-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cond_ldm.py
372 lines (325 loc) · 16.7 KB
/
train_cond_ldm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import yaml
import argparse
import math
import torch
from lib import loaders
import torch.nn as nn
from tqdm.auto import tqdm
from denoising_diffusion_pytorch.ema import EMA
from accelerate import Accelerator, DistributedDataParallelKwargs
from torch.utils.tensorboard import SummaryWriter
from denoising_diffusion_pytorch.utils import *
import torchvision as tv
from denoising_diffusion_pytorch.encoder_decoder import AutoencoderKL
# from denoising_diffusion_pytorch.transmodel import TransModel
from denoising_diffusion_pytorch.data import *
from torch.utils.data import DataLoader
from multiprocessing import cpu_count
from fvcore.common.config import CfgNode
def parse_args():
parser = argparse.ArgumentParser(description="training vae configure")
parser.add_argument("--cfg", help="experiment configure file name", type=str, required=True)
# parser.add_argument("")
args = parser.parse_args()
args.cfg = load_conf(args.cfg)
return args
def load_conf(config_file, conf={}):
with open(config_file) as f:
exp_conf = yaml.load(f, Loader=yaml.FullLoader)
for k, v in exp_conf.items():
conf[k] = v
return conf
def main(args):
cfg = CfgNode(args.cfg)
# logger = create_logger(root_dir=cfg['out_path'])
# writer = SummaryWriter(cfg['out_path'])
model_cfg = cfg.model
first_stage_cfg = model_cfg.first_stage
first_stage_model = AutoencoderKL(
ddconfig=first_stage_cfg.ddconfig,
lossconfig=first_stage_cfg.lossconfig,
embed_dim=first_stage_cfg.embed_dim,
ckpt_path=first_stage_cfg.ckpt_path,
)
if model_cfg.model_name == 'cond_unet':
from denoising_diffusion_pytorch.mask_cond_unet import Unet
unet_cfg = model_cfg.unet
unet = Unet(dim=unet_cfg.dim,
channels=unet_cfg.channels,
dim_mults=unet_cfg.dim_mults,
learned_variance=unet_cfg.get('learned_variance', False),
out_mul=unet_cfg.out_mul,
cond_in_dim=unet_cfg.cond_in_dim,
cond_dim=unet_cfg.cond_dim,
cond_dim_mults=unet_cfg.cond_dim_mults,
window_sizes1=unet_cfg.window_sizes1,
window_sizes2=unet_cfg.window_sizes2,
fourier_scale=unet_cfg.fourier_scale,
cfg=unet_cfg,
)
else:
raise NotImplementedError
if model_cfg.model_type == 'const_sde':
from denoising_diffusion_pytorch.ddm_const_sde import LatentDiffusion
else:
raise NotImplementedError(f'{model_cfg.model_type} is not surportted !')
ldm = LatentDiffusion(
model=unet,
auto_encoder=first_stage_model,
train_sample=model_cfg.train_sample,
image_size=model_cfg.image_size,
timesteps=model_cfg.timesteps,
sampling_timesteps=model_cfg.sampling_timesteps,
loss_type=model_cfg.loss_type,
objective=model_cfg.objective,
scale_factor=model_cfg.scale_factor,
scale_by_std=model_cfg.scale_by_std,
scale_by_softsign=model_cfg.scale_by_softsign,
default_scale=model_cfg.get('default_scale', False),
input_keys=model_cfg.input_keys,
ckpt_path=model_cfg.ckpt_path,
ignore_keys=model_cfg.ignore_keys,
only_model=model_cfg.only_model,
start_dist=model_cfg.start_dist,
perceptual_weight=model_cfg.perceptual_weight,
use_l1=model_cfg.get('use_l1', True),
cfg=model_cfg,
)
data_cfg = cfg.data
if data_cfg['name'] == 'edge':
dataset = EdgeDataset(
data_root=data_cfg.img_folder,
image_size=model_cfg.image_size,
augment_horizontal_flip=data_cfg.augment_horizontal_flip,
cfg=data_cfg
)
elif data_cfg['name'] == 'radio':
dataset = loaders.RadioUNet_c(phase="train")
else:
raise NotImplementedError
dl = DataLoader(dataset, batch_size=data_cfg.batch_size, shuffle=True, pin_memory=True,
num_workers=data_cfg.get('num_workers', 2))
train_cfg = cfg.trainer
trainer = Trainer(
ldm, dl, train_batch_size=data_cfg.batch_size,
gradient_accumulate_every=train_cfg.gradient_accumulate_every,
train_lr=train_cfg.lr, train_num_steps=train_cfg.train_num_steps,
save_and_sample_every=train_cfg.save_and_sample_every, results_folder=train_cfg.results_folder,
amp=train_cfg.amp, fp16=train_cfg.fp16, log_freq=train_cfg.log_freq, cfg=cfg,
resume_milestone=train_cfg.resume_milestone,
train_wd=train_cfg.get('weight_decay', 1e-4)
)
if train_cfg.test_before:
if trainer.accelerator.is_main_process:
