a bit of additional
information: a direction in which it points. Other examples: differentiable
manifold; bipartite graph; vector space; oriented manifold.

Let 𝑋 be a type. If for any 𝑥 : 𝑋 and any 𝑦 : 𝑋 the identity type 𝑥 =→ 𝑦
is a proposition, then we shall say that 𝑋 is a set. The reason for doing
so is that the most relevant thing about a set is which elements it has;
distinct identifications of equal elements are not relevant. Alternatively,
we shall say that 𝑋 is a 0-type.43

D��������� 2.15.1. Let 𝐴 be a set, as defined above, and let 𝑎 and 𝑏 be
elements of 𝐴. We write 𝑎 = 𝑏 as alternative notation for the type 𝑎 =→ 𝑏.
Formally, we define it as follows.

𝑎 = 𝑏 :≡ 𝑎 =→ 𝑏

The type 𝑎 = 𝑏 is called an equation. When it has an element, we say that
𝑎 and 𝑏 are equal. �

Equations are propositions, so we can speak of them being true or
false, and we may use them after the words if, since, whether, and because
in a sentence. In set theory, everything is a set and all equations 𝑎 = 𝑏 are
propositions; our definition of 𝑎 = 𝑏 is designed to make the transition
from set theory to type theory minimally disconcerting.

(Good motivation for the form of the equal sign in the notation 𝑎 = 𝑏 is
provided by a remark made by Robert Recorde in 1557 in the Whetstone
of Witte44: “And to avoid the tedious repetition of these words is equal to,
I will set, as I do often in work use, a pair of parallels, or twin lines of
one length, thus: =, because no two things can be more equal.”45 In fact,
the remark of Recorde presages the approach described in this book, for
although those two little lines are congruent, they were not considered
to be equal traditionally, since they are in different places, whereas they
may be considered to be equal in the presence of univalence, which
converts congruences to identities.)

Let 𝑋 be a type. If for any 𝑥 : 𝑋 and any 𝑦 : 𝑋 the identity type 𝑥 =→ 𝑦
is a set, then we shall say that 𝑋 is a groupoid, also called a 1-type.

The pattern continues. If for any 𝑛 :ℕ, any 𝑥 : 𝑋, and any 𝑦 : 𝑋 the
identity type 𝑥 =→ 𝑦 is an 𝑛-type, then we shall say that 𝑋 is an (𝑛+1)-type.
If 𝑋 is an 𝑛-type, we also say that 𝑋 is 𝑛-truncated.

We prove that every proposition is a set, from which it follows by
induction that every 𝑛-type is an (𝑛 + 1)-type.

le
m:
pr
op
-i
s-
se
t L���� 2.15.2. Every type that is a proposition is also a set.

Proof. Let 𝑋 be a type and let 𝑓 : ∏𝑎 ,𝑏 : 𝑋(𝑎 =→ 𝑏). Let 𝑎 , 𝑏 , 𝑐 : 𝑋 and
let 𝑃(𝑥) be the type 𝑎 =→ 𝑥 depending on 𝑥 : 𝑋. Then 𝑓 (𝑎 , 𝑏) : 𝑃(𝑏) and
𝑓 (𝑎 , 𝑐) : 𝑃(𝑐). By path induction we prove for all 𝑞 : 𝑏 =→ 𝑐 that 𝑞 · 𝑓 (𝑎 , 𝑏) =→
𝑓 (𝑎 , 𝑐). For this it suffices to verify that refl𝑏 · 𝑓 (𝑎 , 𝑏) =→ 𝑓 (𝑎 , 𝑏), which
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follows immediately. So 𝑞 is equal to 𝑓 (𝑎 , 𝑐) · 𝑓 (𝑎 , 𝑏)−1 which doesn’t
depend on 𝑞, so all such 𝑞 are equal. Hence 𝑋 is a set. �

A more interesting example of a set is Bool.

le
m:
is
se
t-
bo
ol

L���� 2.15.3. Bool is a set.

Proof. The following elegant, self-contained proof is due to Simon Huber.
For proving 𝑝 =→ 𝑞 for all 𝑏 , 𝑏� : Bool and 𝑝 , 𝑞 : 𝑏 =→ 𝑏�, it suffices (by
induction on 𝑞) to show 𝑝 =→ refl𝑏 for all 𝑏 : Bool and 𝑝 : 𝑏 =→ 𝑏. To this
end, define by induction on 𝑏 , 𝑏� : Bool, a type 𝐶(𝑏 , 𝑏�, 𝑝) for all 𝑝 : 𝑏 =→ 𝑏�,
by setting 𝐶(yes, yes, 𝑝) :≡ (𝑝 =→ reflyes), 𝐶(no, no, 𝑝) :≡ (𝑝 =→ reflno),
and arbitrary in the other two cases. By induction on 𝑏 one proves that
𝐶(𝑏 , 𝑏 , 𝑝) =→ (𝑝 =→ refl𝑏) for all 𝑝. Hence it suffices to prove 𝐶(𝑏 , 𝑏�, 𝑝)
for all 𝑏 , 𝑏� : Bool and 𝑝 : 𝑏 =→ 𝑏�. By induction on 𝑝 this reduces to
𝐶(𝑏 , 𝑏 , refl𝑏), which is immediate by induction on 𝑏 : Bool. �

We now collect a number of useful results on propositions.

le
m:
pr
op
-u
ti
ls

L���� 2.15.4. Let 𝐴 be a type, and let 𝑃 and 𝑄 propositions. Let 𝑅(𝑎) be a
proposition depending on 𝑎 : 𝐴. Then we have�

pr
op
-u
ti
ls
-f
al
se
-t
ru
e ��� False and True are propositions;

pr
op
-u
ti
ls
-c
od
om

��� 𝐴 → 𝑃 is a proposition;

pr
op
-u
ti
ls
-p
i ��� ∏𝑎 : 𝐴 𝑅(𝑎) is a proposition;

pr
op
-u
ti
ls
-t
im
es

��� 𝑃 × 𝑄 is a proposition;

pr
op
-u
ti
ls
-s
um

��� if 𝐴 is a proposition, then ∑𝑎 : 𝐴 𝑅(𝑎) is a proposition;

pr
op
-u
ti
ls
-e
q ��� 𝑃 � 𝑄 is a proposition;

pr
op
-u
ti
ls
-l
em

��� 𝑃 � ¬𝑃 is a proposition.

Proof. (1): If 𝑝 , 𝑞 : False, then 𝑝 =→ 𝑞 holds vacuously. If 𝑝 , 𝑞 : True, then
𝑝 =→ 𝑞 is proved by double induction, which reduces the proof to
observing that refltriv : triv =→ triv.

(2): If 𝑝 , 𝑞 : 𝐴 → 𝑃, then 𝑝 =→ 𝑞 is proved by first observing that 𝑝 and
𝑞 are functions which, by function extensionality, are equal if they have
equal values 𝑝(𝑥) =→ 𝑞(𝑥) in 𝑃 for all 𝑥 in 𝐴. This is actually the case
since 𝑃 is a proposition.

(3): If 𝑝 , 𝑞 : ∏𝑎 : 𝐴 𝑅(𝑎) one can use the same argument as for 𝐴 → 𝑃
but now with dependent functions 𝑝 , 𝑞.

(4): If (𝑝1 , 𝑞1), (𝑝2 , 𝑞2) : 𝑃 × 𝑄, then (𝑝1 , 𝑞1) =→ (𝑝2 , 𝑞2) is proved com-
ponentwise. Alternatively, we may regard this case as a special case of
(5).

(5): Given (𝑎1 , 𝑟1), (𝑎2 , 𝑟2) : ∑𝑎 𝑅(𝑎), we must establish that (𝑎1 , 𝑟1) =→
(𝑎2 , 𝑟2). Combining the map in Definition 2.10.1 with the identity in Defi-
nition 2.7.2 yields a map

�
∑𝑢 : 𝑎1

=→𝑎2 trp𝑌
𝑢 (𝑟1) =→ 𝑟2

� → ((𝑎1 , 𝑟1) =→ (𝑎2 , 𝑟2)),
so it suffices to construct an element in the source of the map. Since 𝐴 is
a proposition, we may find 𝑢 : 𝑎1

=→ 𝑎2. Since 𝑅(𝑎2) is a proposition, we
may find 𝑣 : trp𝑌

𝑢 (𝑟1) =→ 𝑟2. The pair (𝑢 , 𝑣) is what we wanted to find.
(6): Using Lemma 2.9.9, 𝑃 � 𝑄 is equivalent to (𝑃 → 𝑄) × (𝑄 → 𝑃),

which is a proposition by combining (2) and (4).
(7): If 𝑝 , 𝑞 : 𝑃�¬𝑃, then we can distinguish four cases based on inl/inr,

see Section 2.8. In two cases we have both 𝑃 and ¬𝑃 and we are done.
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In the other two, either 𝑝 ≡ inl𝑝� and 𝑞 ≡ inl𝑞� with 𝑝�, 𝑞� : 𝑃, or 𝑝 ≡ inr𝑝�
and 𝑞 ≡ inr𝑞� with 𝑝�, 𝑞� :¬𝑃. In both these cases we are done since 𝑃
and ¬𝑃 are propositions. �

Several remarks can be made here. First, the lemma supports the use
of False and True as truth values, and the use of →, ∏,× for implication,
universal quantification, and conjunction, respectively. Since False is a
proposition, it follows by (2) above that ¬𝐴 is a proposition for any type
𝐴. As noted before, (2) is a special case of (3).

Notably absent in the lemma above are disjunction and existential
quantification. This has a simple reason: True � True has two distinct
elements inltriv and inrtriv, an is therefore not a proposition. Similarly,
∑𝑛 :ℕ True has infinitely many distinct elements (𝑛 , triv) and is not a
proposition. We will explain in Section 2.16 how to work with disjunction
and existential quantification for propositions.

The lemma above has a generalization from propositions to 𝑛-types
which we state without proving. (The proof goes by induction on 𝑛,
with the lemma above serving as the base case where 𝑛 is −1.)

le
m:
le
ve
l-
n-
ut
il
s L���� 2.15.5. Let 𝐴 be a type, and let 𝑋 and 𝑌 be 𝑛-types. Let 𝑍(𝑎) be an

𝑛-type depending on 𝑎 : 𝐴. Then we have�

le
ve
l-
n-
ut
il
s-
co
do
m ��� 𝐴 → 𝑋 is an 𝑛-type;

le
ve
l-
n-
ut
il
s-
pi

��� ∏𝑎 : 𝐴 𝑍(𝑎) is an 𝑛-type;

le
ve
l-
n-
ut
il
s-
ti
me
s ��� 𝑋 × 𝑌 is an 𝑛-type.

le
ve
l-
n-
ut
il
s-
su
m ��� if 𝐴 is an 𝑛-type, then ∑𝑎 : 𝐴 𝑍(𝑎) is an 𝑛-type;

We formalize the definitions from the start of this section.

de
f:
is
Se
t D��������� 2.15.6.

isProp(𝑃) :≡ ∏𝑝 ,𝑞 : 𝑃(𝑝 =→ 𝑞)
isSet(𝑆) :≡ ∏𝑥 ,𝑦 : 𝑆 isProp(𝑥 =→ 𝑦) ≡ ∏𝑥 ,𝑦 : 𝑆 ∏𝑝 ,𝑞 : (𝑥 =→𝑦)(𝑝 =→ 𝑞)

isGrpd(𝐺) :≡ ∏𝑔 ,ℎ : 𝐺 isSet(𝑔 =→ ℎ) ≡ . . . �

le
m:
is
X-
is
-p
ro
p L���� 2.15.7. For any type 𝐴, the following types are propositions�

��� isContr(𝐴);
��� isProp(𝐴);
��� isSet(𝐴);
��� isGrpd(𝐴);
��� the type that encodes whether 𝐴 is an 𝑛-type, for 𝑛 ≥ 0.

Consistent with that, we will use identifiers starting with “is” only
for names of types that are propositions. Examples are isSet(𝐴) and
isGrpd(𝐴), and also isEquiv( 𝑓 ).
Proof. Recall that isContr(𝐴) is ∑𝑎 : 𝐴 ∏𝑦 : 𝐴(𝑎 =→ 𝑦). Let (𝑎 , 𝑓 ) and (𝑏 , 𝑔)
be elements of the type isContr(𝐴). By Definition 2.10.1, to give an
element of (𝑎 , 𝑓 ) =→ (𝑏 , 𝑔) it suffices to give an 𝑒 : 𝑎 =→ 𝑏 and an 𝑒� : 𝑓

=−→
𝑒

𝑔.
For 𝑒 we can take 𝑓 (𝑏); for 𝑒� it suffices by Definition 2.7.2 to give
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an 𝑒�� : trp𝑒 𝑓 =→ 𝑔. Clearly, 𝐴 is a proposition and hence a set by
Lemma 2.15.2. Hence the type of 𝑔 is a proposition by Lemma 2.15.4(3),
which gives us 𝑒��.

We leave the other cases as exercises. �

xc
a:
is
X-
is
-p
ro
p E������� 2.15.8. Make sure you understand that isProp(𝑃) is a proposi-

tion, using the same lemmas as for isContr(𝐴). Show that isSet(𝑆) and
isGrpd(𝐺) are propositions. �

The following exercise shows that the inductive definition of 𝑛-types
can indeed start with 𝑛 as −2, where we have the contractible types.

xc
a:
pr
op
-c
on
tr
ac
ti
bl
e=

E������� 2.15.9. Given a type 𝑃, show that 𝑃 is a proposition if and only
if 𝑝 =→ 𝑞 is contractible, for any 𝑝 , 𝑞 : 𝑃. �

We now present the notion of a diagram. A diagram is a graph whose
vertices are types and whose edges are functions. Here is an example.

