-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathr-basics.qmd
248 lines (165 loc) · 3.97 KB
/
r-basics.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
---
eval: true
code-fold: false
number-depth: 2
engine: knitr
---
# R basics
In this chapter we will introduce to the R basics and some exercises to get familiar to how R works.
## Math operations
### Sum
```{r}
1+1
```
### Subtraction
```{r}
5-2
```
### Multiplication
```{r}
2*2
```
### Division
```{r}
8/2
```
### Round the number
```{r}
round(3.14)
round(3.14, 1) # The "1" indicates to round it up to 1 decimal digit.
```
You can use help `?round` in the console to see the description of the function, and the default arguments.
## Basic shortpaths
### Perform Combinations
```{r}
c(1, 2, 3)
c(1:3) # The ":" indicates a range between the first and second numbers.
```
### Create a comment with `ctrl + shift + m`
```{r}
# Comments help you organize your code. The software will not run the comment.
```
### Create a table
A simple table with the number of trips by car, PT, walking, and cycling in a hypothetical street segment at a certain period.
**Define variables**
```{r}
modes <- c("car", "PT", "walking", "cycling") # you can use "=" or "<-"
Trips = c(200, 50, 300, 150) # uppercase letters modify
```
**Join the variables to create a table**
```{r}
table_example = data.frame(modes, Trips)
```
**Take a look at the table**
Visualize the table by clicking on the "Data" in the "Environment" page or use :
```{r}
View(table_example)
```
**Look at the first row**
```{r}
table_example[1,] #rows and columns start from 1 in R, differently from Python which starts from 0.
```
**Look at first row and column**
```{r}
table_example[1,1]
```
## Practical exercise
**Dataset:** the number of trips between all municipalities in the Lisbon Metropolitan Area, Portugal [@IMOB].
### Import dataset
You can click directly in the file under the "Files" pan, or:
```{r}
data = readRDS("data/TRIPSmode.Rds")
```
::: {.callout-tip appearance="simple"}
After you type `"` you can use `tab` to navigate between folders and files and `enter` to autocomplete.
:::
### Take a first look at the data
**Summary statistics**
```{r}
summary(data)
```
**Check the structure of the data**
```{r}
str(data)
```
**Check the first values of each variable**
```{r}
#| eval: false
data
```
```{r}
head(data, 3) # first 3 values
```
**Check the number of rows (observations) and columns (variables)**
```{r}
nrow(data)
ncol(data)
```
**Open the dataset**
```{r}
View(data)
```
### Explore the data
**Check the total number of trips**
Use `$` to select a variable of the data
```{r}
sum(data$Total)
```
**Percentage of car trips related to the total**
```{r}
sum(data$Car)/sum(data$Total) * 100
```
**Percentage of active trips related to the total**
```{r}
(sum(data$Walk) + sum(data$Bike)) / sum(data$Total) * 100
```
### Modify original data
**Create a column with the sum of the number of trips for active modes**
```{r}
data$Active = data$Walk + data$Bike
```
**Filter by condition (create new tables)**
Filter trips only with origin from Lisbon
```{r}
data_Lisbon = data[data$Origin == "Lisboa",]
```
Filter trips with origin **different** from Lisbon
```{r}
data_out_Lisbon = data[data$Origin != "Lisboa",]
```
Filter trips with origin **and** destination in Lisbon
```{r}
data_in_Out_Lisbon = data[data$Origin == "Lisboa" & data$Destination == "Lisboa",]
```
**Remove the first column**
```{r}
data = data[ ,-1] #first column
```
**Create a table only with origin, destination and walking trips**
There are many ways to do the same operation.
```{r}
names(data)
```
```{r}
data_walk2 = data[ ,c(1,2,4)]
```
```{r}
data_walk3 = data[ ,-c(3,5:9)]
```
### Export data
Save data in **.csv** and **.Rds**
```{r}
write.csv(data, 'data/dataset.csv', row.names = FALSE)
saveRDS(data, 'data/dataset.Rds') #Choose a different file.
```
### Import data
```{r}
csv_file = read.csv("data/dataset.csv")
rds_file = readRDS("data/dataset.Rds")
```
```{r}
#| include: false
#| eval: false
# this coverts this quarto to a plain r script
knitr::purl("r-basics.qmd", "code/r-basics.R", documentation = 2)
```