forked from mike-b-roberts/morePVs
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmorePVs.py
2742 lines (2487 loc) · 150 KB
/
morePVs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# morePVs Copyright (C) 2018 Mike B Roberts
# multi-occupancy residential electricity with PV and storage model
#
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
# version. # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details. You should have received a copy of the GNU General Public License along with this program. If not,
# see <http://www.gnu.org/licenses/>.
# Contact: [email protected]
# IMPORT Modules
import numpy as np
import logging
import sys
import os
import pdb, traceback
import pandas as pd
import en_utilities as um
import datetime as dt
#from en import morePVs_output as opm
# Classes
class Timeseries():
"""DateTimeIndex & related parameters used throughout."""
def __init__(self,
load,
dst_lookup,
dst_region
):
self.timeseries = load.index
self.num_steps = len(self.timeseries)
self.interval = \
pd.to_timedelta(
pd.tseries.frequencies.to_offset(
pd.infer_freq(self.timeseries)
)).total_seconds()
self.num_days = int(self.num_steps * self.interval / (24*60*60))
# Set up weekdays and weekends
self.days = {
'day': self.timeseries[self.timeseries.weekday.isin([0, 1, 2, 3, 4])],
'end': self.timeseries[self.timeseries.weekday.isin([5, 6])],
'both': self.timeseries}
self.step_ts = pd.Series(self.timeseries)
# Set up summer and winter periods for daylight savings:
# NB This is negative because it is applied to tariff period start and end times,
# rather than to timestamp steps
# https://www.xkcd.com/1883/
self.dst_reverse_shift = pd.DateOffset(hours=-1)
self.seasonal_time = {'winter': self.timeseries[0:0],
'summer': self.timeseries[0:0]}
start_label = dst_region + '_start'
end_label = dst_region + '_end'
for year in self.timeseries.year.drop_duplicates().tolist():
dst_start = pd.Timestamp(dst_lookup.loc[year, start_label])
dst_end = pd.Timestamp(dst_lookup.loc[year, end_label])
tsy = self.timeseries[self.timeseries.year == year]
if dst_start < dst_end:
self.seasonal_time['winter'] = \
self.seasonal_time['winter'].join(tsy[(tsy >= pd.Timestamp('1/01/'+str(year) + ' 00:00:00'))
& (tsy < dst_start)], 'outer').join(
tsy[(tsy >= dst_end)
& (tsy < pd.Timestamp('31/12/'+str(year) + ' 23:59:59'))], 'outer')
self.seasonal_time['summer'] = \
self.seasonal_time['summer'].join(tsy[(tsy >= dst_start)
& (tsy < dst_end)], 'outer')
else:
self.seasonal_time['summer'] = \
self.seasonal_time['summer'].join(tsy[(tsy >= pd.Timestamp('1/01/'+str(year) + ' 00:00:00'))
& (tsy < dst_end)], 'outer').join(
tsy[(tsy >= dst_start)
& (tsy < pd.Timestamp('31/12/'+str(year) + ' 23:59:59'))], 'outer')
self.seasonal_time['winter'] = \
self.seasonal_time['winter'].join(tsy[(tsy >= dst_end)
& (tsy < dst_start)], 'outer')
pass
def steps_today(self, this_step):
"""Returns list of earlier timesteps with same day as today"""
today = self.step_ts[this_step].date()
steps_today = self.step_ts.loc[self.step_ts.dt.date == today].index.tolist()
steps_so_far_today = [s for s in steps_today if s <= this_step]
return steps_so_far_today
class TariffData():
"""Reference resource with time-specific price data for multiple tariffs"""
def __init__(
self,
tariff_lookup_path,
output_path,
parameter_list):
"""Initialise tariff look-up table."""
self.saved_tariff_path = os.path.join(output_path, 'saved_tariffs')
os.makedirs(self.saved_tariff_path, exist_ok=True)
# read csv of tariff parameters
self.lookup = pd.read_csv(tariff_lookup_path, index_col=[0])
self.all_tariffs = [t for t in self.lookup.index if t in parameter_list] # list of all tariff ids
# set up dfs for static import and export tariffs
self.static_imports = pd.DataFrame(index=ts.timeseries)
self.static_exports = pd.DataFrame(index=ts.timeseries)
self.static_solar_imports = pd.DataFrame(index=ts.timeseries)
self.tou_rate_list = {'name_1': ['rate_1', 'start_1', 'end_1', 'week_1'],
'name_2': ['rate_2', 'start_2', 'end_2', 'week_2'],
'name_3': ['rate_3', 'start_3', 'end_3', 'week_3'],
'name_4': ['rate_4', 'start_4', 'end_4', 'week_4'],
'name_5': ['rate_5', 'start_5', 'end_5', 'week_5'],
'name_6': ['rate_6', 'start_6', 'end_6', 'week_6'],
'name_7': ['rate_7', 'start_7', 'end_7', 'week_7'],
'name_8': ['rate_8', 'start_8', 'end_8', 'week_8'],
}
def generateStaticTariffs(self):
""" Creates time-based rates for all load-independent tariffs."""