𝑋 𝑌

𝑆 𝑇

𝑓

𝑝 𝑞

𝑔

The information conveyed by this diagram to the reader is that 𝑋, 𝑌, 𝑆,
and 𝑇 are types, and that 𝑓 , 𝑔, 𝑝, and 𝑞 are functions; moreover, 𝑓 is of
type 𝑋 → 𝑌, 𝑔 is of type 𝑆 → 𝑇, 𝑝 is of type 𝑋 → 𝑆, and 𝑞 is of type
𝑌 → 𝑇.

Observe that we can travel through the diagram from 𝑋 to 𝑇 by follow-
ing first the arrow labeled 𝑓 and then the arrow labelled 𝑞. Consequently,
the composite function 𝑞 ◦ 𝑓 is of type 𝑋 → 𝑇.

There is another route from 𝑋 to 𝑇 : we could follow first the arrow
labeled 𝑝 and then the arrow labelled 𝑔. Consequently, the composite
function 𝑔 ◦ 𝑝 is also of type 𝑋 → 𝑇.

We say that a diagram is commutative by definition if, whenever there
are two routes from one vertex to another, the corresponding composite
functions are equal by definition. For example, in the diagram above,
the condition would be that 𝑔 ◦ 𝑝 ≡ 𝑞 ◦ 𝑓 .

When the function type from any vertex of a diagram to any other
vertex of the diagram is a set, then equality of functions is a proposition,
and we may consider whether two functions are equal. In that case,
we say that a diagram is commutative if, whenever there are two routes
from one vertex to another, the corresponding composite functions are
equal. For example, in the diagram above, the condition would be that
𝑔 ◦ 𝑝 = 𝑞 ◦ 𝑓 .

There are other sorts of diagrams. For example, identifications may be
composed, and thus we may have a diagram of identifications between
elements of the same type. For example, suppose 𝑊 is a type, suppose
that 𝑥, 𝑦, 𝑠, and 𝑡 are elements of 𝑊 , and consider the following diagram.

𝑥 𝑦

𝑠 𝑡

𝑓

𝑝 𝑞

𝑔

It indicates that 𝑓 is of type 𝑥 =→ 𝑦, 𝑔 is of type 𝑠 =→ 𝑡, 𝑝 is of type 𝑥 =→ 𝑠,
and 𝑞 is of type 𝑦 =→ 𝑡. We may also consider whether such a diagram is
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46The name “truncation” is slightly
misleading since it suggests leaving
something out, whereas the correct
intuition is one of adding identifica-
tions so everything becomes equal.

47Given 𝑡 , 𝑡� :𝑇, we have an identifi-
cation of type |𝑡 | =→ |𝑡� |. The exis-
tence of the function 𝑔 implies that
we have an identification of type
𝑔(|𝑡 |) =→ 𝑔(|𝑡� |), and hence an identi-
fication of type 𝑓 (𝑡) =→ 𝑓 (𝑡�). Thus a
necessary condition for the existence
of 𝑔 is the existence of identifications
of type 𝑓 (𝑡) =→ 𝑓 (𝑡�). That justifies
the the hypothesis that 𝑃 is proposi-
tion.

48We may alternatively say that 𝑇 is
inhabited, in order to avoid confusion
with the concept of 𝑇 not being empty,
which would be represented by the
proposition ¬(𝑇 =→ ∅), which is
equivalent to ¬¬𝑇.

commutative by definition, or, in the case where all the identity types
are sets, is commutative.

�.�� Propositional truncation and logic

se
c:
pr
op
-t
ru
nc As explained in Section 2.15, the type formers →, ∏,× can be used with

types that are propositions for the logical operations of implication,
universal quantification, and conjunction, respectively. Moreover, True
and False can be used as truth values, and¬ can be used for negation. We
have also seen that � and Σ can lead to types that are not propositions,
even though the constituents are propositions. This means we are still
lacking disjunction (𝑃 ∨ 𝑄) and existence (∃𝑥 : 𝑋𝑃(𝑥)) from the standard
repertoire of logic, as well as the notion of non-emptiness of a type. In
this section we explain how to implement these three notions.

To motivate the construction that follows, consider non-emptiness
of a type 𝑇. In order to be in a position to encode the mathematical
assertion expressed by the English phrase “𝑇 is non-empty”, we will need
a proposition 𝑃. The proposition 𝑃 will have to be constructed somehow
from 𝑇. Any element of 𝑇 should somehow give rise to an element of
𝑃, but, since all elements of propositions are equal to each other, all
elements of 𝑃 arising from elements of 𝑇 should somehow be made to
equal each other. Finally, any proposition 𝑄 that is a consequence of
having an element of 𝑇 should also be a consequence of 𝑃.

We define now an operation called propositional truncation,46 that
enforces that all elements of a type become equal.

de
f:
pr
op
-t
ru
nc

D��������� 2.16.1. Let 𝑇 be a type. The propositional truncation of 𝑇 is the
type �𝑇� defined by the following constructors:

(1) an element constructor |𝑡 | : �𝑇� for all 𝑡 :𝑇;

(2) an identification constructor providing an identity of type 𝑥 =→ 𝑦 for
all 𝑥 , 𝑦 : �𝑇�.

The identification constructor ensures that �𝑇� is a proposition. The
induction principle states that, for any family of propositions 𝑃(𝑥)
parametrized by a variable 𝑥 : �𝑇�, in order to prove ∏𝑥 : �𝑇� 𝑃(𝑥), it
suffices to prove ∏𝑡 :𝑇 𝑃(|𝑡 |). In other words, in order to define a function
𝑓 : ∏𝑥 : �𝑇� 𝑃(𝑥), it suffices to give a function 𝑔 : ∏𝑡 :𝑇 𝑃(|𝑡 |). Moreover,
the function 𝑓 will satisfy 𝑓 (|𝑡 |) ≡ 𝑔(𝑡) for all 𝑡 :𝑇. �

Consider the special case where the family 𝑃(𝑥) is constant. We see
that any function 𝑔 :𝑇 → 𝑃 to a proposition 𝑃 yields a (unique) function
𝑓 : �𝑇� → 𝑃 satisfying 𝑓 (|𝑡 |) ≡ 𝑔(𝑡) for all 𝑡 :𝑇.47 A useful consequence
of this recursion principle is that, for any proposition 𝑃, precomposition
with |_| is an equivalence of type

(�𝑇� → 𝑃) �→ (𝑇 → 𝑃).

This is called the universal property of propositional truncation.

de
f:
no
n-
em
pt
y D��������� 2.16.2. Let 𝑇 be a type. We call 𝑇 non-empty if we have an

element of �𝑇�.48 �

Now that propositional truncation is available, we are ready to define
logical disjunction and existence.
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49In Definition 2.22.4 below we will
define the set of connected components
of a type.

D��������� 2.16.3. Given propositions 𝑃 and 𝑄, define their disjunction
by (𝑃 ∨ 𝑄) :≡ �𝑃 � 𝑄�. It expresses the property that 𝑃 is true or 𝑄 is
true. �

D��������� 2.16.4. Given a type 𝑋 and a family 𝑃(𝑥) of propositions
parametrized by a variable 𝑥 of type 𝑋, define a proposition that encodes
the property that there exists a member of the family for which the
property is true by (∃𝑥 : 𝑋𝑃(𝑥)) :≡ �∑𝑥 : 𝑋 𝑃(𝑥)�. It expresses the property
that there exists an element 𝑥 : 𝑋 for which the property 𝑃(𝑥) is true; the
element 𝑥 is not given explicitly. �

The following logical quantifier could have been defined earlier, since
it doesn’t use propositional truncation. We present it now, for complete-
ness.
D��������� 2.16.5. Given a type 𝑋 and a family 𝑃(𝑥) of propositions
parametrized by a variable 𝑥 of type 𝑋, define a proposition that encodes
the property that there exists a unique member of the family for which the
property is true by the proposition (∃!𝑥 : 𝑋𝑃(𝑥)) :≡ isContr(∑𝑥 : 𝑋 𝑃(𝑥)).

�

E������� 2.16.6. Given 𝑥 : �𝑇�, prove that ∃𝑡 :𝑇(𝑥 = |𝑡 |). �

xc
a:
pr
op
-s
et
-t
ri
vi
a-
1 E������� 2.16.7. Suppose 𝑃 is a proposition. Produce an equivalence of

type 𝑃 �→ �𝑃�. �

The exercise above us to easily convert elements of type �𝑃� to elements
of type 𝑃 when 𝑃 is a proposition.

de
f:
co
nn
ec
te
d D��������� 2.16.8. Let 𝐴 be a type. If 𝑎 : 𝐴, then the subtype 𝐴(𝑎) :≡

∑𝑥 : 𝐴�𝑥 =→ 𝑎� is called the connected component of 𝑎 in 𝐴. We say that
elements 𝑥 , 𝑦 of 𝐴 are in the same component of 𝐴 if �𝑥 =→ 𝑦�, for then
𝐴(𝑥) = 𝐴(𝑦). The type 𝐴 is called connected49 if it is non-empty with all
elements in the same component. Formally, this property is encoded by
the following proposition.

isConn(𝐴) :≡ �𝐴� × ∏
𝑥 ,𝑦 : 𝐴

�𝑥 =→ 𝑦�. �

Note that the empty type ∅ is not connected.
One can view being connected as a weak form of being contractible –

without direct access to a center and to identifications of elements.

xc
a:
co
mp
on
en
t-
co
nn
ec
te
d E������� 2.16.9. Show that the component of 𝑎 in 𝐴 is connected. Show

that equal elements have the same propositional properties, that is, for
any predicate 𝑃 : 𝐴 →U , 𝑃(𝑥) is equivalent to 𝑃(𝑦) for any 𝑥 , 𝑦 : 𝐴 with
𝑥 = 𝑦. �

xc
a:
pr
op
-s
et
-t
ri
vi
a-
2 E������� 2.16.10. Show that any connected set is contractible. �

xc
a:
co
nn
ec
te
d-
tr
iv
ia

E������� 2.16.11. Let 𝐴 be a connected type, and suppose that 𝑎 =→ 𝑎 is a
proposition for every 𝑎 : 𝐴. Show that 𝐴 is contractible. �

In the following definition we introduce the adverb merely, which
serves as a quicker way to say the propositional truncation of in English
speech.

de
f:
me
re
ly

D��������� 2.16.12. What we mean by merely constructing an element of
a type 𝑇 is constructing an element of �𝑇�. �

For example, a type is non-empty if it merely has an element, and a type
is connected if any two elements can be merely identified with each other.

Marc


Marc


Marc
This seems a remnant of "equality is truncated identity type" and should be updated
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50A function 𝑓 : 𝐴 → 𝐵 is a split sur-
jection if for all 𝑏 : 𝐵 there (purely)
is an 𝑎 : 𝐴 with 𝑏 =→ 𝑓 (𝑎), in other
words, we have a function of type
∏𝑏 : 𝐵 ∑𝑎 : 𝐴 𝑏 =→ 𝑓 (𝑎). This is equiv-
alent to saying we have a function
𝑔 : 𝐵 → 𝐴 such that 𝑓 ◦ 𝑔 =→ id𝐵 (such
a 𝑔 is called a section of 𝑓 ).

51This argument applies generally:
Any non-empty proposition is con-
tractible.

We now make precise the meaning of the word equivalent, which was
introduced earlier.
D��������� 2.16.13. If 𝑋 and 𝑌 are types, then the phrase “𝑋 and 𝑌 are
equivalent” means that an equivalence between them can be merely
constructed. It is encoded by the type �𝑋 �→ 𝑌�. �

�.�� More on equivalences; surjections and injections

se
c:
mo
re
-o
n-
eq
ui
va
le
nc
es In this section we collect a number of useful results on equivalences.

Consider the function 𝑓 :𝟙 → 𝟚 sending 0 to 0. The fibers of 𝑓 at 0
and 1 are equivalent to True and False. Hence 𝑓 is not an equivalence,
since False is not contractible. Observe that both fibers are propositions,
that is, contain at most one element.

As a function between sets 𝑓 is an injection (one-to-one), but not a
surjection. We need these important concepts for types in general. We
define them as close as possible to their usual meaning in set theory:
a function from 𝐴 to 𝐵 is surjective if the preimage of any 𝑏 : 𝐵 is non-
empty, and injective if such preimages contain at most one element. This
motivates the following definitions.

de
f:
su
rj
ec
ti
on

D��������� 2.17.1. A function 𝑓 : 𝐴 → 𝐵 is a surjection, or is surjective, if
for all 𝑏 : 𝐵 there exists an 𝑎 : 𝐴 such that 𝑏 =→ 𝑓 (𝑎), that is, ∃𝑎 : 𝐴𝑏 =→
𝑓 (𝑎).50 �

de
f:
in
je
ct
io
n D��������� 2.17.2. A function 𝑓 : 𝐴 → 𝐵 is an injection, or is injective, if

𝑓 −1(𝑏) is a proposition for all 𝑏 : 𝐵. The property of being an injection is
encoded by the type isInj( 𝑓 ) :≡ ∏𝑏 : 𝐵 isProp( 𝑓 −1(𝑏)). �

xc
a:
in
j-
se
ts

E������� 2.17.3. Show that if 𝐴, 𝐵 are sets, then a function 𝑓 : 𝐴 → 𝐵 is
injective if and only if 𝑓 (𝑎) =→ 𝑓 (𝑎�) implies 𝑎 =→ 𝑎� for all 𝑎 , 𝑎�. �

le
m:
in
j+
su
rj

L���� 2.17.4. For all types 𝐴, 𝐵, a function 𝑓 : 𝐴 → 𝐵 is an equivalence if
and only if 𝑓 is an injection and a surjection.

