Consensus Protocol
Zhijie Ren
January 31, 2017

1 Preliminaries

1.1 TrustChain

Here we consider a TrustChain-like [I] system, all nodes have their own Genesis block
and create their own blockchain. The blocks only consist their own transactions. Each
transaction is associated with signatures from both parts of the transaction.

1.2 Notations

We consider N nodes, with C;,i € {1,2,..., N} representing their blockchains. A
blockchain C; is defined as an ordered set {B;(1), B;(2),...} of blocks, in which block
Bi(k) belongs to either of the two types Transaction Blocks denoted by T and Check
Points (CP) denoted by P. We further denote the k-th appearances of the block
that belongs to the type 7 and P by T;(k) and C;(k), respectively. In other words,
we define B;(k) = Ci(l) if Bi(k) € P and {Bi(j) € P : j € [0,k]}| = [and
Bi(k) = T;(l) is similarly defined. We denote C;(l) « T;(k),T;(k) < C;y(m) > if
b—a = ming < pw)ep(b — a) and ¢ — b = mingsy p,(v)ep(¢’ — b) assuming that
Ci(l) = By(a), Tiy(k) = B;(b),Ci(m) = B;(c). Then, we call C;(I) and C;(m) the pre-
vious CP and the next CP of T;(k), respectively. We call the blockchain in between
two neighboring CP’s as a piece of the blockchain. A transaction from node ¢ to j
is represented as tr(i — j,5),i # j, where s is the serial number. In this paper,
we use the structure similar to Bitcoin [2] for the transactions. For each transaction
tr(i — j,s),i # j, a set of transactions S(tr(i — j,s)) should be provided as the
source of this transaction. As a result, the currency is flowed from one transaction to
another, and no actual “balance” is kept anywhere in our blockchain. A cryptographic
hash function is denoted by Y = H(X), in which Y is called the hash result of X.
The public and private keys of node i are denoted by K (i) and k(i), respectively. A
message M encrypted by a key k(i) is represented as Ey, (M).

2 Consensus Process

Generally speaking, our protocol separate the consensus process from the validation of
each individual transaction. This approach tremendously reduces the communication
cost for the consensus process and even achieves an unbounded throughput.

1

Further, we address the problem of the “overhead of trust”, which is the scenario
for most of the consensus model. In traditional consensus problems or bitcoin-like
systems, all transaction are agreed and validated by the whole community, which costs
heavily and happens rarely in the real life scenario. Here, we introduce an alternative
consensus model, in which individual transactions are not validated. However, any
party is able to easily validate any transaction at any time, and no invalid transactions
can be forged into a valid one. In other words, cheats will get caught.

In this section, we first introduce some definitions, then describe our consensus
protocol and validation protocol, respectively.

2.1 Definitions

Definition 1 (Transaction Block (TB)) A transaction block T;(k) consists of a
hash result of the previous block and M transaction messages t;(k,m), i.e., if T;(k) =
Bi(j), then T;(k) consists of [H(B;(j — 1)),t;(k,1),t;(k,2),...,t;(k, M)].

Definition 2 (Transaction Index) If a transaction is contained in the transaction
message (the definition will follow) t;(k,m), then a vector of [i,k, m] is called the
index of this transaction. Note that since in our system a transaction is written in
the blockchain of both the sender and the receiver, hence a transaction could have 2
indezes.

Definition 3 (Transaction Message) A transaction message t;(k,m) consists of the
following:

1. The transaction, i.e., tr(a — b,s),a,b € {1,2,...,N},a =i and/or b =i.
2. The indexes of the sources of this transaction.
3. A hash of the previous CP, i.e., H(C;(l)), Ci(l) < T;(k).

4. A digital signature created by both parties of the transaction, which is the hash
result of the previous three items encrypted with both private keys.

Definition 4 (Check Point (CP)) A check point consists of a hash result of the
previous block and the result of the consensus process of the r-th round, denoted by
CON(r),t € {1,2,...}, which will be specified later, i.e., if Ci(k) = B;(j), then C;(k)
consists of H(B;(j — 1)) and CON(r).