for tid in self.all_tariffs:
# apply discounts to all tariffs:
# -------------------------------
# excluding FiTs and solar tariffs
if not np.isnan(self.lookup.loc[tid, 'discount']):
discount = self.lookup.loc[tid, 'discount']
rates = [c for c in self.lookup.columns if 'rate' in c and not 'fit' in c ]
named_rates = [c for c in rates if
not np.isnan(self.lookup.loc[tid, c]) and
c.replace('rate', 'name') in self.lookup.columns]
solar_rates = [c for c in named_rates if
'solar' in self.lookup.loc[tid, c.replace('rate', 'name')]
or 'Solar' in self.lookup.loc[tid, c.replace('rate', 'name')]]
discounted_rates = [c for c in rates if c not in solar_rates]
self.lookup.loc[tid, discounted_rates] = self.lookup.loc[tid, discounted_rates] * (100 - discount) / 100
# Allocate Flat rate and Zero Tariffs
# -----------------------------------:
self.static_imports[tid] = 0 # for zero rate tariff and as initialisation
self.static_solar_imports[tid] = 0 # for zero rate tariff and as initialisation
if 'Flat' in self.lookup.loc[tid, 'tariff_type']:
self.static_imports[tid] = self.lookup.loc[tid, 'flat_rate']
# Allocate TOU tariffs:
# --------------------
# including residual (non-solar) rates for Solar_Block_TOU
elif 'TOU' in self.lookup.loc[tid, 'tariff_type'] \
or 'Solar_Block' in self.lookup.loc[tid, 'tariff_type']\
or 'Solar_Inst' in self.lookup.loc[tid, 'tariff_type']:
# calculate timeseries TOU tariff based on up to 8 periods (n=1 to 8)
# volumetric tariff is rate_n, between times start_n and end_n
# week_n is 'day' for week, 'end' for weekend, 'both' for both
# NB times stored in csv in form 'h:mm'. Midnight saved as 23:59
for name, parameter in self.tou_rate_list.items():
if not pd.isnull(self.lookup.loc[tid, parameter[1]]): # parameter[1] is rate_
winter_days_affected = ts.days[self.lookup.loc[tid, parameter[3]]].join(ts.seasonal_time['winter'],'inner')
summer_days_affected = ts.days[self.lookup.loc[tid, parameter[3]]].join(ts.seasonal_time['summer'],'inner')
if pd.Timestamp(self.lookup.loc[tid, parameter[1]]).time() > pd.Timestamp(self.lookup.loc[tid, parameter[2]]).time():
# winter tariff period crosses midnight:
winter_period = \
(winter_days_affected[
(winter_days_affected.time >=pd.Timestamp(
self.lookup.loc[tid, parameter[1]]).time()) # [1] is start_)
& (winter_days_affected.time <= pd.Timestamp('23:59').time())]).append(
winter_days_affected[
(winter_days_affected.time>=pd.Timestamp('0:00').time())
& (winter_days_affected.time < pd.Timestamp(
self.lookup.loc[tid, parameter[2]]).time())]) # [2] is end_
else:
# tariff period doesn't cross midnight:
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(
self.lookup.loc[tid, parameter[1]]).time()) # start_)
& (winter_days_affected.time < pd.Timestamp(
self.lookup.loc[tid, parameter[2]]).time())] # end_
if (pd.Timestamp(self.lookup.loc[tid, parameter[1]])+ ts.dst_reverse_shift).time() > (pd.Timestamp(
self.lookup.loc[tid, parameter[2]]) + ts.dst_reverse_shift).time():
# summer tariff period crosses midnight:
summer_period = \
(summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(
self.lookup.loc[tid, parameter[1]]) + ts.dst_reverse_shift).time()) # [1] is start_)
& (summer_days_affected.time <= pd.Timestamp('23:59').time())]).append(
summer_days_affected[
(summer_days_affected.time >= pd.Timestamp('0:00').time())
& (summer_days_affected.time < (pd.Timestamp(
self.lookup.loc[tid, parameter[2]]) + ts.dst_reverse_shift).time())]) # [2] is end_
else:
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(
self.lookup.loc[tid, parameter[1]]) + ts.dst_reverse_shift).time()) # start_)
& (summer_days_affected.time < (pd.Timestamp(
self.lookup.loc[tid, parameter[2]]) + ts.dst_reverse_shift).time())] # end_
period = winter_period.join(summer_period,'outer').sort_values()
if not any(s in self.lookup.loc[tid, name] for s in ['solar', 'Solar']):
# Store solar rate and period separately
# For non-solar periods and rates only:
self.static_imports.loc[period, tid] = self.lookup.loc[tid, parameter[0]] # rate_
else: # Solar (local) periods and rates only:
self.static_solar_imports.loc[period, tid] = self.lookup.loc[tid, parameter[0]] # rate_
pass
# todo: create timeseries for TOU FiT Tariffs in the same way
# (currently only zero or flat rate FiTs)
if self.lookup.loc[tid, 'fit_type'] == 'Zero_Rate':
self.static_exports[tid] = 0
elif self.lookup.loc[tid, 'fit_type'] == 'Flat_Rate':
self.static_exports[tid] = self.lookup['fit_flat_rate'].fillna(0).loc[tid]
# Save tariffs as csvs
import_name = os.path.join(self.saved_tariff_path, 'static_import_tariffs.csv')
solar_name = os.path.join(self.saved_tariff_path, 'static_solar_import_tariffs.csv')
export_name = os.path.join(self.saved_tariff_path, 'static_export_tariffs.csv')
um.df_to_csv(self.static_imports, import_name)
um.df_to_csv(self.static_solar_imports, solar_name)
um.df_to_csv(self.static_exports, export_name)
class Tariff():
def __init__(self,
tariff_id,
scenario):
self.id = tariff_id
"""Create time-based rates for single specific tariff."""
