Convolutional Neural Networks:

6.1. Fully Connected Layers to Convolutions
6.2. Convolutions for Images

6.3. Padding and Stride

Outline

® Introduction to Convolutional Neural Networks
°What are they?
°Defining a fully connected layer
°Methods to calculate weights

® Feature maps and Receptive Fields
®* Padding and Stride

Introduction to Convolutional Neural Networks

® Options discussed previously are good for tabular data
® CNNs maintain spatial structure when analyzing image data
°will leverage knowledge that nearby pixels are related to each other
®* Computationally efficient
°Require fewer parameters than a fully-connected architecture
°Easy to parallelize

® Are sometimes also used for 1-D or graph structured data

©audio and text

Spatial Invariance

® Should not be concerned with the precise location of the object (spatial invariance)
° Sweep patches and decide if they contain what we are looking for
°Hidden layer representations should peak where desired attribute is the highest

°can be used to learn useful representations with fewer parameters

® Properties of natural signals in images guide the design of the
architecture:
°In the earliest layers, the network responds similarly to the same
patch, regardless of where it appears (translational invariance)

° Earliest layers should focus on correlations within local regions

(locality principle)

Defining the Mult-Layer Perceptron

Output layer

® Start by thinking of an MLP with 2-D inputs X and hidden layers H

°Inputs and hidden layers have spatial structure Hidden layer
°weights are now 4th order tensors
[H];; = [Ul;; + Z Z[W]i,j,k,l [Xk, 4%
k 1
5 /4L
°Can re-index the weight tensor Tensor v av.av
with shape:
= [Ulij+), Y [VIijasXlisass 32,4,
g b y
° To compute [H]ijwill sum over pixels in the image entered around <
3
location [i,j] and weighted by [V]ijab —

°Where indices a and b run over positive and negative offsets to

- J
B 4

cover the entire image

https:/www.tensorflow.org/guide/tensor

Constraining the Multi-Layer Perceptron

®* How does this layer change with constraints?
° Translational invariance implies that a shift in the input should lead to a shift in the hidden layer

° bias and weights do not depend on i,]

Hlj=u+) D [Vles[Xlirajsv
a b

°Locality: outside some range [V]a =0 X

A A
Hly=u+) D [VlesXlirajes

a=—A b=-A
® Above is the definition of a convolutional layer

°With this we have reduced the number of parameters needed from billions to a few hundred

® Including the possibility of different color channels (like stacked 2-D grids) A learning now depends on inductive
bias. If biases, don’t agree with reality,

A A the models will struggle. Example:
[l S= [Vin a4 h correlated objects separated by large
J a=Z_A b=Z_A ; J distances (described by long

wavelength modes)

Whatis a Convolution?

® A convolution between two functions measures the overlap when one is flipped and shifted by

X We can consider our process a convolution
because the resulting tensor will change
° Integral for continuous objects, sum for discrete objects shape
(f * g)(X) = / f@gx — z)dz. (f * () =), fa)g(i - a)

°For 2-D tensors it takes the form A I | B I\
(f * &), j) =),), f(a, b)eli — a, j — b) A*B /\
a

....

°Sum instead of difference is a cross correlation A1 & & 1IN 14

https:/www.calculushowto.com/convolution-integral-simple-definition/

Cross Correlation vs. Convolution

® Can compare the outputs of the two operations by flipping one horizontally and vertically

°should get the same answer

#creates a tensor where diagonal elements are 0
test=torch.ones((4,4))
for 1 in range(4):

test[1i,1]=0.

#Define a kernel
Ktest=torch.tensor([[1.0,1.0],[-1.0,-1.011])

#Perfom convolution and get output
Ytest = corr2d(test, Ktest)
Ytest

[0., 1., 0.],
[-1., 0., 1.1,
[0., -1., 0.11)

tensor (|

#flip kernel horizontally and vertically to get convolution
KtestCon=torch.tensor([[-1.0,-1.0],[1.0,1.01]1)

#new output
YtestCon = corr2d(test, KtestCon)

YtestCon
tensor([[0., -1., 0.],
1., 0., -1.1,
0., 1., 0.11)
Flipped Horizontally

tensor(ll 0., =1.; 0:);
el 0 g
[0., 1., 0.11)

Flipped Vertically

tensor([[0., 1., 0.],
=Ty 0 1],

Cross Correlation Operation

® Consider only 2-D data

Input Kernel Output
2 25 O0X0+1x1+3x2+4%x3=19,
5 * — IX0+2X14+4%x24+5X%X3 =25,
43 IX0+4x1+6X2+7%3 =37,
3 4x0+5X1+7%X2+8xXx3=43.