Proof. If 𝑓 : 𝐴 → 𝐵 is an equivalence, then all fibers are contractible, so
𝑓 is both an injection and a surjection. Conversely, if 𝑓 is both injective
and surjective, we show that 𝑓 −1(𝑏) is contractible, for each 𝑏 : 𝐵. Being
contractible is a proposition, so by Definition 2.16.1 we can drop the
truncation in �∑𝑎 : 𝐴 𝑏 =→ 𝑓 (𝑎)�. Now apply injectivity.51 �

If the types 𝐴 and 𝐵 in the above lemma are sets, then we call equiva-
lences between 𝐴 and 𝐵 also bĳections.

co
r:
in
j+
co
nn
ec
te
d C�������� 2.17.5. Let 𝐴, 𝐵 be types such that 𝐴 is non-empty and 𝐵 is

connected. Then any injection 𝑓 : 𝐴 → 𝐵 is an equivalence.

Proof. By Lemma 2.17.4 it suffices to show that 𝑓 is surjective. This is
a proposition, so by Definition 2.16.1 and �𝐴� we may assume 𝑎 : 𝐴, so
𝑓 (𝑎) : 𝐵. By ∏𝑥 ,𝑦 : 𝐵�𝑥 =→ 𝑦� we now get that all preimages under 𝑓 are
non-empty. �

le
m:
wh
en
is
ba
se
sp
ac
ec
on
ne
ct
ed

L���� 2.17.6. Let 𝑓 : 𝑋 → 𝑌 be a surjective map from a connected type 𝑋.
Then 𝑌 is connected too.
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𝐵

𝑓 (𝑎)

𝑏

𝑓 (𝑎�)
ap 𝑓 (𝑞)

𝑝 𝑝�

52Warning� If 𝐴 and 𝐵 are sets, then
each ap 𝑓 is an equivalence if and
only if we have the implication
( 𝑓 (𝑎) =→ 𝑓 (𝑎�)) → (𝑎 =→ 𝑎�), but
this is in general not sufficient.

Proof. For any map 𝑓 : 𝑋 → 𝑌 between arbitrary types, if 𝑦 , 𝑦� :𝑌 and
we are given 𝑥 , 𝑥� : 𝑋, 𝑝 : 𝑦 =→ 𝑓 (𝑥), 𝑝� : 𝑦� =→ 𝑓 (𝑥�) and 𝑞 : 𝑥 =→ 𝑥�, then
we have an identity between 𝑦 and 𝑦� given by the composite

𝑦 𝑓 (𝑥) 𝑓 (𝑥�) 𝑦�.=
𝑝

=
𝑓 (𝑞)

=

𝑝�−1

Now the lemma follows by eliminating the propositional truncations in
the assumptions, using that the conclusion is a proposition. �

co
n:
fi
b-
vs
-p
at
h C����������� 2.17.7. For every 𝑓 : 𝐴 → 𝐵, 𝑏 : 𝐵, and 𝑧 , 𝑧� : 𝑓 −1(𝑏), there is

an equivalence

{e
q:
fi
b_
vs
-p
at
h}

{e
q:
fi
b_
vs
-p
at
h}

(2.17.1) (𝑧 =→ 𝑧�) � ap−1
𝑓 (snd 𝑧� · snd 𝑧−1).

Implementation of Construction 2.17.7. We can construct this equivalence
for 𝑧 ≡ (𝑎 , 𝑝) and 𝑧� ≡ (𝑎�, 𝑝�), where 𝑎 , 𝑎� : 𝐴, 𝑝 : 𝑏 =→ 𝑓 (𝑎) and 𝑝� : 𝑏 =→
𝑓 (𝑎�), as the composition

(𝑧 =→ 𝑧�) ≡ �(𝑎 , 𝑝) =→ (𝑎�, 𝑝�)�

� ∑
𝑞 : 𝑎 =→𝑎�

𝑝
=−→
𝑞

𝑝�

� ∑
𝑞 : 𝑎 =→𝑎�

ap 𝑓 (𝑞) · 𝑝 =→ 𝑝�

� ∑
𝑞 : 𝑎 =→𝑎�

𝑝� · 𝑝−1 =→ ap 𝑓 (𝑞)

≡ ap−1
𝑓 (𝑝� · 𝑝−1).

The second equivalence relies on Definition 2.7.2 and Construction 2.14.3.
�

le
m:
in
j-
ap

L���� 2.17.8. A function 𝑓 : 𝐴 → 𝐵 is an injection if and only if each induced
function ap 𝑓 : (𝑎 =→ 𝑎�) → ( 𝑓 (𝑎) =→ 𝑓 (𝑎�)) is an equivalence, for all 𝑎 , 𝑎� : 𝐴.52

Proof. It follows directly from (2.17.1) that if ap 𝑓 is an equivalence, then
𝑓 −1(𝑏) is a proposition, as all its identity types are contractible.

On the other hand, if we fix 𝑎 , 𝑎� : 𝐴 and 𝑝 : 𝑓 (𝑎) =→ 𝑓 (𝑎�), then (2.17.1)
applied to 𝑏 :≡ 𝑓 (𝑎), 𝑧 :≡ (𝑎 , refl 𝑓 (𝑎)) and 𝑧� :≡ (𝑎�, 𝑝), gives ap−1

𝑓 (𝑝) �
(𝑧 =→ 𝑘𝑧�), which shows that if each 𝑓 −1(𝑏) is a proposition, then ap 𝑓 is
an equivalence. �

co
r:
fi
b-
vs
-p
at
h C�������� 2.17.9. Let 𝐴 and 𝐵 be types and let 𝑓 : 𝐴 → 𝐵 be a function. Then

we have�

se
t-
fi
b-
vs
-p
at
h ��� All fibers of 𝑓 are 𝑛 + 1-types if and only if all fibers of each map induced

by 𝑓 on identity types are 𝑛-types;

co
nn
-f
ib
-v
s-
pa
th

��� If 𝐴 and 𝐵 are connected, then 𝑓 is an equivalence if and only if each map
induced by 𝑓 on identity types is an equivalence;

co
nn
-f
ib
-v
s-
pa
th
-p
oi
nt

��� If 𝐴 and 𝐵 are connected and 𝑎 : 𝐴, then 𝑓 is an equivalence if and only if
ap 𝑓 : (𝑎 =→ 𝑎) → ( 𝑓 (𝑎) =→ 𝑓 (𝑎)) is an equivalence.

Proof. (1) When 𝑛 is −2 this is Lemma 2.17.8 and the proof for 𝑛 ≥ −1
is similar. (2) By Lemma 2.17.8 and Corollary 2.17.5. (3) By (2) and
Exercise 2.16.9. �
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53Besides any philosophical reasons,
there are several pragmatic rea-
sons for developing constructive
mathematics. One is that proofs
in constructive mathematics can
be executed as programs, and an-
other is that the results also hold in
non-standard models, for instance
a model where every type has a
topological structure, and all con-
structions are continuous. See also
Footnote 13.
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E������� 2.17.10. Let 𝐴, 𝐵 :U , 𝐹 : 𝐴 → U and 𝐺 : 𝐵 → U , and 𝑓 : 𝐴 � 𝐵
and 𝑔 : ∏𝑎 : 𝐴(𝐹(𝑎) � 𝐺( 𝑓 (𝑎))). Give an equivalence from ∑𝑎 : 𝐴 𝐹(𝑎) to
∑𝑏 : 𝐵 𝐺(𝑏). (An important special case is 𝐹 ≡ 𝐺 ◦ 𝑓 .) �

Another application of propositional truncation is the notion of image.

de
f:
pr
op
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D��������� 2.17.11. Let 𝐴, 𝐵 be types and let 𝑓 : 𝐴 → 𝐵. We define the
image of 𝑓 as

im( 𝑓 ) :≡ ∑
𝑦 : 𝐵

∃𝑥 : 𝐴(𝑦 =→ 𝑓 𝑥). �

Note that (∃𝑥 : 𝐴(𝑦 =→ 𝑓 𝑥)) ≡ � 𝑓 −1(𝑦)�, the propositional truncation of
the fiber. For this reason, im( 𝑓 ) is called the propositional image. Later we
will meet other notions of image, based on other truncation operations.

xc
a:
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e E������� 2.17.12. Show that the image of 𝑓 : 𝐴 → 𝐵 induces a factorization

𝑓 =→ 𝑖 ◦ 𝑝

𝐴 𝐵

im( 𝑓 )

𝑓

𝑝 𝑖

where 𝑝 is surjective and 𝑖 is injective, and that each such factorization is
equivalent to the image factorization. �
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E������� 2.17.13. Let 𝑓 : 𝐴 → 𝐵 for 𝐴 and 𝐵 types, and let 𝑃(𝑏) be a
proposition depending on 𝑏 : 𝐵. Show that ∏𝑧 : im( 𝑓 ) 𝑃(fst(𝑧)) if and only
if ∏𝑎 : 𝐴 𝑃( 𝑓 (𝑎)). �

�.�� Decidability, excluded middle and propositional resizing

se
c:
de
ci
da
bi
li
ty Recall from Lemma 2.15.4(7) that 𝑃 � ¬𝑃 is a proposition whenever 𝑃 is

a proposition.

de
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D��������� 2.18.1. A proposition 𝑃 is called decidable if 𝑃 � ¬𝑃 holds. �
In traditional mathematics, it is usually assumed that every proposition

is decidable. This is expressed by the following principle, commonly
abbreviated LEM.

pr
i:
le
m P�������� 2.18.2 (Law of Excluded Middle). For every proposition 𝑃, the

proposition 𝑃 � ¬𝑃 holds. �

(The “middle” ground excluded by this principle is the possibility
that there is a proposition that it neither true nor false.)

Type theory is born in a constructivist tradition which aims at devel-
oping as much mathematics as possible without assuming the Law of
Excluded Middle.53 Following this idea, we will explicitly state whenever
we are assuming the Law of Excluded Middle.
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E������� 2.18.3. Show that the Law of Excluded Middle is equivalent to
asserting that the map (yes =→ _) : Bool → Prop is an equivalence. �

A useful consequence of the Law of Excluded Middle is the so called
principle of “proof by contradiction”: to prove a proposition 𝑃, assume
its negation ¬𝑃 and derive a contradiction. Without the Law of Excluded
Middle, this proves only the double negation of 𝑃, that is ¬¬𝑃. However,
with the Law of Excluded Middle, one can derive 𝑃 from the latter:
indeed, according to the Law of Excluded Middle, either 𝑃 or ¬𝑃 holds;
but ¬𝑃 leads to a contradiction by hypothesis, making 𝑃 hold necessarily.
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54As the naming indicates, we can
think of the Law of Excluded Middle
itself as an omniscience principle,
telling us for every proposition 𝑃,
whether 𝑃 is true or false. It was
this interpretation of the Law of Ex-
cluded Middle that led Brouwer to
reject it in his 1908 paper on De onbe-
trouwbaarheid der logische principes.55

55Mark van Atten and Göran Sund-
holm. “L.E.J. Brouwer’s ‘Unrelia-
bility of the Logical Principles A
New Translation, with an Introduc-
tion”. In: History and Philosophy of
Logic 38.1 (2017), pp. 24–47. ���:
10.1080/01445340.2016.1210986.
arXiv: 1511.01113.

56The terminology small/large is also
known from set theory, where
classes are large collections, and
sets are small collections.

57Egbert Rĳke. The join construction.
2017. arXiv: 1701.07538.
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m E������� 2.18.4. Show that, conversely, LEM follows from the principle

of double-negation elimination: For every proposition 𝑃, if ¬¬𝑃, then 𝑃
holds. �

R����� 2.18.5. We will later encounter a weaker version of the Law of
Excluded Middle, called the Limited Principle of Omniscience (Princi-
ple 3.6.16), which is often enough.54 �

Sometimes we make use of the following, which is another consequence
of the Law of Excluded Middle:

pr
i:
pr
op
-r
es
iz
in
g P�������� 2.18.6 (Propositional Resizing). For any pair of nested uni-

verses U :U �, the inclusion PropU → PropU � is an equivalence. �

xc
a:
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g E������� 2.18.7. Show that if the Law of Excluded Middle holds for all

propositions, then propositional resizing holds. �

�.�� The replacement principle

se
c:
re
pl
ac
em
en
t

In this section we fix a universe U . We think of types 𝐴 :U as small
compared to arbitrary types, which are then large in comparison.56 Often
we run into types that are not in U (small) directly, but are nevertheless
equivalent to types in U .

de
f:
es
s-
lo
c-
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al
l D��������� 2.19.1. We say that a type 𝐴 is essentially U -small if there

(purely) is a type 𝑋 :U and an equivalence 𝐴 � 𝑋. And 𝐴 is locally
U -small if all its identity types are essentially U -small. �

Note that ∑𝑋 :U (𝐴 � 𝑋) is a proposition by the univalence axiom
for U . Of course, any 𝐴 :U is essentially U -small, and any essentially
U -small type is locally U -small.