if tariff_id not in scenario.tariff_lookup.index:
msg = '******Exception: Tariff '+ tariff_id+' is not in tariff_lookup.csv'
exit(msg)
# ------------------------------
# Export Tariff and Fixed Charge
# ------------------------------
self.export_tariff = (scenario.static_exports[tariff_id]).values # NB assumes FiTs are fixed
self.fixed_charge = scenario.tariff_lookup.loc[tariff_id, 'daily_fixed_rate']
# Add in Metering Service Charge for network and combined tariffs:
self.tariff_type = scenario.tariff_lookup.loc[tariff_id, 'tariff_type']
self.fixed_charge += \
scenario.tariff_lookup['metering_sc_non_cap'].fillna(0).loc[tariff_id]
# scenario.tariff_lookup['metering_sc_cap'].fillna(0).loc[tariff_id]
# NB Capital component of MSC does not apply as meter capital costs included in en_capex
# Dynamic (Block) Tariff
# ----------------------
if tariff_id in scenario.dynamic_list:
self.is_dynamic = True
self.block_rate_1 = scenario.tariff_lookup.loc[tariff_id, 'block_rate_1']
self.block_rate_2 = scenario.tariff_lookup.loc[tariff_id, 'block_rate_2']
self.block_rate_3 = scenario.tariff_lookup.loc[tariff_id, 'block_rate_3']
self.high_1 = scenario.tariff_lookup.loc[tariff_id, 'high_1']
self.high_2 = scenario.tariff_lookup.loc[tariff_id, 'high_2']
if self.high_1>0 and not self.block_rate_2>0 :
sys.exit('missing block tariff data')
if self.high_2>0 and not self.block_rate_3>0 :
sys.exit('missing block tariff data')
if self.tariff_type == 'Block_Quarterly':
self.block_billing_start = 0 # timestep to start cumulative energy calc
self.steps_in_block = 4380 # quarterly half-hour steps
else:
self.is_dynamic = False
# -------------
# Demand Tariff
# -------------
if tariff_id in scenario.demand_list:
self.is_demand = True
self.demand_type = scenario.tariff_lookup.loc[tariff_id, 'demand_type'] #kVA or kW
if 'demand_network_peak' in scenario.tariff_lookup.columns:
self.demand_network_peak = scenario.tariff_lookup.fillna(False).loc[tariff_id, 'demand_network_peak'] # if true use network peak, else use customer peak
else:
self.demand_network_peak = False
# Demand period is weekday or weekend between demand_start and demand_end
# with dst applied to start and end times during summer
# Assume that demand_end > demand_start
# (ie period does not cross midnight but can be 00:00 to 23:59)
winter_days_affected = ts.days[scenario.tariff_lookup.loc[tariff_id, 'demand_week']].join(ts.seasonal_time['winter'], 'inner')
summer_days_affected = ts.days[scenario.tariff_lookup.loc[tariff_id, 'demand_week']].join(ts.seasonal_time['summer'], 'inner')
if pd.Timestamp(scenario.tariff_lookup.loc[tariff_id, 'demand_start']).time() > \
pd.Timestamp(study.tariff_data.lookup.loc[tariff_id, 'demand_end']).time():
# winter period crosses midnight
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, 'demand_start']).time())
& (winter_days_affected.time < pd.Timestamp('23:59').time())].append(
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp('0:00').time())
& (winter_days_affected.time < pd.Timestamp(
study.tariff_data.lookup.loc[tariff_id, 'demand_end']).time())])
else:
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, 'demand_start']).time())
& (winter_days_affected.time < pd.Timestamp(
study.tariff_data.lookup.loc[tariff_id, 'demand_end']).time())]
if (pd.Timestamp(scenario.tariff_lookup.loc[tariff_id, 'demand_start'])+ ts.dst_reverse_shift).time() > \
(pd.Timestamp(study.tariff_data.lookup.loc[tariff_id, 'demand_end'])+ ts.dst_reverse_shift).time():
# summer period crosses midnight
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, 'demand_start']) + ts.dst_reverse_shift).time())
& (summer_days_affected.time < pd.Timestamp('23:59').time())].append(
summer_days_affected[
(summer_days_affected.time >= pd.Timestamp('0:00').time())
& (summer_days_affected.time < (pd.Timestamp(
study.tariff_data.lookup.loc[tariff_id, 'demand_end']) + ts.dst_reverse_shift).time())])
else:
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, 'demand_start']) + ts.dst_reverse_shift).time())
& (summer_days_affected.time < (pd.Timestamp(
study.tariff_data.lookup.loc[tariff_id, 'demand_end']) + ts.dst_reverse_shift).time())]
self.demand_period = winter_period.join(summer_period, 'outer').sort_values()
s = pd.Series(0, index=ts.timeseries)
s[self.demand_period] = 1
self.demand_period_array = np.array(s)
self.assumed_pf = 1.0 ## For kVA demand charges, What is good assumption for this????
self.demand_tariff = scenario.tariff_lookup.loc[tariff_id, 'demand_tariff']
else:
self.is_demand = False
# ------------------------------------------------------
# Solar tariff periods and rates (block or instantaneous)
# ------------------------------------------------------
if tariff_id in scenario.solar_inst_list:
self.is_solar_inst = True
else:
self.is_solar_inst = False
# # Get solar tariff data:
# SOLAR BLOCK TARIFF IMPLEMENTATION INCORRECT but code below also used for solar instantaneous
# # NB solar block tariff period is NOT adjusted for DST
if tariff_id in scenario.solar_list:
for name, parameter in study.tariff_data.tou_rate_list.items():
if not pd.isnull(study.tariff_data.lookup.loc[tariff_id, name]):
if any(s in study.tariff_data.lookup.loc[tariff_id, name] for s in ['solar','Solar']):
self.solar_rate_name = study.tariff_data.lookup.loc[tariff_id, name]
winter_days_affected = ts.days[scenario.tariff_lookup.loc[tariff_id, parameter[3]]].join( # [3] is week_
ts.seasonal_time['winter'], 'inner')