with torch.no_grad():
for datatmp in dl:
break
if isinstance(trainer.model, nn.parallel.DistributedDataParallel):
all_images, *_ = trainer.model.module.sample(batch_size=datatmp['cond'].shape[0],
cond=datatmp['cond'].to(trainer.accelerator.device),
mask=datatmp['ori_mask'].to(trainer.accelerator.device) if 'ori_mask' in datatmp else None)
elif isinstance(trainer.model, nn.Module):
all_images, *_ = trainer.model.sample(batch_size=datatmp['cond'].shape[0],
cond=datatmp['cond'].to(trainer.accelerator.device),
mask=datatmp['ori_mask'].to(trainer.accelerator.device) if 'ori_mask' in datatmp else None)
# all_images = torch.cat(all_images_list, dim = 0)
nrow = 2 ** math.floor(math.log2(math.sqrt(data_cfg.batch_size)))
tv.utils.save_image(all_images, str(trainer.results_folder / f'sample-{train_cfg.resume_milestone}_{model_cfg.sampling_timesteps}.png'), nrow=nrow)
torch.cuda.empty_cache()
trainer.train()
pass
class Trainer(object):
def __init__(
self,
model,
data_loader,
train_batch_size=16,
gradient_accumulate_every=1,
train_lr=1e-4,
train_wd=1e-4,
train_num_steps=100000,
save_and_sample_every=1000,
num_samples=25,
results_folder='./results',
amp=False,
fp16=False,
split_batches=True,
log_freq=20,
resume_milestone=0,
cfg={},
):
super().__init__()
ddp_handler = DistributedDataParallelKwargs(find_unused_parameters=True)
self.accelerator = Accelerator(
split_batches=split_batches,
mixed_precision='fp16' if fp16 else 'no',
kwargs_handlers=[ddp_handler],
)
self.enable_resume = cfg.trainer.get('enable_resume', False)
self.accelerator.native_amp = amp
self.model = model
assert has_int_squareroot(num_samples), 'number of samples must have an integer square root'
self.num_samples = num_samples
self.save_and_sample_every = save_and_sample_every
self.batch_size = train_batch_size
self.gradient_accumulate_every = gradient_accumulate_every
self.log_freq = log_freq
self.train_num_steps = train_num_steps
self.image_size = model.image_size
# dataset and dataloader
# self.ds = Dataset(folder, mask_folder, self.image_size, augment_horizontal_flip = augment_horizontal_flip, convert_image_to = convert_image_to)
# dl = DataLoader(self.ds, batch_size = train_batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count())
dl = self.accelerator.prepare(data_loader)
self.dl = cycle(dl)
# optimizer
self.opt = torch.optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()),
lr=train_lr, weight_decay=train_wd)
lr_lambda = lambda iter: max((1 - iter / train_num_steps) ** 0.96, cfg.trainer.min_lr)
self.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(self.opt, lr_lambda=lr_lambda)
# for logging results in a folder periodically
if self.accelerator.is_main_process:
self.results_folder = Path(results_folder)
self.results_folder.mkdir(exist_ok=True, parents=True)
self.ema = EMA(model, ema_model=None, beta=0.999,
update_after_step=cfg.trainer.ema_update_after_step,
update_every=cfg.trainer.ema_update_every)
# step counter state
self.step = 0
# prepare model, dataloader, optimizer with accelerator
self.model, self.opt, self.lr_scheduler = \
self.accelerator.prepare(self.model, self.opt, self.lr_scheduler)
self.logger = create_logger(root_dir=results_folder)
self.logger.info(cfg)
self.writer = SummaryWriter(results_folder)
self.results_folder = Path(results_folder)
resume_file = str(self.results_folder / f'model-{resume_milestone}.pt')
if os.path.isfile(resume_file):
self.load(resume_milestone)
def save(self, milestone):
if not self.accelerator.is_local_main_process:
return
if self.enable_resume:
data = {
'step': self.step,
'model': self.accelerator.get_state_dict(self.model),
'opt': self.opt.state_dict(),
'lr_scheduler': self.lr_scheduler.state_dict(),
'ema': self.ema.state_dict(),
'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None
}
# data_only_model = {'ema': self.ema.state_dict(),}
torch.save(data, str(self.results_folder / f'model-{milestone}.pt'))
else:
data = {
'model': self.accelerator.get_state_dict(self.model),
}
torch.save(data, str(self.results_folder / f'model-{milestone}.pt'))
def load(self, milestone):
assert self.enable_resume; 'resume is available only if self.enable_resume is True !'
