-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
195 lines (169 loc) · 8.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch.nn as nn
import torch
from groupnorm import GroupNorm3d
class Modified3DUNet(nn.Module):
def __init__(self, in_channels, n_classes, base_n_filter = 8):
super(Modified3DUNet, self).__init__()
self.in_channels = in_channels
self.n_classes = n_classes
self.base_n_filter = base_n_filter
self.lrelu = nn.LeakyReLU()
self.dropout3d = nn.Dropout3d(p=0.6)
self.upsacle = nn.Upsample(scale_factor=2, mode='nearest')
self.softmax = nn.Softmax(dim=1)
# Level 1 context pathway
self.conv3d_c1_1 = nn.Conv3d(self.in_channels, self.base_n_filter, kernel_size=3, stride=1, padding=1, bias=False)
self.conv3d_c1_2 = nn.Conv3d(self.base_n_filter, self.base_n_filter, kernel_size=3, stride=1, padding=1, bias=False)
self.lrelu_conv_c1 = self.lrelu_conv(self.base_n_filter, self.base_n_filter)
#self.inorm3d_c1 = nn.InstanceNorm3d(self.base_n_filter)
self.gnorm3d_c1 = GroupNorm3d(self.base_n_filter,num_groups=4)
# Level 2 context pathway
self.conv3d_c2 = nn.Conv3d(self.base_n_filter, self.base_n_filter*2, kernel_size=3, stride=2, padding=1, bias=False)
self.norm_lrelu_conv_c2 = self.norm_lrelu_conv(self.base_n_filter*2, self.base_n_filter*2)
#self.inorm3d_c2 = nn.InstanceNorm3d(self.base_n_filter*2)
self.gnorm3d_c2 = GroupNorm3d(self.base_n_filter*2,num_groups=4)
# Level 3 context pathway
self.conv3d_c3 = nn.Conv3d(self.base_n_filter*2, self.base_n_filter*4, kernel_size=3, stride=2, padding=1, bias=False)
self.norm_lrelu_conv_c3 = self.norm_lrelu_conv(self.base_n_filter*4, self.base_n_filter*4)
#self.inorm3d_c3 = nn.InstanceNorm3d(self.base_n_filter*4)
self.gnorm3d_c3 = GroupNorm3d(self.base_n_filter*4,num_groups=4)
# Level 4 context pathway
self.conv3d_c4 = nn.Conv3d(self.base_n_filter*4, self.base_n_filter*8, kernel_size=3, stride=2, padding=1, bias=False)
self.norm_lrelu_conv_c4 = self.norm_lrelu_conv(self.base_n_filter*8, self.base_n_filter*8)
#self.inorm3d_c4 = nn.InstanceNorm3d(self.base_n_filter*8)
self.gnorm3d_c4 = GroupNorm3d(self.base_n_filter*8,num_groups=4)
# Level 5 context pathway, level 0 localization pathway
self.conv3d_c5 = nn.Conv3d(self.base_n_filter*8, self.base_n_filter*16, kernel_size=3, stride=2, padding=1, bias=False)
self.norm_lrelu_conv_c5 = self.norm_lrelu_conv(self.base_n_filter*16, self.base_n_filter*16)
self.norm_lrelu_upscale_conv_norm_lrelu_l0 = self.norm_lrelu_upscale_conv_norm_lrelu(self.base_n_filter*16, self.base_n_filter*8)
self.conv3d_l0 = nn.Conv3d(self.base_n_filter*8, self.base_n_filter*8, kernel_size = 1, stride=1, padding=0, bias=False)
#self.inorm3d_l0 = nn.InstanceNorm3d(self.base_n_filter*8)
self.gnorm3d_l0 = GroupNorm3d(self.base_n_filter*8,num_groups=4)
# Level 1 localization pathway
self.conv_norm_lrelu_l1 = self.conv_norm_lrelu(self.base_n_filter*16, self.base_n_filter*16)
self.conv3d_l1 = nn.Conv3d(self.base_n_filter*16, self.base_n_filter*8, kernel_size=1, stride=1, padding=0, bias=False)
self.norm_lrelu_upscale_conv_norm_lrelu_l1 = self.norm_lrelu_upscale_conv_norm_lrelu(self.base_n_filter*8, self.base_n_filter*4)
# Level 2 localization pathway
self.conv_norm_lrelu_l2 = self.conv_norm_lrelu(self.base_n_filter*8, self.base_n_filter*8)
self.conv3d_l2 = nn.Conv3d(self.base_n_filter*8, self.base_n_filter*4, kernel_size=1, stride=1, padding=0, bias=False)
self.norm_lrelu_upscale_conv_norm_lrelu_l2 = self.norm_lrelu_upscale_conv_norm_lrelu(self.base_n_filter*4, self.base_n_filter*2)
# Level 3 localization pathway
self.conv_norm_lrelu_l3 = self.conv_norm_lrelu(self.base_n_filter*4, self.base_n_filter*4)
self.conv3d_l3 = nn.Conv3d(self.base_n_filter*4, self.base_n_filter*2, kernel_size=1, stride=1, padding=0, bias=False)
self.norm_lrelu_upscale_conv_norm_lrelu_l3 = self.norm_lrelu_upscale_conv_norm_lrelu(self.base_n_filter*2, self.base_n_filter)