summer_days_affected = ts.days[scenario.tariff_lookup.loc[tariff_id, parameter[3]]].join( # [3] is week_
ts.seasonal_time['summer'], 'inner')
if pd.Timestamp(scenario.tariff_lookup.loc[tariff_id, parameter[1]]).time() > \
pd.Timestamp(scenario.tariff_lookup.loc[tariff_id, parameter[2]]).time():
# winter tariff period crosses midnight:
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, parameter[1]]).time()) # [1] is start
& (winter_days_affected.time < pd.Timestamp('23:59').time())].append(
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp('0:00').time())
& (winter_days_affected.time < pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, parameter[2]]).time())]) # [2] is end_
else:
# winter tariff period doesn't cross midnight:
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, parameter[1]]).time()) # [1] is start
& (winter_days_affected.time < pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, parameter[2]]).time())] # [2] is end_
if (pd.Timestamp(scenario.tariff_lookup.loc[tariff_id, parameter[1]]) ).time() > \
(pd.Timestamp(scenario.tariff_lookup.loc[tariff_id, parameter[2]]) ).time():
# summer tariff period crosses midnight:
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(
scenario.tariff_lookup.loc[
tariff_id, parameter[1]])).time()) # [1] is start
& (summer_days_affected.time < pd.Timestamp('23:59').time())].append( # [2] is end_
summer_days_affected[
(summer_days_affected.time >= pd.Timestamp('0:00').time()) # [1] is start
& (summer_days_affected.time < (pd.Timestamp(
scenario.tariff_lookup.loc[
tariff_id, parameter[2]]) ).time())]) # [2] is end_
else:
# summer tariff period doesn't cross midnight:
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, parameter[1]]) ).time()) # [1] is start
& (summer_days_affected.time < (pd.Timestamp(
scenario.tariff_lookup.loc[tariff_id, parameter[2]])).time())] # [2] is end_
# solar_period, solar_rate and solar_cp_allocation are for solar block tariffs:
# ie fixed quotas with dynamic load-dependent calculation
self.solar_period = winter_period.join(summer_period, 'outer').sort_values()
self.solar_rate = scenario.tariff_lookup.loc[tariff_id, parameter[0]] # rate_
self.solar_cp_allocation = scenario.tariff_lookup['solar_cp_allocation'].fillna(0).loc[tariff_id] # % of total solar generation allocated to cp
# Solar import tariff is static TOU tariff for instantaneous solar quota
self.solar_import_tariff = (scenario.static_solar_imports[tariff_id]).values
pass
else:
self.solar_import_tariff = np.zeros(ts.num_steps)
self.solar_rate_name = ''
# -----------------------------
# All volumetric import tariffs
# -----------------------------
# initialise to zero if dynamically calculated, e.g block tariff,
# otherwise copy from scenario
if tariff_id not in scenario.dynamic_list:
self.import_tariff = (scenario.static_imports[tariff_id]).values
else:
self.import_tariff = np.zeros(ts.num_steps)
class Battery():
# adapted from original script by Luke Marshall
def __init__(self,
scenario,
battery_id,
battery_strategy,
battery_capacity):
self.battery_id = battery_id
self.scenario = scenario
if not battery_id in study.battery_lookup.index:
logging.info("battery-id %s is not in battery_lookup.csv :", battery_id)
sys.exit("battery-id %s is not in battery_lookup.csv :", battery_id)
else:
# Load battery parameters from battery_lookup
# -------------------------------------------
self.capacity_kWh = study.battery_lookup.loc[battery_id, 'capacity_kWh']
self.max_charge_kW = study.battery_lookup.loc[battery_id, 'max_charge_kW']
self.efficiency_cycle = study.battery_lookup.loc[battery_id, 'efficiency_cycle']
if self.efficiency_cycle > 1.0:
logging.info('***************Exception!!! Battery Efficiency must be < 1.0*******')
print('***************Exception!!! Battery Efficiency must be < 1.0*******')
sys.exit("Battery Efficiency > 1")
self.maxDOD = study.battery_lookup.loc[battery_id, 'maxDOD']
self.maxSOC = study.battery_lookup.loc[battery_id, 'maxSOC']
if self.maxDOD + self.maxSOC <= 1.0:
logging.info('***************Exception!!! Battery maxSOC + maxDOD >= 1.0 *******')
print('***************Exception!!! Battery maxSOC + maxDOD <= 1.0*******')
sys.exit("Battery maxDOD + maxSOC <= 1")
self.battery_cost = study.battery_lookup.loc[battery_id, 'battery_cost']
self.battery_inv_cost = study.battery_lookup.loc[battery_id, 'battery_inv_cost']
if np.isnan(study.battery_lookup.loc[battery_id, 'life_bat_inv']):
self.life_bat_inv = scenario.a_term
else:
self.life_bat_inv = study.battery_lookup.loc[battery_id, 'life_bat_inv']
self.battery_life_years = study.battery_lookup.loc[battery_id,'battery_life_years']
self.max_cycles = study.battery_lookup.loc[battery_id, 'max_cycles']
# Scalable Battery
# ----------------
# details in `battery_lookup` are for 1kWh and this is scaled by capacity in `study_parameters`
if any(word in self.battery_id for word in ['scale', 'scalable']):
self.capacity_kWh = self.capacity_kWh * battery_capacity
self.max_charge_kW = self.max_charge_kW * battery_capacity
# Use default values if missing:
# ------------------------------
if pd.isnull(self.max_charge_kW):
self.max_charge_kW = self.capacity_kWh * 0.5
if pd.isnull(self.maxDOD):
self.maxDOD = 0.8
if pd.isnull(self.maxSOC):
self.maxSOC = 1.0
if pd.isnull(self.efficiency_cycle):
self.efficiency_cycle = 0.95
if pd.isnull(self.max_cycles):
self.max_cycles = 2000
if pd.isnull(self.battery_cost):
self.battery_cost =0.0
if pd.isnull(self.battery_inv_cost):
self.battery_inv_cost =0.0