To show that a type is locally U -small we have to give a reflexive
relation Eq𝐴 : 𝐴 → 𝐴 →U that induces, by path induction, a family of
equivalences (𝑥 =→ 𝑦) � Eq𝐴 𝑥 𝑦.
E������� 2.19.2. Show that U is locally U -small, and investigate the
closure properties of essentially and locally U -small types. (For in-
stance, show that if 𝐴 :U and 𝐵(𝑥) is a family of locally U -small types
parametrized by 𝑥 : 𝐴, then ∏𝑥 : 𝐴 𝐵(𝑥) is locallyU -small.) �

R����� 2.19.3. Note that propositional resizing (Principle 2.18.6) equiva-
lently says that any proposition is essentially U -small, where we may
take U to be the smallest universe U0. When we assume this, we get
that any set is locally U0-small. �

We will make use of the following (recall the definition of the image,
Definition 2.17.11):

pr
i:
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t P�������� 2.19.4 (Replacement). For any map 𝑓 : 𝐴 → 𝐵 from an essen-

tially U -small type 𝐴 to a locally U -small type 𝐵, the image im( 𝑓 ) is
essentiallyU -small. �

This is reminiscent of the replacement principle of set theory which
states that for a large (class-sized) function with domain a small set and
codomain the class 𝑉 of all small sets, the image is again a small set.
This follows from our replacement principle, assuming propositional
resizing, or the even stronger principle of the excluded middle.

The replacement principle can be proved using the join construction
of the image, cf. Rĳke57, which uses as an assumption that the universes
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58Pushouts are certain higher induc-
tive types that suffice to construct
all the higher inductive types that
we need, but we don’t actually need
them in this book.

59Note that giving a predicate on 𝑇 is
equivalent to giving a map 𝑄 :𝑇 →
PropU for a suitable universeU , and
we sometimes say that 𝑄 itself is the
predicate.

are closed under pushouts.58
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E������� 2.19.5. Show that the replacement principle implies that for any
locallyU -small type 𝐴, and any element 𝑎 : 𝐴, the connected component
𝐴(𝑎) is essentiallyU -small. �

Another consequence is that the type of finite sets, which we’ll define
below in Definition 2.24.5, is essentially small.

�.�� Predicates and subtypes

se
c:
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yp
e

In this section, we consider the relationship between predicates on a type
𝑇 and subtypes of 𝑇. The basic idea is that the predicate tells whether
an element of 𝑇 should belong to the subtype, and the predicate can be
recovered from the subtype by asking whether an element of 𝑇 is in it.

de
f:
pr
ed
ic
at
e D��������� 2.20.1. Let 𝑇 be a type and let 𝑃(𝑡) be a family of types

parametrized by an variable 𝑡 :𝑇, such that 𝑃(𝑡) is a proposition. Then
we call 𝑃 a predicate on 𝑇.59 If 𝑃(𝑡) is a decidable proposition, then we
say that 𝑃 is a decidable predicate on 𝑇. �

By Exercise 2.18.3, the decidable predicates 𝑃 on𝑇 correspond uniquely
to the characteristic functions 𝜒𝑃 :𝑇 → Bool.

We recall from Definition 2.17.2 the notion of injection, which will be
key to saying what a subtype is.

de
f:
su
bt
yp
e D��������� 2.20.2. A subtype of a type 𝑇 is a type 𝑆 together with an

injection 𝑓 : 𝑆 → 𝑇. Selecting a universeU as a repository for such types
𝑆 allows us to introduce the type of subtypes of 𝑇 inU as follows.

SubU
𝑇 :≡ ∑

𝑆 :U
∑

𝑓 : 𝑆→𝑇
isInj( 𝑓 ).

We may choose to leave the choice of U ambiguous, in which case we
will write Sub𝑇 for SubU

𝑇 . �
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L���� 2.20.3. Let 𝑇 be a type and 𝑃 a predicate on 𝑇. Consider ∑𝑡 :𝑇 𝑃(𝑡)
and the corresponding projection map fst :𝑇𝑃 :≡

�
∑𝑡 :𝑇 𝑃(𝑡)

�
→ 𝑇. Then

apfst : ((𝑥1 , 𝑝1) =→ (𝑥2 , 𝑝2)) → (𝑥1
=→ 𝑥2) is an equivalence, for any elements

(𝑥1 , 𝑝1) and (𝑥2 , 𝑝2) of 𝑇𝑃 .

Proof. We apply Lemma 2.9.9. Consider 𝑞 : 𝑥1
=→ 𝑥2. By induction on 𝑞

we get that each 𝑝1
=−→
𝑞

𝑝2 is contractible, say with center 𝑐𝑞 . We show that

mapping 𝑞 to (𝑞 , 𝑐𝑞) defines an inverse of apfst, applying Lemma 2.10.3
and the remarks after its proof. These give apfst (𝑞 , 𝑐𝑞) =→ 𝑞 for all
𝑞 : 𝑥1

=→ 𝑥2. Also, for any 𝑟 : (𝑥1 , 𝑝1) =→ (𝑥2 , 𝑝2), 𝑟 =→ (fst(𝑟), snd(𝑟)).
The latter pair is equal to (apfst(𝑟) , 𝑐) for any 𝑐 in the contractible type
𝑝1

=−−−→
fst(𝑟)

𝑝2. �

Combined with Lemma 2.17.8, this gives that fst is an injection. Hence,
given a predicate 𝑃 on 𝑇, the subtype of 𝑇 characterized by 𝑃 is defined
as 𝑇𝑃 :≡ ∑𝑡 :𝑇 𝑃(𝑡), together with the injection fst :𝑇𝑃 → 𝑇.

The above lemma has other important consequences.
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C�������� 2.20.4. For each natural number 𝑛, if 𝑇 is a 𝑛-type, then 𝑇𝑃 is also
a 𝑛-type.

Marc
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60Univalent Foundations Program,
Homotopy Type Theory� Univalent
Foundations of Mathematics.

In particular, if 𝑇 is a set, then 𝑇𝑃 is again a set; we may denote this
subset by { 𝑡 :𝑇 | 𝑃(𝑡) }.

re
m:
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e-
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R����� 2.20.5. Another important consequence of Lemma 2.20.3 is that
we can afford not to distinguish carefully between elements (𝑡 , 𝑝) of the
subtype 𝑇𝑃 and elements 𝑡 of type 𝑇 for which the proposition 𝑃(𝑡) holds.
We will hence often silently coerce from 𝑇𝑃 to 𝑇 via the first projection,
and if 𝑡 :𝑇 is such that 𝑃(𝑡) holds, we’ll write 𝑡 :𝑇𝑃 to mean any pair (𝑡 , 𝑝)
where 𝑝 : 𝑃(𝑡), since when 𝑃(𝑡) holds, the type 𝑃(𝑡) is contractible. �

Given a set 𝐴 and a function 𝜒𝐵 : 𝐴 → Bool, Lemma 2.15.3 yields that
𝜒𝐵(𝑎) =→ yes is a proposition, and we can form the subset { 𝑎 : 𝐴 | 𝜒𝐵(𝑎) =→
yes }. However, not every subset as in Definition 2.20.2 can be given
through a 𝜒𝐵 : 𝐴 → Bool. As proved in Section 2.12.1, any element of
Bool is equal to yes or to no.

If 𝑃 : 𝐴 → U is a decidable predicate, then we can define 𝜒𝑃 : 𝐴 →
Bool by induction (actually, only case distinction) on 𝑝 : 𝑃(𝑎), setting
𝜒𝑃(𝑎) =→ yes if 𝑝 ≡ inl_ and 𝜒𝑃(𝑎) =→ no if 𝑝 ≡ inr_. We will often use a
characteristic function 𝑇 → Bool to specify a decidable predicate on a
type 𝑇.
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E������� 2.20.6. Show that 𝑓 (𝑡) =→ yes is a decidable predicate on 𝑇, for
any type 𝑇 and function 𝑓 :𝑇 → Bool. Show (𝑃 � True) � (𝑃 � False)
for every decidable proposition 𝑃. �

We’ve seen how to make a subtype from a predicate. Conversely, from
a subtype of 𝑇 given by the injection 𝑓 : 𝑆 → 𝑇, we can form a predicate
𝑃𝑓 :𝑇 → Prop defined by 𝑃𝑓 (𝑥) :≡ 𝑓 −1(𝑥). We shall see in Lemma 2.25.4,
that these operations form an equivalence between predicates on 𝑇 and
subtypes of 𝑇.
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D��������� 2.20.7. The type of types that are propositions and the type
of types that are sets are defined as:

PropU :≡ ∑
𝑋 :U

isProp(𝑋) and SetU :≡ ∑
𝑋 :U

isSet(𝑋).

Both PropU and SetU are subtypes ofU , and both are types in a universe
one higher thanU . �

When we don’t care about the precise universe U , we’ll leave it out
from the notation, and just write Prop and Set.

Following Remark 2.20.5, if we have a type 𝐴 for which we know that
it is a proposition or a set, we write also 𝐴 : Prop or 𝐴 : Set, respectively.

de
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t D��������� 2.20.8. A type 𝐴 is called a decidable set if the identity type

𝑥 =→ 𝑦 is a decidable proposition for all 𝑥 , 𝑦 : 𝐴. �

Note the slight subtlety of this definition together with Definition 2.18.1:
Any proposition has decidable identity types (since each instance is
contractible) and is thus a decidable set, even though it may not be a
decidable as a proposition.

The way we phrased this definition, it builds in the condition that 𝐴
is a set. The following celebrated and useful theorem states that this is
unnecessary.

th
m:
he
db
er
g T������ 2.20.9 (Hedberg). Any type 𝐴 for which we have a function of type

∏𝑥 ,𝑦 : 𝐴
�
𝑥 =→ 𝑦 � ¬(𝑥 =→ 𝑦)� is a decidable set.

For a proof see Theorem 7.2.5 of the HoTT Book60.
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�.�� Pointed types

se
c:
po
in
te
dt
yp
es Sometimes we need to equip types with additional structure that cannot

be expressed by a proposition such as isProp(𝑋) and isSet(𝑋) above.
Therefore the following is not a subtype of U .
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D��������� 2.21.1. A pointed type is a pair (𝐴, 𝑎) where 𝐴 is a type and 𝑎
is an element of 𝐴. The type of pointed types is

U ∗ :≡ ∑
𝐴 :U

𝐴.

Given a type 𝐴 we let 𝐴+ be the pointed type you get by adding a default
element: 𝐴+ :≡ (𝐴 � True, inrtriv). Given a pointed type 𝑋 ≡ (𝐴, 𝑎),
the underlying type is 𝑋÷ :≡ 𝐴, and the base point is pt𝑋 :≡ 𝑎, so that
𝑋 ≡ (𝑋÷ , pt𝑋).

Let 𝑋 :≡ (𝐴, 𝑎) and 𝑌 :≡ (𝐵, 𝑏) be pointed types. Define the map
ev𝑎 : (𝐴 → 𝐵) → 𝐵 by ev𝑎( 𝑓 ) :≡ 𝑓 (𝑎). Then the fiber of ev𝑎 at 𝑏 is the
type ev−1

𝑎 ≡ ∑ 𝑓 : 𝐴→𝐵(𝑏 =→ 𝑓 (𝑎)). The latter type is also called the type of
pointed functions from 𝑋 to 𝑌 and denoted by 𝑋 →∗ 𝑌. In the notation
above

(𝑋 →∗ 𝑌) ≡ ∑
𝑓 : 𝑋÷→𝑌÷

(pt𝑌
=→ 𝑓 (pt𝑋)).

If 𝑍 is also a pointed type, and we have pointed functions ( 𝑓 , 𝑓0) : 𝑋 →∗
𝑌 and (𝑔 , 𝑔0) :𝑌 →∗ 𝑍, then their composition (𝑔 , 𝑔0)( 𝑓 , 𝑓0) : 𝑋 →∗ 𝑍 is
defined as the pair (𝑔 𝑓 , 𝑔( 𝑓0)𝑔0). See the diagram below.

pt𝑌 𝑓 (pt𝑋)

pt𝑍 𝑔(pt𝑌) 𝑔( 𝑓 (pt𝑋))

𝑓0

𝑔 𝑔

𝑔0 𝑔( 𝑓0)

We may also use the notation (𝑔 , 𝑔0) ◦ ( 𝑓 , 𝑓0) for the composition. �

de
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y D��������� 2.21.2. If 𝑋 ≡ (𝐴, 𝑎) is a pointed type, then we define the

pointed identity map id𝑋 : 𝑋 →∗ 𝑋 by setting id𝑋 :≡ (id𝐴 , refl𝑎). �

If 𝑋 is a pointed type, then 𝑋÷ is a type, but 𝑋 itself is not a type. It is
therefore unambiguous, and quite convenient, to write 𝑥 : 𝑋 for 𝑥 : 𝑋÷,
and 𝑋 → U for 𝑋÷ → U . We may also tacitly coerce 𝑓 : 𝑋 →∗ 𝑌 to
𝑓 : 𝑋÷ → 𝑌÷.
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t E������� 2.21.3. If 𝐴 is a type and 𝐵 is a pointed type, prove that 𝐴 → 𝐵÷

is equivalent to 𝐴+ →∗ 𝐵. �
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E������� 2.21.4. Let 𝐴 be a pointed type and 𝐵 a type. Show that
∑𝑏 : 𝐵(𝐴 →∗ (𝐵, 𝑏)) and (𝐴÷ → 𝐵) are equivalent. �

�.�� Operations that produce sets

se
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le
m:
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is
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ro
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d L���� 2.22.1. If 𝑋 and 𝑌 are sets, then 𝑋 =→ 𝑌 is a set. In other words, Set is

a groupoid.

