-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmsj_attack.py
89 lines (79 loc) · 3.75 KB
/
msj_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import json
import os
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
import datasets
from rouge_score import rouge_scorer
import numpy as np
import pandas as pd
import hydra
from utils import unlearn_prompt
@hydra.main(version_base=None, config_path="config", config_name="forget_wpu")
def main(cfg):
attack_budget = 100
max_generate_tokens = 4096
batch_size = 4
files = os.listdir(cfg.save_dir)
files = [f for f in files if f.startswith('checkpoint-')]
save_dir = os.path.join(cfg.save_dir, files[0])
if os.path.exists(os.path.join(save_dir, 'msj_attack_output.json')):
print(f"Skip exist {save_dir}")
return
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf')
tokenizer.padding_side = "left"
tokenizer.padding_size = 'longest'
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
model_path = "meta-llama/Llama-2-7b-chat-hf" if cfg.forget_loss == 'prompt_baseline' else cfg.save_dir
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto")
print(f"Loaded model: {model_path}")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0, batch_size=batch_size)
dataset = datasets.load_dataset(cfg.data_path, cfg.split)['train']
all_titles = list(set(dataset['title']))
target_type = 'people'
with open('data/msj_attack.json', 'r') as f:
attack_ices = json.load(f)
attack_ices = attack_ices[-attack_budget:]
for i, item in enumerate(attack_ices):
attack_ices[i]['generated'] = attack_ices[i]['generated'].split('\n\n')[0].split('[/INST]')[-1].strip()
attack_ices = [f"[INST] {item['question']} [/INST] {item['generated']}" for item in attack_ices]
attack_query = '</s><s>'.join(attack_ices)[7:-7].strip()
# Reduce incontext example length
max_query_token = 3896
if cfg.forget_loss == 'prompt_baseline':
if '100' in cfg.split:
max_query_token -= 800
else:
max_query_token -= 296
while len(tokenizer(attack_query)['input_ids']) > max_query_token:
attack_budget -= 1
attack_query = '</s><s>'.join(attack_ices[-attack_budget:])[7:-7].strip()
results = {'generated_text': [], 'RougeL': [], 'raw_generated_text': []}
inputs = []
for item in dataset:
question = f"{attack_query}</s><s>[INST] {item['question']}"
if cfg.forget_loss == 'prompt_baseline':
prompt = '<s>' + unlearn_prompt.format(entity=all_titles, question=question, type=target_type)
else:
prompt = f"<s>[INST] {question} [/INST]"
inputs.append(prompt)
outputs = pipe(inputs, do_sample=False, max_length=max_generate_tokens)
for i, out in enumerate(outputs):
generated_text = out[0]['generated_text'].split('[/INST]')[-1].strip()
results['raw_generated_text'].append(generated_text)
results['generated_text'].append([dataset[i]['question'], generated_text, dataset[i]['answer']])
scores = scorer.score(dataset[i]['answer'], generated_text)
results['RougeL'].append(scores['rougeL'].recall)
print(f"Split: {cfg.split}")
print(f"RougeL: {np.mean(results['RougeL'])}")
with open(os.path.join(save_dir, 'msj_attack_output.json'), 'w') as f:
json.dump(results, f, indent=2)
df = pd.read_csv(f'{save_dir}/aggregate_stat.csv')
df[f'MSJ attack ROUGE'] = np.mean(results['RougeL'])
df.to_csv(f'{save_dir}/aggregate_stat.csv', index=False)
if __name__ == '__main__':
print("###############################")
print("Many-shot jailbreaking attack")
print("###############################")
main()