# Define battery charging and discharging strategy
# ------------------------------------------------
# strategy that prioritises using PV to charg over onsite load:
if 'prioritise_battery' in study.battery_strategies.columns:
self.prioritise_battery = study.battery_strategies.fillna(False).loc[battery_strategy, 'prioritise_battery']
else:
self.prioritise_battery = False
# Strategy with different summer / winter charge and discharge periods (DST):
if 'seasonal_strategy' not in study.battery_strategies.columns:
seasonal_strategy = False
else:
seasonal_strategy = study.battery_strategies.fillna(False).loc[battery_strategy, 'seasonal_strategy']
# peak_demand strategy only discharges when net export >= peak_demand_percentage of annual peak load
if 'peak_demand_percentage' not in study.battery_strategies.columns:
self.peak_demand_percentage = 0
else:
self.peak_demand_percentage = study.battery_strategies.fillna(0).loc[battery_strategy, 'peak_demand_percentage']
# Set up restricted discharge period(s) and additional charge period(s)
# ---------------------------------------------------------------------
discharge_start1 = study.battery_strategies.loc[battery_strategy, 'discharge_start1']
discharge_end1 = study.battery_strategies.loc[battery_strategy, 'discharge_end1']
discharge_day1 = study.battery_strategies.loc[battery_strategy, 'discharge_day1']
discharge_start2 = study.battery_strategies.loc[battery_strategy, 'discharge_start2']
discharge_end2 = study.battery_strategies.loc[battery_strategy, 'discharge_end2']
discharge_day2 = study.battery_strategies.loc[battery_strategy, 'discharge_day2']
charge_start1 = study.battery_strategies.loc[battery_strategy, 'charge_start1']
charge_end1 = study.battery_strategies.loc[battery_strategy, 'charge_end1']
charge_day1 = study.battery_strategies.loc[battery_strategy, 'charge_day1']
charge_start2 = study.battery_strategies.loc[battery_strategy, 'charge_start2']
charge_end2 = study.battery_strategies.loc[battery_strategy, 'charge_end2']
charge_day2 = study.battery_strategies.loc[battery_strategy, 'charge_day2']
# Calculate discharge and grid-charge period(s):
# ----------------------------------------------
# If battery strategy is seasonal, add an hour to summer charge and discharge periods
if seasonal_strategy:
# If battery strategy is seasonal, add an hour to summer charge and discharge periods
# discharge_1
if pd.isnull(discharge_start1):
summer_period = pd.DatetimeIndex([])
winter_period = pd.DatetimeIndex([])
elif pd.Timestamp(discharge_start1) > pd.Timestamp(discharge_end1):
# winter period crosses midnight
winter_days_affected = ts.days[discharge_day1].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(discharge_start1).time()) & (
winter_days_affected.time <= pd.Timestamp('23:59').time())].append(
winter_days_affected[(winter_days_affected.time >= pd.Timestamp('0:00').time()) & (
winter_days_affected.time < pd.Timestamp(discharge_end1).time())]).sort_values()
# summer period crosses midnight
summer_days_affected = ts.days[discharge_day1].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(discharge_start1) + ts.dst_reverse_shift).time()) & (
summer_days_affected.time <= pd.Timestamp('23:59').time())].append(
summer_days_affected[(summer_days_affected.time >= pd.Timestamp('0:00').time()) & (
summer_days_affected.time < (pd.Timestamp(discharge_end1) + ts.dst_reverse_shift).time())]).sort_values()
else:
# winter_period doesn't cross midnight
winter_days_affected = ts.days[discharge_day1].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[(winter_days_affected.time >= pd.Timestamp(discharge_start1).time())
& (winter_days_affected.time < pd.Timestamp(discharge_end1).time())]
# summer_period doesn't cross midnight
summer_days_affected = ts.days[discharge_day1].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[(summer_days_affected.time >= (pd.Timestamp(discharge_start1) + ts.dst_reverse_shift).time())
& (summer_days_affected.time < (pd.Timestamp(discharge_end1) + ts.dst_reverse_shift).time())]
discharge_period1 = winter_period.join(summer_period, 'outer').sort_values()
# discharge_2
if pd.isnull(discharge_start2):
summer_period = pd.DatetimeIndex([])
winter_period = pd.DatetimeIndex([])
elif pd.Timestamp(discharge_start2) > pd.Timestamp(discharge_end2):
# winter period crosses midnight
winter_days_affected = ts.days[discharge_day2].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(discharge_start2).time()) & (
winter_days_affected.time <= pd.Timestamp('23:59').time())].append(
winter_days_affected[(winter_days_affected.time >= pd.Timestamp('0:00').time()) & (
winter_days_affected.time < pd.Timestamp(discharge_end2).time())]).sort_values()
# summer period crosses midnight
summer_days_affected = ts.days[discharge_day2].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(discharge_start2) + ts.dst_reverse_shift).time()) & (
summer_days_affected.time <= pd.Timestamp('23:59').time())].append(
summer_days_affected[(summer_days_affected.time >= pd.Timestamp('0:00').time()) & (
summer_days_affected.time < (pd.Timestamp(discharge_end2) + ts.dst_reverse_shift).time())]).sort_values()
else:
# winter_period doesn't cross midnight
winter_days_affected = ts.days[discharge_day2].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[(winter_days_affected.time >= pd.Timestamp(discharge_start2).time())
& (winter_days_affected.time < pd.Timestamp(discharge_end2).time())]
