-
Notifications
You must be signed in to change notification settings - Fork 0
/
stereo_generation_image.py
206 lines (154 loc) · 5.51 KB
/
stereo_generation_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import torch
import cv2
import argparse
import numpy as np
from tqdm import tqdm
from torch.backends import cudnn
from torchvision.transforms import Compose
from midas.midas_net import MidasNet
from midas.transforms import Resize, NormalizeImage, PrepareForNet
parser = argparse.ArgumentParser(description='MiDaS')
parser.add_argument('--input', default='./example', type=str, help='Input filename or folder.')
args = parser.parse_args()
IPD = 6.5
MONITOR_W = 38.5
def write_depth(depth, bits=1, reverse=True):
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*bits))-1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = 0
if not reverse:
out = max_val - out
if bits == 2:
depth_map = out.astype("uint16")
else:
depth_map = out.astype("uint8")
return depth_map
def generate_stereo(left_img, depth):
h, w, c = left_img.shape
depth_min = depth.min()
depth_max = depth.max()
depth = (depth - depth_min) / (depth_max - depth_min)
right = np.zeros_like(left_img)
deviation_cm = IPD * 0.12
deviation = deviation_cm * MONITOR_W * (w / 1920)
print("\ndeviation:", deviation)
for row in range(h):
for col in range(w):
col_r = col - int((1 - depth[row][col] ** 2) * deviation)
# col_r = col - int((1 - depth[row][col]) * deviation)
if col_r >= 0:
right[row][col_r] = left_img[row][col]
right_fix = np.array(right)
gray = cv2.cvtColor(right_fix, cv2.COLOR_BGR2GRAY)
rows, cols = np.where(gray == 0)
for row, col in zip(rows, cols):
for offset in range(1, int(deviation)):
r_offset = col + offset
l_offset = col - offset
if r_offset < w and not np.all(right_fix[row][r_offset] == 0):
right_fix[row][col] = right_fix[row][r_offset]
break
if l_offset >= 0 and not np.all(right_fix[row][l_offset] == 0):
right_fix[row][col] = right_fix[row][l_offset]
break
return right_fix
def overlap(im1, im2):
width1 = im1.shape[1]
height1 = im1.shape[0]
width2 = im2.shape[1]
height2 = im2.shape[0]
# final image
composite = np.zeros((height2, width2, 3), np.uint8)
# iterate through "left" image, filling in red values of final image
for i in range(height1):
for j in range(width1):
try:
composite[i, j, 2] = im1[i, j, 2]
except IndexError:
pass
# iterate through "right" image, filling in blue/green values of final image
for i in range(height2):
for j in range(width2):
try:
composite[i, j, 1] = im2[i, j, 1]
composite[i, j, 0] = im2[i, j, 0]
except IndexError:
pass
return composite
def run(model_path):
"""
Run MonoDepthNN to compute depth maps.
"""
# Input images
img_list = os.listdir(args.input)
img_list.sort()
# output dir
output_dir = './stereo'
os.makedirs(output_dir, exist_ok=True)
# set torch options
torch.cuda.empty_cache()
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# select device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print("device: %s" % device)
# load network
model = MidasNet(model_path, non_negative=True)
transform = Compose(
[
Resize(
384,
384,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="upper_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
model.to(device)
model.eval()
for idx in tqdm(range(len(img_list))):
sample = img_list[idx]
left_img = cv2.imread(os.path.join(args.input, sample))
img = cv2.cvtColor(left_img, cv2.COLOR_BGR2RGB) / 255.0
# Apply transforms
image = transform({"image": img})["image"]
# Predict and resize to original resolution
with torch.no_grad():
image = torch.from_numpy(image).to(device).unsqueeze(0)
depth = model.forward(image)
depth = (
torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=left_img.shape[:2],
mode="bicubic",
align_corners=False,
)
.squeeze()
.cpu()
.numpy()
)
depth = cv2.blur(depth, (3, 3))
depth_map = write_depth(depth, bits=2, reverse=False)
right_img = generate_stereo(left_img, depth_map)
stereo = np.hstack([left_img, right_img])
anaglyph = overlap(left_img, right_img)
# cv2.imshow('depth map', depth_map)
# cv2.imshow('side by side', stereo)
# cv2.imshow("anaglyph", anaglyph)
# cv2.waitKey(0)
cv2.imwrite(os.path.join(output_dir, 'MiDaS_{}.png'.format(sample.split('.')[0])), stereo)
cv2.imwrite(os.path.join(output_dir, 'MiDaS_3d_{}.png'.format(sample.split('.')[0])), anaglyph)
if __name__ == "__main__":
MODEL_PATH = "model-f46da743.pt"
# compute depth maps
run(MODEL_PATH)