Proof. By univalence, (𝑋 =→ 𝑌) � (𝑋 � 𝑌) ≡ ∑ 𝑓 : 𝑋→𝑌 isEquiv( 𝑓 ). Since
𝑋 and 𝑌 are sets, so is 𝑋 → 𝑌 by Lemma 2.15.5. Moreover, isEquiv( 𝑓 )
is a proposition by Lemma 2.15.7. It follows by Corollary 2.20.4 that
𝑋 =→ 𝑌 is a set. �
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61Lemma 7.3.1262gives an equivalence
from |𝑡 |0 =→ |𝑡� |0 to �𝑡 =→ 𝑡�� for all
𝑡 , 𝑡 :𝑇.

62Univalent Foundations Program,
Homotopy Type Theory� Univalent
Foundations of Mathematics.

One may wonder whether ℕ as defined in Section 2.12 is a set. The
answer is yes, but it is harder to prove than one would think. In fact we
have the following theorem.

th
m:
is
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iv
e-
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pe
s T������ 2.22.2. All inductive types in Section �.�� are sets if all constituent

types are sets.

Proof. We only do the case of ℕ and leave the other cases to the reader
(cf. Exercise 2.22.3). The following proof is due to Simon Huber. We have
to prove that 𝑛 =→ 𝑚 is a proposition for all 𝑛 ,𝑚 :ℕ, i.e., 𝑝 =→ 𝑞 for all
𝑛 ,𝑚 :ℕ and 𝑝 , 𝑞 : 𝑛 =→ 𝑚. By induction on 𝑞 it suffices to prove 𝑝 =→ refl𝑛

for all 𝑝 : 𝑛 =→ 𝑛. Note that we can not simply prove this by induction
on 𝑝. Instead we first prove an inversion principle for identifications in
ℕ as follows. We define a type 𝑇(𝑛 ,𝑚 , 𝑝) for 𝑛 ,𝑚 :ℕ and 𝑝 : 𝑛 =→ 𝑚 by
induction on 𝑛 and 𝑚:

𝑇(0, 0, 𝑝) :≡ (𝑝 =→ refl0) and 𝑇(succ(𝑛), succ(𝑚), 𝑝) :≡ ∑
𝑞 : 𝑛 =→𝑚

𝑝 =→ ap𝑆 𝑞 ,

and for the other cases the choice does not matter, say 𝑇(0, succ(𝑚), 𝑝) :≡
𝑇(succ(𝑛), 0, 𝑝) :≡ ∅. Next we prove 𝑇(𝑛 ,𝑚 , 𝑝) for all 𝑛 ,𝑚, and 𝑝 by
induction on 𝑝, leaving us with 𝑇(𝑛 , 𝑛 , refl𝑛) for all 𝑛 :ℕ, which we in
turn prove by distinguishing cases on 𝑛. Both the case for 0 and for
succ(𝑛) hold by reflexivity, where in the successor case we use refl𝑛 for
𝑞 and note that ap𝑆 refl𝑛 ≡ reflsucc(𝑛).

We can now prove 𝑝 =→ refl𝑛 for all 𝑝 : 𝑛 =→ 𝑛 by induction on 𝑛. In the
base case this is simply 𝑇(0, 0, 𝑝). And for the case succ(𝑛) we get from
𝑇(succ(𝑛), succ(𝑛), 𝑝) that 𝑝 =→ ap𝑆 𝑞 for some 𝑞 : 𝑛 =→ 𝑛. By induction
hypothesis we have 𝑒 : 𝑞 =→ refl𝑛 and thus also

𝑝 =→ ap𝑆 𝑞 =→ ap𝑆 refl𝑛 ≡ refl𝑆(𝑛)

using apap𝑆
𝑒, concluding the proof. �
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Recall that propositional truncation is turning any type into a proposi-
tion by adding identifications of any two elements. Likewise, there is a
operation turning any type into a set by adding (higher) identifications
of any two identifications of any two elements. The latter operation is
called set truncation. It is yet another example of a higher-inductive
type.
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D��������� 2.22.4. Let 𝑇 be a type. The set truncation of 𝑇 is a type �𝑇�0

defined by the following constructors:

(1) an element |𝑡 |0 : �𝑇�0 for all 𝑡 :𝑇;

(2) a identification 𝑝 =→ 𝑞 for all 𝑥 , 𝑦 : �𝑇�0 and 𝑝 , 𝑞 : 𝑥 =→ 𝑦.

The (unnamed) second constructor ensures that �𝑇�0 is a set. The
induction principle states that, for any family of sets 𝑆(𝑥) defined for
each 𝑥 : �𝑇�0, in order to define a function 𝑓 : ∏𝑥 : �𝑇�0 𝑆(𝑥), it suffices to
give a function 𝑔 : ∏𝑡 :𝑇 𝑆(|𝑡 |0). Computationally, we get 𝑓 (|𝑡 |0) ≡ 𝑔(𝑡)
for all 𝑡 :𝑇. �
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63More generally, there are operations
turning any type into an 𝑛-type, sat-
isfying a similar universal property
as propositional truncation and set
truncation. We denote these oper-
ations by �_�𝑛 with corresponding
constructor |_|𝑛 . Propositional trun-
cation �_� can thus also be denoted
as �_�−1. Sometimes it is convenient
to consider contractible types as
−2-types, with constant truncation
operator �𝑇�−2 :≡ True and construc-
tor |𝑡 |−2 :≡ triv.

64Hint� Use a map �𝑎 =→ _� : 𝐴 → Prop
and the fact that the universe of
propositions is a set.

65Recall that an equivalence relation is
one that is (1) reflexive: 𝑅(𝑥 , 𝑥), (2)
symmetric: 𝑅(𝑥 , 𝑦) → 𝑅(𝑦 , 𝑥), and
(3) transitive: 𝑅(𝑥 , 𝑦) → 𝑅(𝑦 , 𝑧) →
𝑅(𝑥 , 𝑧).

66We may wonder about the universe
level of 𝐴/𝑅, assuming 𝐴 :U and
𝑅 : 𝐴 → 𝐴 → PropU . By the Replace-
ment Principle 2.19.4, 𝐴/𝑅 is essen-
tiallyU -small, since 𝐴 → PropU
is locallyU -small. Alternatively,
we could use Propositional Resiz-
ing Principle 2.18.6 to push the val-
ues of 𝑅 into a lower universe.

67We recall the convention to use
[𝑎] ≡ (𝑅(𝑎), !) also to denote its
first component, that is, to use [𝑎]
and 𝑅(𝑎) interchangeably. The
way in which [𝑎] contains 𝑎 is by
observing 𝑅(𝑎) : 𝐴 → Prop and
(𝑎 , !) : ∑𝑥 : 𝐴 𝑅(𝑎 , 𝑥), by 𝑅(𝑎 , 𝑎).

In the non-dependent case we get that for any set 𝑆 and any function
𝑔 :𝑇 → 𝑆 there is a (unique) function 𝑓 : �𝑇�0 → 𝑆 satisfying 𝑓 (|𝑡 |0) ≡
𝑔(𝑡) for all 𝑡 :𝑇.61 A consequence of this recursion principle is that, for
any set 𝑆, precomposition with |_|0 is an equivalence

(�𝑇�0 → 𝑆) → (𝑇 → 𝑆).

This is called the universal property of set truncation.63
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E������� 2.22.5. Let 𝐴 be a type. Define for every element 𝑧 : �𝐴�0 the
connected component corresponding to 𝑧, 𝐴(𝑧), a subtype of 𝐴, such that
for 𝑎 : 𝐴, you recover the notion from Definition 2.16.8: 𝐴(|𝑎 |0) ≡ 𝐴(𝑎).64

Prove that the set truncation map |_|0 : 𝐴 → �𝐴�0 in this way exhibits
𝐴 as the sum of its connected components, parametrized by �𝐴�0:

𝐴 � ∑
𝑧 : �𝐴�0

𝐴(𝑧). �

�.��.� Weakly constant maps

The universal property of the propositional truncation, Definition 2.16.1,
only applies directly to construct elements of propositions (that is, to
prove them). Here we discuss how we can construct elements of sets.
D��������� 2.22.7. A map 𝑓 : 𝐴 → 𝐵 is weakly constant if 𝑓 (𝑥) =→ 𝑓 (𝑥�) for
all 𝑥 , 𝑥� : 𝐴. �

This is in contrast to a constant map, which can be identified with one
of the form 𝑥 ↦→ 𝑏 for some 𝑏 : 𝐵. Any constant map is indeed weakly
constant. Note also that when 𝐵 is a set, weak constancy of 𝑓 : 𝐴 → 𝐵 is
a proposition.
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T������ 2.22.8. If 𝑓 : 𝐴 → 𝐵 is a weakly constant map, and 𝐵 is a set, then
there is an induced map 𝑔 : �𝐴� → 𝐵 such that 𝑔(|𝑥 |) ≡ 𝑓 (𝑥) for all 𝑥 : 𝐴.

Proof. Consider the image factorization 𝐴
𝑝−→ im( 𝑓 ) 𝑖−→ 𝐵 of 𝑓 , where

𝑝(𝑥) :≡ ( 𝑓 (𝑥), |(𝑥 , refl 𝑓 (𝑥))|) and 𝑖(𝑦 , !) :≡ 𝑦.
The key point is that im( 𝑓 ) is a proposition: Let (𝑦1 , 𝑧1), (𝑦2 , 𝑧2) : im( 𝑓 ).

Since 𝐵 is a set, the type 𝑦1
=→ 𝑦2 is a proposition. Hence we may

hypothesize (by induction on 𝑧𝑖) that we have 𝑥1 , 𝑥2 : 𝐴 with 𝑓 (𝑥𝑖) =→ 𝑦𝑖

for 𝑖 = 1, 2. By concatenation, we get 𝑦1
=→ 𝑓 (𝑥1) =→ 𝑓 (𝑥2) =→ 𝑦2 and

hence (𝑦1 , 𝑧1) =→ (𝑦2 , 𝑧2).
Thus, by the universal property of the truncation, we get 𝑔� : �𝐴� →

im( 𝑓 ) such that 𝑔�(|𝑥 |) ≡ 𝑝(𝑥) ≡ ( 𝑓 (𝑥), |(𝑥 , refl 𝑓 (𝑥))|). Composing with 𝑖
we get 𝑔 :≡ 𝑖 ◦ 𝑔� : �𝐴� → 𝐵 with 𝑔(|𝑥 |) :≡ 𝑓 (𝑥), as desired. �

�.��.� Set quotients
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D��������� 2.22.10. Given a set 𝐴 and an equivalence relation65 𝑅 : 𝐴 →
𝐴 → Prop, we define the quotient set66 𝐴/𝑅 as the image of the map
𝑅 : 𝐴 → (𝐴 → Prop). For 𝑎 : 𝐴 we define [𝑎] :≡ (𝑅(𝑎), |(𝑎 , refl𝑅(𝑎))|) in
𝐴/𝑅; [𝑎] is called the equivalence class containing 𝑎.67 �

Any element of the image of 𝑅 is an equivalence class: a subset 𝑃 of
𝐴 for which there exists 𝑎 : 𝐴 such that 𝑃(𝑥) holds if and only if 𝑅(𝑎 , 𝑥)
holds.

In the following proofs we frequently use Exercise 2.17.13.
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68Expanding the definitions, this
means that we can take the 0-
truncation �𝐴�0 of 𝐴 :U to be the
U -small image of the (−1)-truncated
identity relation 𝐴 → (𝐴 → PropU ).
Similarly, we can recursively con-
struct the (𝑛 + 1)-truncation
by taking theU -small image of
the 𝑛-truncated identity relation
𝐴 → (𝐴 → ∑𝑋 :U is𝑛Type).
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L���� 2.22.11. For any equivalence class 𝑃 : 𝐴/𝑅 and 𝑎 : 𝐴, 𝑃 =→ [𝑎] is
inhabited if and only if 𝑃(𝑎) holds.

Proof. Assume we have an identification of type 𝑃 =→ [𝑎]. Then 𝑃(𝑥) is
equivalent to 𝑅(𝑎 , 𝑥) for all 𝑥 : 𝐴. Take 𝑥 :≡ 𝑎 and use reflexivity 𝑅(𝑎 , 𝑎)
to conclude 𝑃(𝑎).

Conversely, assume 𝑃(𝑎), and let 𝑥 : 𝐴 be given. To prove the propo-
sition 𝑃(𝑥) � 𝑅(𝑎 , 𝑥) we may assume that 𝑃 ≡ [𝑏] for some 𝑏 : 𝐴. Then
𝑃(𝑥) ≡ 𝑅(𝑏 , 𝑥), and we need to show 𝑅(𝑏 , 𝑥) � 𝑅(𝑎 , 𝑥). This follows from
𝑃(𝑎) ≡ 𝑅(𝑏 , 𝑎) using symmetry and transitivity. �
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y T������ 2.22.12. We have ([𝑥] =→ [𝑥�]) � 𝑅(𝑥 , 𝑥�) for all 𝑥 , 𝑥� : 𝐴. Also, for

any set 𝐵, a function 𝑓 : 𝐴 → 𝐵 factors uniquely through the map [_] : 𝐴 →
𝐴/𝑅 if 𝑓 (𝑥) =→ 𝑓 (𝑥�) for all 𝑥 , 𝑥� : 𝐴 with 𝑅(𝑥 , 𝑥�). Indeed we get a map
𝑓 : 𝐴/𝑅 → 𝐵 with 𝑓 ([𝑥]) ≡ 𝑓 (𝑥) for all 𝑥 : 𝐴.

Proof. For the first part we use Lemma 2.22.11 applied to 𝑃𝑥 :≡ [𝑥] and
𝑥�.

Now let 𝐵 be a set and let 𝑓 : 𝐴 → 𝐵 a function satisfying 𝑓 (𝑥) =→ 𝑓 (𝑥�)
for all 𝑥 , 𝑥� : 𝐴 with 𝑅(𝑥 , 𝑥�).