# summer_period doesn't cross midnight
summer_days_affected = ts.days[discharge_day2].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[(summer_days_affected.time >= (pd.Timestamp(discharge_start2) + ts.dst_reverse_shift).time())
& (summer_days_affected.time < (pd.Timestamp(discharge_end2) + ts.dst_reverse_shift).time())]
discharge_period2 = winter_period.join(summer_period, 'outer').sort_values()
# charge_1
if pd.isnull(charge_start1):
summer_period = pd.DatetimeIndex([])
winter_period = pd.DatetimeIndex([])
elif pd.Timestamp(charge_start1) > pd.Timestamp(charge_end1):
# winter period crosses midnight
winter_days_affected = ts.days[charge_day1].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(charge_start1).time()) & (
winter_days_affected.time <= pd.Timestamp('23:59').time())].append(
winter_days_affected[(winter_days_affected.time >= pd.Timestamp('0:00').time()) & (
winter_days_affected.time < pd.Timestamp(charge_end1).time())]).sort_values()
# summer period crosses midnight
summer_days_affected = ts.days[charge_day1].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(charge_start1) + ts.dst_reverse_shift).time()) & (
summer_days_affected.time <= pd.Timestamp('23:59').time())].append(
summer_days_affected[(summer_days_affected.time >= pd.Timestamp('0:00').time()) & (
summer_days_affected.time < (pd.Timestamp(charge_end1) + ts.dst_reverse_shift).time())]).sort_values()
else:
# winter_period doesn't cross midnight
winter_days_affected = ts.days[charge_day1].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[(winter_days_affected.time >= pd.Timestamp(charge_start1).time())
& (winter_days_affected.time < pd.Timestamp(charge_end1).time())]
# summer_period doesn't cross midnight
summer_days_affected = ts.days[charge_day1].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[(summer_days_affected.time >= (pd.Timestamp(charge_start1) + ts.dst_reverse_shift).time())
& (summer_days_affected.time < (pd.Timestamp(charge_end1) + ts.dst_reverse_shift).time())]
charge_period1 = winter_period.join(summer_period, 'outer').sort_values()
# charge_2
if pd.isnull(charge_start2):
summer_period = pd.DatetimeIndex([])
winter_period = pd.DatetimeIndex([])
elif pd.Timestamp(charge_start2) > pd.Timestamp(charge_end2):
# winter period crosses midnight
winter_days_affected = ts.days[charge_day2].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[
(winter_days_affected.time >= pd.Timestamp(charge_start2).time()) & (
winter_days_affected.time <= pd.Timestamp('23:59').time())].append(
winter_days_affected[(winter_days_affected.time >= pd.Timestamp('0:00').time()) & (
winter_days_affected.time < pd.Timestamp(charge_end2).time())]).sort_values()
# summer period crosses midnight
summer_days_affected = ts.days[charge_day2].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[
(summer_days_affected.time >= (pd.Timestamp(charge_start2) + ts.dst_reverse_shift).time()) & (
summer_days_affected.time <= pd.Timestamp('23:59').time())].append(
summer_days_affected[(summer_days_affected.time >= pd.Timestamp('0:00').time()) & (
summer_days_affected.time < (pd.Timestamp(charge_end2) + ts.dst_reverse_shift).time())]).sort_values()
else:
# winter_period doesn't cross midnight
winter_days_affected = ts.days[charge_day2].join(
ts.seasonal_time['winter'], 'inner')
winter_period = \
winter_days_affected[(winter_days_affected.time >= pd.Timestamp(charge_start2).time())
& (winter_days_affected.time < pd.Timestamp(charge_end2).time())]
# summer_period doesn't cross midnight
summer_days_affected = ts.days[charge_day2].join(
ts.seasonal_time['summer'], 'inner')
summer_period = \
summer_days_affected[(summer_days_affected.time >= (pd.Timestamp(charge_start2) + ts.dst_reverse_shift).time())
& (summer_days_affected.time < (pd.Timestamp(charge_end2) + ts.dst_reverse_shift).time())]
charge_period2 = winter_period.join(summer_period, 'outer').sort_values()
else:
# If non-seasonal battery , use same periods for whole year:
# discharge_1
if pd.isnull(discharge_start1):
discharge_period1 = pd.DatetimeIndex([])
elif pd.Timestamp(discharge_start1) > pd.Timestamp(discharge_end1):
discharge_period1 = (ts.days[discharge_day1][(ts.days[discharge_day1].time >= pd.Timestamp(discharge_start1).time()) & (
ts.days[discharge_day1].time <= pd.Timestamp('23:59').time())].append(
ts.days[discharge_day1][(ts.days[discharge_day1].time >= pd.Timestamp('0:00').time()) & (
ts.days[discharge_day1].time < pd.Timestamp(discharge_end1).time())])).sort_values()
else:
discharge_period1 = \
ts.days[discharge_day1][(ts.days[discharge_day1].time >= pd.Timestamp(discharge_start1).time())
& (ts.days[discharge_day1].time < pd.Timestamp(discharge_end1).time())]
# discharge_2
if pd.isnull(discharge_start2):
discharge_period2 = pd.DatetimeIndex([])
elif pd.Timestamp(discharge_start2) > pd.Timestamp(discharge_end2):
discharge_period2 = (
ts.days[discharge_day2][(ts.days[discharge_day2].time >= pd.Timestamp(discharge_start2).time()) & (
ts.days[discharge_day2].time <= pd.Timestamp('23:59').time())].append(
ts.days[discharge_day2][(ts.days[discharge_day2].time >= pd.Timestamp('0:00').time()) & (
ts.days[discharge_day2].time < pd.Timestamp(discharge_end2).time())])).sort_values()
else:
discharge_period2 = \
ts.days[discharge_day2][(ts.days[discharge_day2].time >= pd.Timestamp(discharge_start2).time())
& (ts.days[discharge_day2].time < pd.Timestamp(discharge_end2).time())]
# charge_1
if pd.isnull(charge_start1):
charge_period1 = pd.DatetimeIndex([])
elif pd.Timestamp(charge_start1) > pd.Timestamp(charge_end1):