° Can only compute the cross correlation for locations where kernel fits wholly in the image

° QOutput size depends on size of input and kernel

(mp—kp+1)X(ny—ky+1)

Cross Correlation Operation

® Code for above

def corr2d(X, K):
"""Compute 2D cross-correlation.
#1n example kernel 1is 2x2
h, w = K.shape
#gives shape of output using equation in book
#will return 2x2
Y = torch.zeros((X.shape[0] - h + 1, X.shape[l] - w + 1))
#does matrix multiplication
for 1 in range(Y.shape[0]):
for jJ in range(Y.shape[l]):
Y[i, J] = (X[1i:1i + h, J:7 + w] * K).sum()
return Y

Convolutional Layers

®To be a full convolutional layer, we need to include the bias

#define a standard block
#calls Module from pytorch
class Conv2D(nn.Module):
#calls nn.Module to perfrom necessary initializations
#will also specify parameters
def init (self, kernel size):
super(). 1init ()
self.weight = nn.Parameter(torch.rand(kernel size))
self.bias = nn.Parameter(torch.zeros(1l))

#defines forward propagation function, how block will return output
def forward(self, x):
return corr2d(x, self.weight) + self.bias

® Typically initialize the kernels randomly

° Can now implement a full layer

Learning a Kernel

Construct a two-dimensional convolutional layer with 1 output channel and :
kernel of shape (1, 2). For the sake of simplicity, we ignore the bias here
conv2d = nn.Conv2d(1l,1, kernel size=(1l, 2),bias=False)

® Can learn kernel from input and desired output
The two-dimensional convolutional layer uses four-dimensional input and

output in the format of (example, channel, height, width), where the batch

© From edge deteCtlon example # size (number of examples in the batch) and the number of channels are both
X1 = Xl.reshape((1l, 1,6, 8))
Yl = Yl.reshape((1l, 1, 6,7
ILter fa Vep 9 g By Uy Loy lr = 3e-2 # iearning rate))
bl e, U, 0000 Uy L,
S e bl ol =11 for i in range(1l4):
fle, loy 0eya00, 000 Ooy Lo #some output
£ TR OIS | RO R) R) T) Y hat = conv2d(X1)
(i., 1., 0., 0., 0., 0., 1., #use mean square error to find loss function
l = (Y hat - Y1) ** 2
#find gradient with computation graph
conv2d.zero grad()
l.sum() .backward()
Update the kernel
(0. 1., 0. 0., 0 -1.. 0.1 conv2d.weight.data[:] -= lr * conv2d.weight.grad
(20 1. 0 0. 0 =1 01 #will print loss for even epochs
0, Lo 0., 00, 0. =1 0], if (1 +1) % 2 == 0:
00 Ao, 00,0 05, 0., =10, - 00T, print(f'epoch {i + 1}, loss {l.sum():.3f}")
o 0as i O, 7 0es w05, =10 =00
O L R R e B 1 [
conv2d.weight.data.reshape((1l, 2))
tensor([[-0.9982, 1.0006]1])

Feature Map and Receptive Field

® Output of a convolutional layer is sometimes called a feature map

®For some element x, there is a receptive field that refers to all elements from previous layers
that may affect the calculation of x during forward propagation

*When any element in a feature map needs a larger receptive field to detect input features over
a broader area, we can build a deeper network

°May be larger than size of input

Kernel Output

: 19 | 25 1 1
Can build a *
el i ~ deeper network 37 1 | 1 = 144
Z |3 37|43

*
[

Padding and Stride

® Before output shape is determined by the shape of the input and convolution kernel
°Many layers can really decrease dimensionality
® Can make use of two techniques:

°Padding: keep more of the information at the border of the image

° Stride: will drastically reduce the dimensionality

Padding

® Add extra pixels around the boundary of the input image Input Kernel

° Typically set the values to zero

{
O
e

&

1040505050
°|n general, the output shape will be :01 N L?J o T 1
0 {3 510
8

(mp—kp+ppr+)Xy —ky+py+1) £

®*Want to give input and output the same height and width

-
o
- T
K
)
-
o
-
o

() s ()
1 (@)
..]l——v——v
)
" ototo
SRR R 4
*
N
w

vset 5 =k, —1and p, =k, —1
° Typically choose k to be odd to add same number of rows on each side

°Will preserve spatial dimensionality

° Information on the edges of image is weighted more evenly

*When height and width of kernel are different, we can use different amounts of padding (uncommon)

Output

19

25

10

21

o7

43

16

Stride

®* Move kernel more than one element at a time

°Number of rows and columns traversed per slide as

stride

®In general, the output shape is

|(nn, — ki + pr + sp)lsp] X | (M — Ky + P + Sw)/5w]

® Rarely use inhomogeneous stride

® Using stride in later layers can remove important

information from image

1.1.\.
(
(
PR |

¢
B St S B

'y O

Kernel

Output

Application - Where’s Waldo Example

®* How will these things help Where’s Waldo example?
© Convolution operation - designed so that it will peak at

areas of ‘high waldoness’

°Padding - will create a more even weighting of pixels at the

edges. Will be easier to identify waldos that are at the edges

the images
© Stride - will quickly decrease number of pixels so waldo peak: ﬁt\% & \-“ oL, \ SR .m%mig(A :
* "Y o G\ 0F e B 2, v
can be found faster AV IR § = NN)

Summary

® Convolutional neural networks are a computationally efficient way to analyze image data

®* Number of parameters needed is decreased with translational invariance and locality

® A kernel can be learned to reproduce a desired output

*When an element in a feature map needs a larger receptive field to detect broader features on
the input, you can build a deeper network

® Padding can be used to preserve edge effects

® Stride can be used to increase efficiency or down sample