Uniqueness: If 𝑔 , ℎ are extensions of 𝑓 through [_], then for any
𝑧 : 𝐴/𝑅, the type 𝑔(𝑧) =→ ℎ(𝑧) is a proposition since 𝐵 is a set, so we may
assume 𝑧 ≡ [𝑥] for some 𝑥 : 𝐴. Then 𝑔([𝑥]) =→ 𝑓 (𝑥) =→ ℎ([𝑥]), as desired.

Existence: Let 𝑧 ≡ (𝑃 , !) : 𝐴/𝑅. To define the image of 𝑧 in 𝐵, using the
truth of the proposition ∃𝑥 : 𝐴(𝑃 =→ [𝑥]), it suffices by Theorem 2.22.8 to
give a weakly constant map ∑𝑥 : 𝐴(𝑃 =→ [𝑥]) → 𝐵, and 𝑓 ◦ fst does the
trick.

Now we check the definitional equality: As an element of 𝐴/𝑅, equiv-
alence class [𝑥] is accompanied by the witness |(𝑥 , refl[𝑥])| :∃𝑦 : 𝐴([𝑥] =→
[𝑦]). By Theorem 2.22.8, this is mapped, by definition, to ( 𝑓 ◦fst)(𝑥 , refl[𝑥]) ≡
𝑓 (𝑥), as desired. �
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of the set truncation �𝐴�0 of a type 𝐴. Consider the relation 𝑅 : 𝐴 → 𝐴 →
Prop given by 𝑅(𝑥 , 𝑦) :≡ �𝑥 =→ 𝑦�. This is easily seen to be an equivalence
relation, using the groupoid structure of identity types. Hence we get
a quotient set 𝐴/𝑅 that satisfies (|𝑥 |0 =→ |𝑦 |0) � 𝑥 = 𝑦, where we write
|_|0 for the equivalence classes. Furthermore, Theorem 2.22.12 implies
that 𝐴/𝑅 satisfies the recursion principle of Definition 2.22.4: If 𝑆 is a set,
and 𝑔 : 𝐴 → 𝑆 is any function, then 𝑔(𝑥) =→ 𝑔(𝑦) holds whenever 𝑥 = 𝑦
by the elimination principle of the propositional truncation, and hence
we get a function 𝑓 : 𝐴/𝑅 → 𝑆 satisfying 𝑓 (|𝑥 |0) ≡ 𝑔(𝑥) for all 𝑥 : 𝐴, as
desired.68 �

�.�� More on natural numbers
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A useful function ℕ → ℕ is the predecessor pred defined by pred(0) :≡ 0
and pred(succ(𝑛)) :≡ 𝑛. Elementary properties of addition, multiplica-
tion and predecessor can be proved in type theory in the usual way.
We freely use them, sometimes even in definitions, leaving most of the
proofs/constructions to the reader.
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D��������� 2.23.1. Let 𝑛 ,𝑚 :ℕ. We say that 𝑚 is less than or equal to 𝑛,
and write 𝑚 ≤ 𝑛, if there is a 𝑘 :ℕ such that 𝑘 + 𝑚 =→ 𝑛. Such a 𝑘 is
unique, and if it is not 0, we say that 𝑚 is less than 𝑛, denoted by 𝑚 < 𝑛.
Both 𝑚 ≤ 𝑛 and 𝑚 < 𝑛 are propositions for all 𝑛 ,𝑚 :ℕ. �
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The successor function satisfies (succ(𝑛) =→ succ(𝑚)) � (𝑛 =→ 𝑚). The
functions + and · are commutative and associative, · distributes over
+. The relations ≤ and < are transitive and preserved under +; ≤ also
under ·. We have (𝑚 ≤ 𝑛) � ((𝑚 < 𝑛) � (𝑚 =→ 𝑛)) (so ≤ is reflexive).
Furthermore, ((𝑚 ≤ 𝑛) × (𝑛 ≤ 𝑚)) � (𝑚 =→ 𝑛), and ¬((𝑚 < 𝑛) × (𝑛 < 𝑚))
(so < is irreflexive). �

We can prove the following lemma by double induction.
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L���� 2.23.3. The relations =→, ≤ and < on ℕ are decidable.
By Hedberg’s Theorem 2.20.9, we get an alternate proof that ℕ is a set.
We will now prove an important property of ℕ, called the least number

principle for decidable, non-empty subsets of ℕ. We give some more details
of the proof, since they illustrate an aspect of type theory that has not
been very prominent up to know, namely the close connection between
proving and computing.
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C����������� 2.23.4. Let 𝑃(𝑛) be a proposition for all natural numbers 𝑛.
Define the type 𝑃min(𝑛) expressing that 𝑛 is the smallest natural number such
that 𝑃(𝑛)�

𝑃min(𝑛) :≡ 𝑃(𝑛) × ∏
𝑚 :ℕ

(𝑃(𝑚) → 𝑛 ≤ 𝑚)

Then we seek a function

{e
qn
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}

{e
qn
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in
} (2.23.1) min(𝑃) : ∏

𝑛 :ℕ
(𝑃(𝑛)� ¬𝑃(𝑛)) → ∃𝑛 :ℕ𝑃(𝑛) → ∑

𝑛 :ℕ
𝑃min(𝑛),

computing a minimal witness for 𝑃 from evidence that 𝑃 is decidable and that a
witness exists.

Implementation of Construction 2.23.4. First note that 𝑃min(𝑛) is a propo-
sition, and that all 𝑛 such that 𝑃min(𝑛) are equal. Therefore the type
∑𝑛 :ℕ 𝑃min(𝑛) is also a proposition.

Given a function 𝑑(𝑛) : 𝑃(𝑛)� ¬𝑃(𝑛) deciding 𝑃(𝑛) for each 𝑛 :ℕ, we
define a function 𝜇𝑃 :ℕ → ℕ which, given input 𝑛, searches for a 𝑘 < 𝑛
such that 𝑃(𝑘). If such a 𝑘 exists, 𝜇𝑃 returns the least such 𝑘, otherwise
𝜇𝑃(𝑛) =→ 𝑛. This is a standard procedure that we will call bounded
search. The function 𝜇𝑃 is defined by induction, setting 𝜇𝑃(0) :≡ 0 and
𝜇𝑃(succ(𝑛)) :≡ 𝜇𝑃(𝑛) if 𝜇𝑃(𝑛) < 𝑛. Otherwise, we set 𝜇𝑃(succ(𝑛)) :≡ 𝑛 if
𝑃(𝑛), and 𝜇𝑃(succ(𝑛)) :≡ succ(𝑛) otherwise, using 𝑑(𝑛) to decide, that is,
by induction on 𝑑(𝑛) : 𝑃(𝑛)� ¬𝑃(𝑛). By design, 𝜇𝑃 ‘remembers’ where
it has found the least 𝑘 (if so). We are now done with the computational
part and the rest is a correctness proof.

By induction on 𝑛 :ℕ and 𝑑(𝑛) : 𝑃(𝑛)� ¬𝑃(𝑛) we show

𝜇𝑃(𝑛) ≤ 𝑛 and 𝜇𝑃(𝑛) < 𝑛 → 𝑃(𝜇𝑃(𝑛)).

The base case where 𝑛 :≡ 0 is easy. For the induction step, review the
computation of 𝜇𝑃(succ(𝑛)). If 𝜇𝑃(succ(𝑛)) =→ 𝜇𝑃(𝑛) since 𝜇𝑃(𝑛) < 𝑛,
then we are done by the induction hypothesis. Otherwise, either
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𝜇𝑃(succ(𝑛)) =→ 𝑛 and 𝑃(𝑛), or 𝜇𝑃(succ(𝑛)) =→ succ(𝑛). In both cases
we are done.

Also by induction on 𝑛 :ℕ and 𝑑(𝑛) : 𝑃(𝑛)� ¬𝑃(𝑛) we show

𝑃(𝑚) → 𝜇𝑃(𝑛) ≤ 𝑚 , for all 𝑚 in ℕ.

The base case 𝑛 :≡ 0 holds since 𝜇𝑃(0) =→ 0. For the induction step,
assume 𝑃(𝑚) → 𝜇𝑃(𝑛) ≤ 𝑚 for all 𝑚 (IH). Let 𝑚 :ℕ and assume 𝑃(𝑚).
We have to prove 𝜇𝑃(succ(𝑛)) ≤ 𝑚. If 𝜇𝑃(succ(𝑛)) =→ 𝜇𝑃(𝑛) we are done
by IH. Otherwise we have 𝜇𝑃(𝑛) =→ 𝑛 and 𝜇𝑃(succ(𝑛)) =→ succ(𝑛) and
¬𝑃(𝑛). Then 𝜇𝑃(𝑛) ≤ 𝑚 by IH, and 𝑛 ≠ 𝑚, so 𝜇𝑃(succ(𝑛)) ≤ 𝑚.

By contraposition we get from the previous result

𝜇𝑃(𝑛) =→ 𝑛 → ¬𝑃(𝑚), for all 𝑚 < 𝑛.

Note that there may not be any 𝑛 such that 𝑃(𝑛); the best we can do is
to prove

𝑃(𝑛) → 𝑃min(𝜇𝑃(succ(𝑛)))
by combining previous results. Assume 𝑃(𝑛). Then 𝜇𝑃(succ(𝑛)) ≤ 𝑛 <

succ(𝑛), so that 𝑃(𝜇𝑃(succ(𝑛))). Moreover, 𝑃(𝑚) → 𝜇𝑃(succ(𝑛)) ≤ 𝑚 for
all 𝑚 in ℕ. Hence 𝑃min(𝜇𝑃(succ(𝑛))).

Since ∑𝑛 :ℕ 𝑃min(𝑛) is a proposition, we obtain the required function
by the induction principle for propositional truncation, Definition 2.16.1:

min(𝑃) : ∏
𝑛 :ℕ

(𝑃(𝑛)� ¬𝑃(𝑛)) →
���∑

𝑛 :ℕ
𝑃(𝑛)

��� → ∑
𝑛 :ℕ

𝑃min(𝑛). �

re
m:
co
mp
ut
at
io
ns
-c
an
-d
ec
id
e R����� 2.23.5. In the interest of readability, we do not always make

the use of witnesses of decidability in computations explicit. A typical
example is the case distinction on 𝜇𝑃(𝑛) < 𝑛 in Construction 2.23.4 above.
This remark applies to all sets and decidable relations on them. We shall
immediately put this convention to good use in the proof of a form of
the so-called Pigeonhole Principle (PHP). �

le
m:
PH
P L���� 2.23.6. For all 𝑁 :ℕ and 𝑓 :ℕ → ℕ such that 𝑓 (𝑛) < 𝑁 for all

𝑛 < 𝑁 + 1, there exist 𝑚 < 𝑛 < 𝑁 + 1 such that 𝑓 (𝑛) =→ 𝑓 (𝑚).
Proof. By induction on 𝑁 . In the base case 𝑁 =→ 0 there is nothing
to do. For the induction case 𝑁 + 1, assume the lemma proved for 𝑁
(induction hypothesis, IH, for all 𝑓 ). Let 𝑓 be such that 𝑓 (𝑛) < 𝑁 + 1 for
all 𝑛 < 𝑁 +2. The idea of the proof is to search for an 𝑛 < 𝑁 +1 such that
𝑃(𝑛) :≡ ( 𝑓 (𝑛) =→ 𝑁), by computing 𝜇𝑃(𝑁+1) as in Construction 2.23.4. If
𝜇𝑃(𝑁+1) =→ 𝑁+1, that is, 𝑓 (𝑛) < 𝑁 for all 𝑛 < 𝑁+1, then we are done by
IH. Assume𝜇𝑃(𝑁+1) < 𝑁+1, so 𝑓 (𝜇𝑃(𝑁+1)) =→ 𝑁 . If also 𝑓 (𝑁+1) =→ 𝑁
then we are done. If 𝑓 (𝑁 + 1) < 𝑁 , then we define 𝑔 by 𝑔(𝑛) =→ 𝑓 (𝑁 + 1)
if 𝑓 (𝑛) =→ 𝑁 , and 𝑔(𝑛) =→ 𝑓 (𝑛) otherwise. Then IH applies to 𝑔, and
we get 𝑚 < 𝑛 < 𝑁 + 1 with 𝑔(𝑛) =→ 𝑔(𝑚). If 𝑓 (𝑛) =→ 𝑓 (𝑚) we are of
course done. Otherwise, 𝑓 (𝑛), 𝑓 (𝑚) cannot both be smaller than 𝑁 , as
𝑔(𝑛) =→ 𝑔(𝑚). In both remaining cases, 𝑓 (𝑛) =→ 𝑔(𝑛) =→ 𝑔(𝑚) =→ 𝑓 (𝑁+1)
and 𝑓 (𝑁 + 1) =→ 𝑔(𝑛) =→ 𝑔(𝑚) =→ 𝑓 (𝑚), we are done. �

We can now rule out the existence of equivalences between finite sets
of different size.

co
r:
Fi
n-
n-
in
je
ct
iv
e C�������� 2.23.7. If 𝑚 < 𝑛, then (∑𝑘 :ℕ 𝑘 < 𝑚) ≠ (∑𝑘 :ℕ 𝑘 < 𝑛).
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69When moving beyond sets, there
are two different ways in which a
type can be finite: an additive way
and a multiplicative way, but it would
take us too far afield to define these
notions here.

70Here it doesn’t matter whether we
say Set orU , since any finite set is a
set. Hence we also have FinSet𝑛 ≡
Set(𝕟) =→ FinSet(𝕟) =→U (𝕟).