charge_period1 = (ts.days[charge_day1][(ts.days[charge_day1].time >= pd.Timestamp(charge_start1).time()) & (
ts.days[charge_day1].time <= pd.Timestamp('23:59').time())].append(
ts.days[charge_day1][(ts.days[charge_day1].time >= pd.Timestamp('0:00').time()) & (
ts.days[charge_day1].time < pd.Timestamp(charge_end1).time())])).sort_values()
else:
charge_period1 = \
ts.days[charge_day1][(ts.days[charge_day1].time >= pd.Timestamp(charge_start1).time())
& (ts.days[charge_day1].time < pd.Timestamp(charge_end1).time())]
# charge_2
if pd.isnull(charge_start2):
charge_period2 = pd.DatetimeIndex([])
elif pd.Timestamp(charge_start2) > pd.Timestamp(charge_end2):
charge_period2 = (
ts.days[charge_day2][(ts.days[charge_day2].time >= pd.Timestamp(charge_start2).time()) & (
ts.days[charge_day2].time <= pd.Timestamp('23:59').time())].append(
ts.days[charge_day2][(ts.days[charge_day2].time >= pd.Timestamp('0:00').time()) & (
ts.days[charge_day2].time < pd.Timestamp(charge_end2).time())])).sort_values()
else:
charge_period2 = \
ts.days[charge_day2][(ts.days[charge_day2].time >= pd.Timestamp(charge_start2).time())
& (ts.days[charge_day2].time < pd.Timestamp(charge_end2).time())]
# Combine multiple charge and discharge periods:
# ---------------------------------------------
self.discharge_period = discharge_period1.join(discharge_period2, how='outer')
if len(self.discharge_period) == 0:
self.discharge_period = ts.timeseries # if no discharge period set, discharge any time
self.charge_period = charge_period1.join(charge_period2, how='outer')
# discharge period as array for calculating peak demand
# -----------------------------------------------------
s = pd.Series(0, index=ts.timeseries)
s[self.discharge_period] = 1
self.discharge_period_array = np.array(s)
# Calculate charge and discharge rates
# ------------------------------------
self.charge_rate_kW = self.max_charge_kW
if 'charge_c_rate' in study.battery_strategies.columns:
if not pd.isnull(study.battery_strategies.loc[battery_strategy, 'charge_c_rate']):
self.charge_rate_kW = min(self.max_charge_kW,study.battery_strategies.loc[
battery_strategy, 'charge_c_rate']* self.capacity_kWh)
self.discharge_rate_kW = self.max_charge_kW
if 'discharge_c_rate' in study.battery_strategies.columns:
if not pd.isnull(study.battery_strategies.loc[battery_strategy, 'discharge_c_rate']):
self.discharge_rate_kW = min(self.max_charge_kW, study.battery_strategies.loc[
battery_strategy, 'discharge_c_rate'] * self.capacity_kWh)
# Initialise remaining battery variables
# --------------------------------------
self.initial_SOC = 0.5 # BATTERY STARTS AT 50% SOC
self.charge_level_kWh = self.capacity_kWh * self.initial_SOC
self.number_cycles = 0
self.SOH = 100 # State of health
# Max charge / discharge rate is accepted / delivered energy
self.max_timestep_delivered = self.discharge_rate_kW * ts.interval / 3600
self.max_timestep_accepted = self.charge_rate_kW * ts.interval / 3600
self.cumulative_losses = 0
self.net_discharge = np.zeros(ts.num_steps) # this is +ve for discharge, -ve for charge. Used for SC and SS calcs
# Assume losses are all in charging part of cycle:
# This works if energy capacity is actually "useful discharge capacity"
# see discussion here: https://electronics.stackexchange.com/questions/379778/how-to-estimate-li-ion-battery-soc/379793?noredirect=1#comment921865_379793
self.efficiency_charge = self.efficiency_cycle
self.efficiency_discharge = 1
# Initialise SOC log
# ------------------
self.SOC_log = np.zeros(ts.num_steps)
def reset(self,
annual_load): # annual road as np.array
self.charge_level_kWh = self.capacity_kWh * self.initial_SOC
self.number_cycles = 0
self.SOH = 100
self.SOC_log = np.zeros(ts.num_steps)
self.cumulative_losses = 0
self.net_discharge = np.zeros(ts.num_steps)
annual_peak_load = np.multiply(annual_load, self.discharge_period_array).max()
self.peak_demand_threshold = annual_peak_load * self.peak_demand_percentage / 100
def charge(self, desired_charge):
amount_to_charge = min((self.capacity_kWh * self.maxSOC - self.charge_level_kWh),
self.max_timestep_accepted * self.efficiency_charge,
desired_charge * self.efficiency_charge)
self.charge_level_kWh += amount_to_charge
energy_accepted = amount_to_charge / self.efficiency_charge
if amount_to_charge > 0:
self.number_cycles += 0.5 * amount_to_charge / (self.capacity_kWh * (self.maxSOC - 1 + self.maxDOD))
self.net_discharge_for_ts = - energy_accepted
self.cumulative_losses += energy_accepted * (1 - self.efficiency_charge)
return desired_charge - energy_accepted # returns unstored portion of energy
def discharge(self, desired_discharge):
if self.charge_level_kWh > self.capacity_kWh * (1 - self.maxDOD):
amount_to_discharge = min(desired_discharge / self.efficiency_discharge,
(self.charge_level_kWh - self.capacity_kWh * (1 - self.maxDOD)),
self.max_timestep_delivered / self.efficiency_discharge)
self.charge_level_kWh -= amount_to_discharge
self.number_cycles += 0.5 * amount_to_discharge / (self.capacity_kWh * (self.maxSOC - 1 + self.maxDOD))
else:
amount_to_discharge = 0
energy_delivered = amount_to_discharge * self.efficiency_discharge # Unneccessary step if losses are all in charge cycle
self.cumulative_losses += amount_to_discharge * (1 - self.efficiency_discharge)
self.net_discharge_for_ts = energy_delivered
return energy_delivered # returns delivered energy
def dispatch(self, generation, load, step):
"""Determines charge and discharge of battery at timestep."""