# Level 4 localization pathway
self.conv_norm_lrelu_l4 = self.conv_norm_lrelu(self.base_n_filter*2, self.base_n_filter*2)
self.conv3d_l4 = nn.Conv3d(self.base_n_filter*2, self.n_classes, kernel_size=1, stride=1, padding=0, bias=False)
self.ds2_1x1_conv3d = nn.Conv3d(self.base_n_filter*8, self.n_classes, kernel_size=1, stride=1, padding=0, bias=False)
self.ds3_1x1_conv3d = nn.Conv3d(self.base_n_filter*4, self.n_classes, kernel_size=1, stride=1, padding=0, bias=False)
def conv_norm_lrelu(self, feat_in, feat_out):
return nn.Sequential(
nn.Conv3d(feat_in, feat_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm3d(feat_out),
nn.LeakyReLU())
def norm_lrelu_conv(self, feat_in, feat_out):
return nn.Sequential(
#nn.InstanceNorm3d(feat_in),
GroupNorm3d(feat_in,num_groups=4),
nn.LeakyReLU(),
nn.Conv3d(feat_in, feat_out, kernel_size=3, stride=1, padding=1, bias=False))
def lrelu_conv(self, feat_in, feat_out):
return nn.Sequential(
nn.LeakyReLU(),
nn.Conv3d(feat_in, feat_out, kernel_size=3, stride=1, padding=1, bias=False))
def norm_lrelu_upscale_conv_norm_lrelu(self, feat_in, feat_out):
return nn.Sequential(
#nn.InstanceNorm3d(feat_in),
GroupNorm3d(feat_in,num_groups=4),
nn.LeakyReLU(),
nn.Upsample(scale_factor=2, mode='nearest'),
# should be feat_in*2 or feat_in
nn.Conv3d(feat_in, feat_out, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm3d(feat_out),
nn.LeakyReLU())
def forward(self, x):
# Level 1 context pathway
out = self.conv3d_c1_1(x)
residual_1 = out
out = self.lrelu(out)
out = self.conv3d_c1_2(out)
out = self.dropout3d(out)
out = self.lrelu_conv_c1(out)
# Element Wise Summation
out += residual_1
context_1 = self.lrelu(out)
out = self.gnorm3d_c1(out)
out = self.lrelu(out)
# Level 2 context pathway
out = self.conv3d_c2(out)
residual_2 = out
out = self.norm_lrelu_conv_c2(out)
out = self.dropout3d(out)
out = self.norm_lrelu_conv_c2(out)
out += residual_2
out = self.gnorm3d_c2(out)
out = self.lrelu(out)
context_2 = out
# Level 3 context pathway
out = self.conv3d_c3(out)
residual_3 = out
out = self.norm_lrelu_conv_c3(out)
out = self.dropout3d(out)
out = self.norm_lrelu_conv_c3(out)
out += residual_3
out = self.gnorm3d_c3(out)
out = self.lrelu(out)
context_3 = out
# Level 4 context pathway
out = self.conv3d_c4(out)
residual_4 = out
out = self.norm_lrelu_conv_c4(out)
out = self.dropout3d(out)
out = self.norm_lrelu_conv_c4(out)
out += residual_4
out = self.gnorm3d_c4(out)
out = self.lrelu(out)
context_4 = out
# Level 5
out = self.conv3d_c5(out)
residual_5 = out
out = self.norm_lrelu_conv_c5(out)
out = self.dropout3d(out)
out = self.norm_lrelu_conv_c5(out)
out += residual_5
out = self.norm_lrelu_upscale_conv_norm_lrelu_l0(out)
out = self.conv3d_l0(out)
out = self.gnorm3d_l0(out)
out = self.lrelu(out)
# Level 1 localization pathway
out = torch.cat([out, context_4], dim=1)
out = self.conv_norm_lrelu_l1(out)
out = self.conv3d_l1(out)
out = self.norm_lrelu_upscale_conv_norm_lrelu_l1(out)
# Level 2 localization pathway
out = torch.cat([out, context_3], dim=1)
out = self.conv_norm_lrelu_l2(out)
ds2 = out
out = self.conv3d_l2(out)
out = self.norm_lrelu_upscale_conv_norm_lrelu_l2(out)
# Level 3 localization pathway
out = torch.cat([out, context_2], dim=1)
out = self.conv_norm_lrelu_l3(out)
ds3 = out
out = self.conv3d_l3(out)
out = self.norm_lrelu_upscale_conv_norm_lrelu_l3(out)
# Level 4 localization pathway
out = torch.cat([out, context_1], dim=1)
out = self.conv_norm_lrelu_l4(out)
out_pred = self.conv3d_l4(out)
ds2_1x1_conv = self.ds2_1x1_conv3d(ds2)
ds1_ds2_sum_upscale = self.upsacle(ds2_1x1_conv)
ds3_1x1_conv = self.ds3_1x1_conv3d(ds3)
ds1_ds2_sum_upscale_ds3_sum = ds1_ds2_sum_upscale + ds3_1x1_conv
ds1_ds2_sum_upscale_ds3_sum_upscale = self.upsacle(ds1_ds2_sum_upscale_ds3_sum)
out = out_pred + ds1_ds2_sum_upscale_ds3_sum_upscale
#seg_layer = out
#out = out.permute(0, 2, 3, 4, 1).contiguous().view(-1, self.n_classes)
#out = out.view(-1, self.n_classes)
out = self.softmax(out)
return out