Another application of Construction 2.23.4 is a short proof of Euclidean
division.

le
m:
eu
cl
id
-d
iv

L���� 2.23.8. For all 𝑛 ,𝑚 :ℕ with 𝑚 > 0 there exist unique 𝑞 , 𝑟 :ℕ such that
𝑟 < 𝑚 and 𝑛 =→ 𝑞𝑚 + 𝑟.

Proof. Define 𝑃(𝑘) :≡ (𝑛 ≤ 𝑘𝑚). Since 𝑚 > 0 we have 𝑃(𝑛). Now set
𝑘 :≡ 𝜇𝑃(𝑛) as in Construction 2.23.4. If 𝑛 =→ 𝑘𝑚 and we set 𝑞 :≡ 𝑘 and
𝑟 :≡ 0. If 𝑛 < 𝑘𝑚, then 𝑘 > 0 and we set 𝑞 :≡ 𝑘 − 1. By minimality we
have 𝑞𝑚 < 𝑛 < 𝑘𝑚 and hence 𝑛 =→ 𝑞𝑚 + 𝑟 for some 𝑟 < 𝑚. �

�.�� The type of finite types

se
c:
ty
pe
Fi
n

Recall from Section 2.12.1 the types False, True and Bool containing zero,
one and two elements, respectively. We now define generally the type of
𝑛 elements for any 𝑛 :ℕ.

de
f:
fi
ni
te
se
t D��������� 2.24.1. For any type 𝑋 define succ(𝑋) :≡ 𝑋 � True. Define

inductively the type family 𝐹(𝑛), for each 𝑛 :ℕ, by setting 𝐹(0) :≡ ∅ and
𝐹(succ(𝑛)) :≡ succ(𝐹(𝑛)). Now abbreviate 𝕟 :≡ 𝐹(𝑛). The type 𝕟 is called
the type with 𝑛 elements, and we denote its elements by 0, 1, . . . , 𝑛 − 1
rather than by the corresponding expressions using inl and inr.

We also define 𝕞 :≡ 𝐹(𝑚) for a natural number 𝑚, 𝟘 :≡ 𝐹(0), 𝟙 :≡ 𝐹(1),
and 𝟚 :≡ 𝐹(2). �

xc
a:
fi
ni
te
-t
yp
es

E������� 2.24.2.

(1) Denote in full all elements of 𝟘, 𝟙, and 𝟚.

(2) Show (using univalence) that 𝟙 =→ True, 𝟚 =→ Bool.

(3) Show (using univalence) that 𝕟 =→ ∑𝑘 :ℕ 𝑘 < 𝑛 for all 𝑛 :ℕ.

(4) Show that 𝑚 = 𝑛 if 𝕞 = 𝕟. �

de
f:
is
-f
in
it
e D��������� 2.24.3. Given a type 𝑋, we define the proposition

isFinSet(𝑋) :≡ ∃𝑛 :ℕ(𝑋 =→ 𝕟)

to express that 𝑋 is a finite set.69 �

le
m:
ma
xo
ne
fi
ni
te
ty
pe

L���� 2.24.4.

��� ∑𝑛 :ℕ 𝑋 = 𝕟 is a proposition, for all types 𝑋.

��� ∑𝑋 :U ∑𝑛 :ℕ 𝑋 = 𝕟 =→ ∑𝑋 :U isFinSet(𝑋).
Proof. (1) Assume (𝑛 , 𝑝), (𝑚 , 𝑞) : ∑𝑛 :ℕ 𝑋 = 𝕟. Then we have 𝕟 = 𝕞, so
𝑛 = 𝑚 by Exercise 2.24.2. But ℕ is a set by Theorem 2.22.2, so 𝑛 = 𝑚 =→
(𝑛 =→ 𝑚). It follows that (𝑛 , 𝑝) =→ (𝑚 , 𝑞).

(2) Follows from ∑𝑛 :ℕ 𝑋 = 𝕟 = �∑𝑛 :ℕ 𝑋 =→ 𝕟�, which is easily proved
by giving functions in both directions and using the univalence axiom.

�

The lemma above remains true if 𝑋 ranges over Set. If a set 𝑆 is in the
same component in Set70 as 𝕟 we say that 𝑆 has cardinality 𝑛 or that the
cardinality of 𝑆 is 𝑛.
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de
f:
gr
ou
po
id
Fi
n D��������� 2.24.5. The groupoid of finite sets is defined by

FinSet :≡ ∑
𝑆 : Set

isFinSet(𝑆).

For 𝑛 :ℕ, the groupoid of sets of cardinality 𝑛 is defined by

FinSet𝑛 :≡ ∑
𝑆 : Set

𝑆 = 𝕟. �

Observe that FinSet0
=→ FinSet1

=→ 𝟙 and FinSet =→ ∑𝑛 :ℕ FinSet𝑛 by
Lemma 2.24.4.

Note that being a finite set implies being a set, and hence FinSet =→
∑𝑋 :U isFinSet(𝑋). Also, FinSet is the image of the map 𝐹 :ℕ → U
from Definition 2.24.1, and is hence essentiallyU -small (for any universe
U ), by Principle 2.19.4, Item (P1), and our assumption that U0 is the
smallest universe.

�.�� Type families and maps

se
c:
ty
pe
fa
m

There is a natural equivalence between maps into a type 𝐴 and type
families parametrized by 𝐴. The key idea is that the fibers of a map form
a type family. We will elaborate this idea and some variations.

le
m:
fs
t-
fi
be
r(
a)
=B
(a
) L���� 2.25.1. Let 𝐴 :U and 𝐵 : 𝐴 →U . Recall the function fst : (∑𝑎 : 𝐴 𝐵(𝑎)) →

𝐴. Then 𝑒𝑎 : 𝐵(𝑎) → fst−1(𝑎) defined by 𝑒𝑎(𝑏) :≡ ((𝑎 , 𝑏), refl𝑎) is an equiva-
lence, for all 𝑎 : 𝐴.

Proof. Note that fst(𝑥 , 𝑏) ≡ 𝑥 and that 𝑎 =→ 𝑥 does not depend on
𝑏. Hence fst−1(𝑎) � ∑𝑥 : 𝐴(𝐵(𝑥) × (𝑎 =→ 𝑥)) via rearranging brackets.
Applying Corollary 2.9.11 leads indeed to the equivalence 𝑒𝑎 . �

le
m:
su
m-
of
-f
ib
er
s L���� 2.25.2. Let 𝐴, 𝐵 :U and 𝑓 : 𝐵 → 𝐴. Then 𝑒 : 𝐵 → ∑𝑎 : 𝐴 𝑓 −1(𝑎)

defined by 𝑒(𝑏) :≡ ( 𝑓 (𝑏), 𝑏 , refl 𝑓 (𝑏)) is an equivalence.

Proof. Define 𝑒−1 : ∑𝑎 : 𝐴 𝑓 −1(𝑎) → 𝐵 by 𝑒(𝑎 , 𝑏 , 𝑝) :≡ 𝑏. Then 𝑒−1(𝑒(𝑏)) ≡ 𝑏
for all 𝑏 : 𝐵. Let 𝑎 : 𝐴, 𝑏 : 𝐵 and 𝑝 : 𝑓 (𝑏) =→ 𝑎. Then 𝑒(𝑒−1(𝑎 , 𝑏 , 𝑝)) ≡
( 𝑓 (𝑏), 𝑏 , refl 𝑓 (𝑏)). We have to prove ( 𝑓 (𝑏), 𝑏 , refl 𝑓 (𝑏)) =→ (𝑎 , 𝑏 , 𝑝). We use 𝑝
as identification of the first components, and refl𝑏 as identification of the
second components (whose type is constant). For the third component
we use that the transport of refl 𝑓 (𝑏) along 𝑝 in the type family ( 𝑓 (𝑏) =→ _) is
indeed equal to 𝑝 itself by Exercise 2.14.4(2). Now apply Lemma 2.9.9. �

If 𝑓 above is an injection, then ∑𝑎 : 𝐴 𝑓 −1(𝑎) is a subtype of 𝐴, and 𝐵 is
a 𝑛-type if 𝐴 is a 𝑛-type by Corollary 2.20.4.

le
m:
ty
pe
fa
mi
li
es
an
df
ib
ra
ti
on
s L���� 2.25.3. Let 𝐴 be a type. Then

preim : ∑
𝐵 :U

(𝐵 → 𝐴) → (𝐴 →U )

given by preim(𝐵, 𝑓 )(𝑎) :≡ 𝑓 −1(𝑎) is an equivalence. An inverse equivalence
is given by sending 𝑃 : 𝐴 →U to (∑𝑎 : 𝐴 𝑃(𝑎), fst).
Proof. We apply Lemma 2.9.9, and verify the two conditions. Let 𝑃 : 𝐴 →
U . We have to prove that 𝑃 =→ preim(∑𝑎 : 𝐴 𝑃(𝑎), fst). By function
extensionality it suffices to prove preim(∑𝑎 : 𝐴 𝑃(𝑎), fst)(𝑎) ≡ fst−1(𝑎) =→
𝑃(𝑎). This follows directly from Lemma 2.25.1 and the univalence axiom.

Marc
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The precise formalization of the
intuitive notions of “stuff”, “struc-
ture”, and “properties” was worked
out in terms of category theory in
UseNet discussions between John
Baez, Toby Bartels, and James Dolan
on sci.physics.research in 1998.
It was clear that the simplest descrip-
tion was in terms of homotopy types,
and hence it’s even simpler in type
theory. See also Baez and Shulman71

for further discussion.

71John C. Baez and Michael Shulman.
“Lectures on 𝑛-categories and coho-
mology”. In: Towards higher categories.
Vol. 152. IMA Vol. Math. Appl.
Springer, New York, 2010, pp. 1–68.
���: 10.1007/978-1-4419-1524-
5_1. arXiv: math/0608420.

Let 𝑓 : 𝐵 → 𝐴. We have to prove that (∑𝑎 : 𝐴 𝑓 −1(𝑎), fst) =→ (𝐵, 𝑓 ).
Using the univalence axiom, we get an identification 𝑒 : ∑𝑎 : 𝐴 𝑓 −1(𝑎) =→ 𝐵,
where 𝑒 is the equivalence from Lemma 2.25.2. Using Lemma 2.10.3, it
remains to give an element of the type fst

=−→̄
𝑒

𝑓 .
As an auxiliary step we note that for any 𝑝 : 𝑋 =→ 𝑌 and 𝑔 : 𝑋 → 𝐴,

ℎ :𝑌 → 𝐴, the type 𝑔
=−→
𝑝

ℎ of paths over 𝑝 is equal to the type 𝑔 =→ ℎ ◦ 𝑝̃,

since the two types are definitionally equal for 𝑝 ≡ refl𝑋 . Applying this
here means that we must give an element of fst =→ 𝑓 ◦ ˜̄𝑒. This in turn
means that we must give an element of fst =→ 𝑓 ◦ 𝑒, which follows by
function extensionality from the definition of 𝑒 in Lemma 2.25.2. �

Let 𝐴 be a type and consider the subuniverse Prop ≡ ∑𝑋 :U isProp(𝑋)
from Section 2.20. A function 𝑃 : 𝐴 → Prop can be viewed as a family of
propositions: fst ◦𝑃 : 𝐴 →U is a type family, and snd ◦𝑃 : ∏𝑎 : 𝐴 isProp(𝑃(𝑎))
witnesses that each fst(𝑃(𝑎)) is a proposition. The inverse equivalence in
Lemma 2.25.3 sends fst ◦𝑃 to

fst :
�

∑
𝑎 : 𝐴

fst(𝑃(𝑎))
�
→ 𝐴.

All the fibers of this function are propositions by combining snd ◦𝑃 : ∏𝑎 : 𝐴 isProp(𝑃(𝑎))
with Lemma 2.25.1.

Conversely, for a function 𝑓 : 𝐵 → 𝐴 with proof 𝑔 : ∏𝑎 : 𝐴 isProp( 𝑓 −1(𝑎))
that all fibers of 𝑓 are propositions, we can define 𝑃𝑓 : 𝐴 → Prop by
setting 𝑃𝑓 (𝑎) :≡ ( 𝑓 −1(𝑎), 𝑔(𝑎)).

The above argument can be refined for each of Prop, Set,U ∗ from
Section 2.20, and one can prove the following analogues of Lemma 2.25.3.

le
m:
Pr
op
-S
et
-p
oi
nt
ed
-f
am
il
ie
s L���� 2.25.4. Let 𝐴 be a type. Then we have�

��� (𝐴 → Prop) � ∑𝐵 :U ∑ 𝑓 : 𝐵→𝐴 ∏𝑎 : 𝐴 isProp( 𝑓 −1(𝑎));

le
m:
Se
t-
fa
mi
li
es

��� (𝐴 → Set) � ∑𝐵 :U ∑ 𝑓 : 𝐵→𝐴 ∏𝑎 : 𝐴 isSet( 𝑓 −1(𝑎));
��� (𝐴 →U ∗) � ∑𝐵 :U ∑ 𝑓 : 𝐵→𝐴 ∏𝑎 : 𝐴 𝑓 −1(𝑎). �Hard��

Since Prop is a set, we obtain the following corollary.

co
r:
Su
b_
T-
is
-s
et

C�������� 2.25.5. Subtypes as in Definition �.��.� correspond to predicates
and Sub𝑇 is a set, for any type 𝑇.