self.net_discharge_for_ts = 0.0 # reset
# -------------------------------
# Make battery control decisions:
# -------------------------------
if not self.prioritise_battery:
# A) Strategy to maximise SC :
# ---------------------------
# 1) meet onsite load first:
# --------------------------
available_kWh = generation - load
# 2) Use excess PV to charge
# --------------------------
if available_kWh > 0:
available_kWh = \
self.charge(available_kWh)
# 3) Discharge if needed to meet load, within discharge period
# ------------------------------------------------------------
if available_kWh < -self.peak_demand_threshold and ts.timeseries[step] in self.discharge_period:
available_kWh += \
self.discharge(-available_kWh)
# 4) Charge from grid in additional charge period:
# ------------------------------------------------
if available_kWh <= 0 and ts.timeseries[step] in self.charge_period:
available_kWh -= (self.max_timestep_accepted -
self.charge(self.max_timestep_accepted))
else:
# B) Strategy to reduce peak demand (apply PV to charge first)
# -----------------------------------------------------------
# Within discharge period:
if ts.timeseries[step] in self.discharge_period:
# 1) Apply PV to load
# -------------------
available_kWh = generation - load
# 2) Discharge battery to meet residual load
# ------------------------------------------
if available_kWh < -self.peak_demand_threshold:
available_kWh += self.discharge(-available_kWh)
# 3) or use excess PV to charge battery:
# --------------------------------------
elif available_kWh > 0 :
available_kWh = \
self.charge(available_kWh)
else: # outside discharge period
# 1) Use PV to charge battery:
# ----------------------------
if generation > 0:
generation = self.charge(generation)
# 2) use excess PV to meet load
available_kWh = generation - load
# If in grid-charging period, charge from grid
if available_kWh <=0 and ts.timeseries[step] in self.charge_period:
available_kWh -= (self.max_timestep_accepted -
self.charge(self.max_timestep_accepted))
# For monitoring purposes, log battery SOC:
# -----------------------------------------
if self.capacity_kWh > 0:
self.SOC_log[step] = self.charge_level_kWh / self.capacity_kWh * 100
self.SOH = 100 - (self.number_cycles / self.max_cycles) * 100
# For SS and SC calcs, log net discharge:
# ---------------------------------------
self.net_discharge[step] = self.net_discharge_for_ts
return available_kWh
def calcBatCapex(self):
"""Calculates capex for battery"""
# ---------------------------------------
# 1) Use 'battery_capex_per_kWh' and scale
# ---------------------------------------
# If 'battery_capex_per_kWh' is in the parameter file, it overrides capex info in battery_lookup
if self.scenario.battery_capex_per_kWh > 0:
self.battery_cost = self.scenario.battery_capex_per_kWh * self.capacity_kWh
bat_inv_capex = 0
# --------------------------------------------
# 2) Use 'battery_cost' and 'battery_inv_cost'
# --------------------------------------------
else:
# Use capex parameters in battery_lookup.csv :
# Battery capex includes inverter replacement if amortization period > inverter lifetime
if self.life_bat_inv < self.scenario.a_term:
bat_inv_capex = int((float(self.scenario.a_term) / self.life_bat_inv)-0.001) * self.battery_inv_cost
else:
bat_inv_capex = self.battery_inv_cost
# ---------------------------------------------------------------------
# For 1) or 2) replace battery (or combined battery-inverter) as needed:
# ----------------------------------------------------------------------
# Battery capex includes battery replacement if it exceeds max_cycles
# or battery_life_years (whichever is sooner) within amortization period
if np.isnan(self.max_cycles):
self.max_cycles = 100000
if np.isnan(self.battery_life_years):
self.battery_life_years = 1000
if self.battery_life_years == 0:
self.battery_life_years = 1000
if self.number_cycles > 0:
cycle_life = self.max_cycles / self.number_cycles
else:
cycle_life = 1000 # years to reach cycle lifetime
actual_lifetime = np.min([cycle_life, self.battery_life_years])
if float(self.scenario.a_term) > actual_lifetime:
number_batteries = int(float(self.scenario.a_term)/actual_lifetime - 0.01) + 1
bat_capex = number_batteries * self.battery_cost
else:
bat_capex = self.battery_cost
tot_capex = bat_inv_capex + bat_capex
return tot_capex
class Customer():
"""Can be resident, strata body, or ENO representing aggregation of residents."""
def __init__(self,
name, # string
network = False):
self.name = name
if network:
self.network = network
else:
self.network = False
self.tariff_data = study.tariff_data
self.en_capex_repayment = 0
self.en_opex = 0
self.bat_capex_repayment = 0
self.exports = np.zeros(ts.num_steps)
self.imports = np.zeros(ts.num_steps)
# self.local_exports = np.zeros(ts.num_steps) # not used, available for local trading
self.solar_allocation = np.zeros(ts.num_steps) # used for allocation of local generation
self.local_consumption = np.zeros(ts.num_steps)
self.flows = np.zeros(ts.num_steps)
self.cashflows = np.zeros(ts.num_steps)
self.import_charge = np.zeros(ts.num_steps)
self.local_solar_bill = 0
self.total_payment =0
def initialiseCustomerLoad(self,
customer_load): # as 1-d np.array
"""Set customer load, energy flows and cashflows to zero."""
self.load = customer_load
self.coincidence = np.zeros(ts.num_steps) # used for calculating self-consumption and self sufficiency
def initialiseCustomerTariff(self,
customer_tariff_id, # string
scenario):
self.tariff_id = customer_tariff_id
self.scenario = scenario
self.tariff = Tariff(tariff_id=self.tariff_id,
scenario=scenario)
def initialiseCustomerPV(self, pv_generation): # 1-D array
self.generation = pv_generation
def calcStaticEnergy(self):
"""Calculate Customer import
s and exports for whole time period"""
self.flows = self.generation - self.load
self.exports = self.flows.clip(0)
self.imports = (-1 * self.flows).clip(0)
self.local_consumption = np.minimum(self.generation, self.load)
def calcDynamicEnergy(self, step):
"""Calculate Customer imports and exports for single timestep"""
# Used for scenarios with batteries
# -------------------------------------------------------------------------------
# Calculate energy flow without battery, then modify by calling battery.dispatch:
# -------------------------------------------------------------------------------
self.flows[step] = self.generation[step] - self.load[step]
if self.has_battery:
self.flows[step] = self.battery.dispatch(generation = self.generation[step],
load=self.load[step],
step=step)
else:
self.flows[step] = self.generation[step] - self.load[step]
self.exports[step] = self.flows[step].clip(0)
self.imports[step] = (-1 * self.flows[step]).clip(0)