accelerator = self.accelerator
device = accelerator.device
data = torch.load(str(self.results_folder / f'model-{milestone}.pt'),
map_location=lambda storage, loc: storage)
model = self.accelerator.unwrap_model(self.model)
model.load_state_dict(data['model'])
if 'scale_factor' in data['model']:
model.scale_factor = data['model']['scale_factor']
self.step = data['step']
self.opt.load_state_dict(data['opt'])
self.lr_scheduler.load_state_dict(data['lr_scheduler'])
if self.accelerator.is_main_process:
self.ema.load_state_dict(data['ema'])
if exists(self.accelerator.scaler) and exists(data['scaler']):
self.accelerator.scaler.load_state_dict(data['scaler'])
def train(self):
accelerator = self.accelerator
device = accelerator.device
with tqdm(initial=self.step, total=self.train_num_steps, disable=not accelerator.is_main_process) as pbar:
while self.step < self.train_num_steps:
total_loss = 0.
total_loss_dict = {'loss_simple': 0., 'loss_vlb': 0., 'total_loss': 0., 'lr': 5e-5}
for ga_ind in range(self.gradient_accumulate_every):
# data = next(self.dl).to(device)
batch = next(self.dl)
for key in batch.keys():
if isinstance(batch[key], torch.Tensor):
batch[key].to(device)
if self.step == 0 and ga_ind == 0:
if isinstance(self.model, nn.parallel.DistributedDataParallel):
self.model.module.on_train_batch_start(batch)
else:
self.model.on_train_batch_start(batch)
with self.accelerator.autocast():
if isinstance(self.model, nn.parallel.DistributedDataParallel):
loss, log_dict = self.model.module.training_step(batch)
else:
loss, log_dict = self.model.training_step(batch)
loss = loss / self.gradient_accumulate_every
total_loss += loss.item()
loss_simple = log_dict["train/loss_simple"].item() / self.gradient_accumulate_every
loss_vlb = log_dict["train/loss_vlb"].item() / self.gradient_accumulate_every
total_loss_dict['loss_simple'] += loss_simple
total_loss_dict['loss_vlb'] += loss_vlb
total_loss_dict['total_loss'] += total_loss
# total_loss_dict['s_fact'] = self.model.module.scale_factor
# total_loss_dict['s_bias'] = self.model.module.scale_bias
self.accelerator.backward(loss)
total_loss_dict['lr'] = self.opt.param_groups[0]['lr']
describtions = dict2str(total_loss_dict)
describtions = "[Train Step] {}/{}: ".format(self.step, self.train_num_steps) + describtions
if accelerator.is_main_process:
pbar.desc = describtions
if self.step % self.log_freq == 0:
if accelerator.is_main_process:
# pbar.desc = describtions
# self.logger.info(pbar.__str__())
self.logger.info(describtions)
accelerator.clip_grad_norm_(filter(lambda p: p.requires_grad, self.model.parameters()), 1.0)
# pbar.set_description(f'loss: {total_loss:.4f}')
accelerator.wait_for_everyone()
self.opt.step()
self.opt.zero_grad()
self.lr_scheduler.step()
if accelerator.is_main_process:
self.writer.add_scalar('Learning_Rate', self.opt.param_groups[0]['lr'], self.step)
self.writer.add_scalar('total_loss', total_loss, self.step)
self.writer.add_scalar('loss_simple', loss_simple, self.step)
self.writer.add_scalar('loss_vlb', loss_vlb, self.step)
accelerator.wait_for_everyone()
self.step += 1
# if self.step >= int(self.train_num_steps * 0.2):
if accelerator.is_main_process:
self.ema.to(device)
self.ema.update()
if self.step != 0 and self.step % self.save_and_sample_every == 0:
milestone = self.step // self.save_and_sample_every
self.save(milestone)
self.model.eval()
# self.ema.ema_model.eval()
with torch.no_grad():
# img = self.dl
# batches = num_to_groups(self.num_samples, self.batch_size)
# all_images_list = list(map(lambda n: self.model.module.validate_img(ns=self.batch_size), batches))
if isinstance(self.model, nn.parallel.DistributedDataParallel):
# all_images = self.model.module.sample(batch_size=self.batch_size)
all_images, *_ = self.model.module.sample(batch_size=batch['cond'].shape[0],
cond=batch['cond'],
mask=batch['ori_mask'] if 'ori_mask' in batch else None)
elif isinstance(self.model, nn.Module):
# all_images = self.model.sample(batch_size=self.batch_size)
all_images, *_ = self.model.sample(batch_size=batch['cond'].shape[0],
cond=batch['cond'],
mask=batch['ori_mask'] if 'ori_mask' in batch else None)
# all_images = torch.clamp((all_images + 1.0) / 2.0, min=0.0, max=1.0)
# all_images = torch.cat(all_images_list, dim = 0)
# nrow = 2 ** math.floor(math.log2(math.sqrt(self.batch_size)))
nrow = 2 ** math.floor(math.log2(math.sqrt(batch['cond'].shape[0])))
tv.utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow=nrow)
self.model.train()
accelerator.wait_for_everyone()
pbar.update(1)
accelerator.print('training complete')
if __name__ == "__main__":
args = parse_args()
main(args)
pass