�.�� Higher structure� stuff, structure, and properties

se
c:
st
uf
f-
st
ru
ct
-p
ro
p

Recall from Lemma 2.25.2 that any map 𝑓 : 𝐵 → 𝐴 can be described as
“projecting away” its fibers, by using the equivalence 𝑒:

{e
q:
fo
rg
et
-f
ib
er
s}

{e
q:
fo
rg
et
-f
ib
er
s}

(2.26.1)
𝐵 ∑𝑎 : 𝐴 𝑓 −1(𝑎)

𝐴

𝑒
∼

𝑓 fst

We say that 𝑓 forgets these fibers. If 𝐴 and 𝐵 are groupoids, these
fibers are themselves groupoids, but it can happen that they are sets,
propositions, or even contractible. Accordingly, we say that:

• 𝑓 forgets at most structure if all the fibers are sets;

• 𝑓 forgets at most properties if all the fibers are propositions;

Marc
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72We’re updating the terminology
slightly: In the above references, 𝑛-
structure is referred to as 𝑛-stuff, but
nowadays the term higher structure is
more common, so we have renamed
𝑛-stuff into 𝑛-structure.

73Using the general 𝑛-truncation, we
can define the 𝑛-image in a similar
way and prove that the 𝑛-image
factorization is unique. Since the
unit type 𝟙 is the unique (−2)-type,
we have �𝑋�−2

=→ 𝟙 for any type 𝑋.

• 𝑓 forgets nothing if all the fibers are contractible.

Here, the structure and properties in question are on 𝑎 or of 𝑎, respectively,
as captured by the fibers at 𝑎, for each 𝑎 : 𝐴. Of course, a map forgets
properties if and only if it’s an injection, and it forgets nothing if and
only if it’s an equivalence.

Going in the other direction, we say that:

• 𝑓 forgets at most 𝑛-structure if all the fibers are 𝑛-truncated. If 𝑛 ≥ 1,
this is therefore a kind of higher structure.72

Thus, an element of a groupoid is 1-structure (this is sometimes infor-
mally called stuff ), while an element of a set is a structure, or 0-structure,
while an proof of a proposition is a property, or (−1)-structure.

Looking at (2.26.1) another way, we see that to give an element of 𝑏
of 𝐵 lying over a given element 𝑎 : 𝐴 amounts to specifying an element
on 𝑓 −1(𝑎), so we say that the elements of 𝐵 are elements of 𝐴 with extra
𝑛-structure, if the fibers 𝑓 −1(𝑎) are 𝑛-truncated.

Refining the usual image and image factorization from Definition 2.17.11
and Exercise 2.17.12 we can factor 𝑓 : 𝐵 → 𝐴 through first its 0-image and
then its usual (−1)-image as follows:73

𝐵 =→ ∑
𝑎 : 𝐴

𝑓 −1(𝑎) → ∑
𝑎 : 𝐴

� 𝑓 −1(𝑎)�0 → ∑
𝑎 : 𝐴

� 𝑓 −1(𝑎)�−1 → ∑
𝑎 : 𝐴

� 𝑓 −1(𝑎)�−2
=→ 𝐴.

Here, the first map forgets pure higher structure, the second map forgets pure
structure, while the last forgets at most properties (this is the inclusion
of the usual image). Of course, each of these maps may happen to
forget nothing at all. Saying that the second map forgets pure structure
indicates that not only are the fibers sets, they are nonempty sets, so the
structure in question exists, at least. Note also that the fibers of the first
map are connected, which indicates that what is forgotten at this step, if
anything, is pure higher structure.

ex
a:
st
uf
f-
st
ru
ct
-p
ro
p E������ 2.26.1. Let us look at some examples:

• The first projection fst : FinSet × FinSet → FinSet forgets 1-structure
(stuff), namely the second set in the pair.

• The first projection fst : ∑𝐴 : FinSet 𝐴 → FinSet from the type of pointed
finite sets to the type of finite sets forgets structure, namely the
structure of a chosen point.

• The inclusion of the type of sets with cardinality 𝑛, FinSet𝑛 , into the
type of all finite sets, FinSet, forgets properties, namely the property
“having cardinality 𝑛”. �

xc
a:
st
uf
f-
st
ru
ct
-p
ro
p E������� 2.26.2. Analyze more examples of maps between groupoids in

terms of “what is forgotten”. �

xc
a:
0I
m-
to
-I
m E������� 2.26.3. Let |_|� : � 𝑓 −1(𝑎)�0 → � 𝑓 −1(𝑎)� be the map defined by

the induction principle in Definition 2.22.4 from |_| : 𝑓 −1(𝑎) → � 𝑓 −1(𝑎)�.
In the refined image factorization above, the map for the second arrow
maps any pair (𝑎 , 𝑥) with 𝑥 : � 𝑓 −1(𝑎)�0 to the pair (𝑎 , |𝑥 |�). Show that
for any 𝑝 : � 𝑓 −1(𝑎)� the fiber of the latter map at (𝑎 , 𝑝) is equivalent to
� 𝑓 −1(𝑎)�0. What is forgotten by this map, and what is remembered? �
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Recall the (−1-)image factorization and its uniqueness from Exer-
cise 2.17.12. The 0-image factorization and its uniqueness play just as
important a role, so we give a full proof.

th
m:
un
iq
ue
-f
ac
t-
0i
ma
ge

T������ 2.26.4. Show that the 0-image of 𝑓 : 𝐴 → 𝐵 induces a factorization
𝑓 =→ 𝑖 ◦ 𝑝

𝐴 𝐵

im( 𝑓 )

𝑓

𝑝 𝑖

where 𝑝 is 0-connected and 𝑖 is 0-truncation, and that each such factorization is
equivalent to the 0-image factorization.

�.�� Higher truncations

se
c:
hi
gh
er
-t
ru
nc
at
io
ns We’ve seen the propositional truncation in Section 2.16 and the set

truncation in Section 2.22. As mentioned in Remark 2.22.13, it’s possible
to define the latter in terms of the former by considering the propositional
truncation of the identity types of a type 𝐴. In this section we want
to generalize this to higher truncation levels and show how we can
inductively define all the 𝑛-truncation operations using propositional
truncation combined with the replacement principle, Principle 2.19.4,
which is used to stay within a given universe.

de
f:
jo
in
-c
on
st
ru
ct
io
n-
of
-t
ru
nc
at
io
n C����������� 2.27.1. For any integer 𝑛 ≥ −1 we have an 𝑛-truncation

operation �_�𝑛 :U →U , along with unit maps |_|𝑛 : 𝐴 → �𝐴�𝑛 , satisfying
the following universal property.

For any 𝑛-type 𝐵, precomposition with |_|𝑛 induces an equivalence�
��𝐴�𝑛 → 𝐵

� �→ (𝐴 → 𝐵).

Implementation of Construction 2.27.1. We proceed by induction. For
𝑛 ≡ −1, we have this from the higher inductive type definition, Defini-
tion 2.16.1, with element constructor |_| : 𝐴 → �𝐴�.

To go from 𝑛 to 𝑛 + 1, we fix a type 𝐴 :U and consider the 𝑛-truncated
identity relation

𝐼𝑛 : 𝐴 →
�
𝐴 → ∑

𝑋 :U
is𝑛Type(𝑋)

�
, 𝑥 ↦→ (𝑦 ↦→ �𝑥 =→ 𝑦�𝑛).

Let �𝐴�𝑛+1 :≡ im(𝐼𝑛) be the usual image of 𝐼𝑛 , and let |_|𝑛+1 : 𝐴 → �𝐴�𝑛+1

be the image inclusion, 𝑥 ↦→ (�𝑥 =→ _�𝑛 , !).
Since the type of 𝑛-types is an (𝑛 + 1)-type, �𝐴�𝑛+1 is an (𝑛 + 1)-type

by Lemma 2.15.5. We also note that the map

{e
q:
tr
un
c-
pa
th
-e
q}

{e
q:
tr
un
c-
pa
th
-e
q}

(2.27.1) �𝑥 =→ 𝑦�𝑛
�→ (|𝑥 |𝑛+1

=→ |𝑦 |𝑛+1),

induced by the universal property of 𝑛-truncation, is an equivalence.
Indeed, the right-hand side is equivalent to

∏
𝑧 : 𝐴

��𝑥 =→ 𝑧�𝑛
�→ �𝑦 =→ 𝑧�𝑛

�
,

and we get an inverse by going backwards along this equivalence at
|refl𝑦 |𝑛 : �𝑦 =→ 𝑦�𝑛 .
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74Rĳke, The join construction.

75Egbert Rĳke. Introduction to Homo-
topy Type Theory. Forthcoming book
with CUP. Version from 06/02/22.
2022.

To prove the universal property, let 𝐵 be any (𝑛+1)-type and 𝑔 : 𝐴 → 𝐵
any map.

It suffices to show that for any 𝑧 : �𝐴�𝑛+1, there is a contractible type
of extensions

|_|−1
𝑛+1(𝑧)

𝟙 𝐵,

𝑔◦fst

since then there’s a contractible type of extensions of 𝑔 to all of �𝐴�𝑛+1

Since this is a proposition and |_|𝑛+1 is surjective, it suffices to prove this
for 𝑧 of the form |𝑥 |𝑛+1 with 𝑥 : 𝐴. We need to show that the type

∏
𝑥 : 𝐴

∑
𝑦 : 𝐵

∏
𝑥� : 𝐴

�(|𝑥 |𝑛+1
=→ |𝑥� |𝑛+1) → (𝑦 =→ 𝑔(𝑥�))�

is contractible. By the equivalence above, we can rewrite this, first as

∏
𝑥 : 𝐴

∑
𝑦 : 𝐵

∏
𝑥� : 𝐴

��𝑥 =→ 𝑥��𝑛 → (𝑦 =→ 𝑔(𝑥�))�,

and then, since 𝑦 =→ 𝑔(𝑥�) is an 𝑛-type, as

∏
𝑥 : 𝐴

∑
𝑦 : 𝐵

∏
𝑥� : 𝐴

�(𝑥 =→ 𝑥�) → (𝑦 =→ 𝑔(𝑥�))�.

Now we can contract away 𝑥� and the identification 𝑥 =→ 𝑥�, so we’re left
with

∏
𝑥 : 𝐴

∑
𝑦 : 𝐵

(𝑦 =→ 𝑔(𝑥�)),

which is indeed contractible.
Finally, we need to re-size �𝐴�𝑛+1 to fit in the universe U that 𝐴 came

from. By (2.27.1), its identity types are essentiallyU -small by induction
hypothesis, so again since |_|𝑛+1 is a surjection from the U -small type
𝐴, the replacement principle, Principle 2.19.4, implies that �𝐴�𝑛+1 is
essentiallyU -small. �

This construction is due to Rĳke74, see also the presentation in his
book75.



1Notice that these have arrows point-
ing in different directions: In Item (1)
we’re mapping out of 𝟙, while
in Item (2) we’re mapping in to Prop.

2We call this type the “circle” be-
cause it has many properties which
are analogues, in our context, of
properties of the topological circle
{ (𝑥 , 𝑦) ∈ ℝ2 | 𝑥2 + 𝑦2 = 1 }. See Ap-
pendix B.3 for a discussion of the
relationship between topological
spaces and types. In the later chap-
ters on geometry we’ll return to
“real” geometrical circles.

𝐴

𝑎

𝑝
𝑝2

𝑝−1

3
The universal symmetry� the circle

ch
a:
ci
rc
le An effective principle in mathematics is that when you want to study a

certain phenomenon you should search for a single type that captures
this phenomenon. Here are two examples:1

it
:o
ne
-o
ut

(1) The contractible type 𝟙 has the property that given any type 𝐴 a
function 𝟙 → 𝐴 provides exactly the same information as picking an
element in 𝐴. For, an equivalence from 𝐴 to 𝟙 → 𝐴 is provided by
the function 𝑎 ↦→ (𝑥 ↦→ 𝑎).

it
:p
ro
p-
in

(2) The type Prop of propositions has the property that given any type
𝐴 a function 𝐴 → Prop provides exactly the same information as
picking a subtype of 𝐴.

We are interested in symmetries, and so we should search for a type 𝑋
which is so that given any type 𝐴 the type of functions 𝑋 → 𝐴 (or 𝐴 → 𝑋,
but that’s not what we’re going to do) picks out exactly the symmetries
in 𝐴. We will soon see that there is such a type: the circle2 which is
built exactly so that this “universality with respect to symmetries” holds.
It may be surprising to see how little it takes to define it; especially in
hindsight when we eventually discover some of the many uses of the
circle.

A symmetry in 𝐴 is an identification 𝑝 : 𝑎 =→𝐴 𝑎 for some 𝑎 : 𝐴. Now,
we can take any iteration of 𝑝 (composing 𝑝 with itself a number of
times), and we can consider the inverse 𝑝−1 and its iterations. So, by
giving one symmetry we at the same time give a lot of symmetries. For
a particular 𝑝 it may be that not all of the iterations are different, for
instance it may be that there is an identification of type 𝑝2 =→ 𝑝0 (as in
Exercise 2.13.3), or even more dramatically: if there is an identification
of type 𝑝 = refl𝑎 , then all the iterations of 𝑝 can be identified with each
other. However, in general we must be prepared that all the powers of
𝑝 (positive, 0 and negative) are distinct. Hence, the circle must have a
distinct symmetry for every integer. We would have enjoyed defining
the integers this way, but being that ideological would be somewhat
inefficient. Hence we give a more hands-on approach and define the
circle and the integers separately. Thereafter we prove that the type of
symmetries in the circle is equivalent to the set of integers.

�.� The circle and its universal property

se
c:
S1

Propositional truncation from Section 2.16 was the first higher inductive
type, that is, an inductive type with constructors both for elements and for
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