2.2 Consensus Scheme

Our consensus scheme is used repetitively in round. Here, we assume the scheme has
been executed in round r — 1 and results in CON(r — 1). Then, we describe our
scheme for node 7 in the r-th round. Note that the transactions are independent of our
consensus schemes. Hence, we assume that the transactions are made with a rate R;
for node ¢ and node ¢ continuously writes them to the transaction blocks and appends
them to its chain while the consensus scheme is executing.

3

3.1

After the reception of CON(r—1), if a CP from node i is included in CON (r—1),
it generates a new CP, assume it is C;(k), and appends it to its chain.

If no new CP is generated, node ¢ waits 7; 9 and broadcast its latest CP that does
not reach consensus and its previous CP that reached consensus in CON ().
Furthermore, a digital signature is associated with this message. We denote this

message by M’ = [Ci(j'), Ci(K'), D'].

. If anew CP C;(k) is generated, it waits 7; and broadcast this CP and its previous

CP that reaches consensus in CON (r —1). Furthermore, a digital signature is as-
sociated with this message. Let us denote this message by M = [C;(7), C;(k), D].

Now the network will reach agreement on a set of pairs of CP’s send out by the
nodes. A scheme similar to the one used in [3] (will be specified later) is used to
agree upon a set of CP’s that will reach consensus in this round. The following
messages will be excluded from this consensus process:

(a) The messages with incorrect digital signature.

(b) The messages M (M') with either C;(j) (C;(j")) not included in any CON ()
or C;(k) (C;(k")) has already included in some CON(t).

Validation Protocol

Definitions

First we consider the conditions that a transaction is valid. We first give our definition
on the validation of a transaction.

Definition 5 (Valid Transaction) A transaction tr(i — j,s) is valid if and only if
the following conditions hold.

1.
2.

5.

The transaction is contained in two messages t;(m, k) and t;(m’, k').

These messages are correct in the sense that all information required for these
messages are correct and properly signed.

Assume Ti(k) = B;(l) and T;(k') = B;(l'). Then, there ezists B;(n) and B;(n’)
such that B;(n), Bj(n') € P and B;(n) and B;(n') are included in some CON(r).

The hash results in blockchains C; and C; from the first block till the blocks B;(n)
and B;(n'), respectively, are correct.

The source transactions of tr(i — j,s) are valid.

Then, we give a definition on the validation of pieces of a blockchain.

Definition 6 (Valid Piece of Blockchain) The piece of blockchain C; from C;(k) to
C;(1) is said to be valid if one of the following conditions holds

1.

2.

There is no transactions in between C;(k) and C;(l) and the hash results in the

blocks from C;(k) to Ci(1) are all correct.

There are transactions in between C;(k) and C;(1) and all of them are valid.

3.2 Validation Process

Any node ¢ can validate a transaction tr(u — v, s) by sending a request to node u or
v, the process of which is called a wvalidation process. The validation process consists
of four parts.

In the first part, node u send the transaction index of tr(u — v,s) to node i (we
only consider the case for node u and skip the case for v due to similarity).

In the second part, if the pieces of blockchains which contains tr(u — v, s) are not
obtained by 7, ¢ requests the following:

1. The piece of blockchain which contains tr(u — v, s).

2. A piece of blockchain from v which contains tr(u — v, s), which is signed by v.

Both items should be signed by wu.
In the third part, node i request all the pieces of blockchains which are not yet
validated by it, which might include:

1. All pieces of blockchain of .
2. All pieces of blockchain of v, which are signed by v.

3. All pieces of other blockchains C}, which contains a transaction tr(j — k,s’) or
tr(l — j,s) which is the source of tr(u — v, s), or recursively the source of the
sources. These pieces should be signed by their creators.

In the fourth part, if node i has not received a required piece for this validation, it
can request it from the owner of that piece, or any other node who might have that
piece in its storage.

4 Proofs

To be added.

5 Requirements of the Protocol

5.1 Storage Requirement

For the validation process, all nodes are obligated to store all pieces of the blockchains
which might be requested by the validator. In other words, node ¢ needs to store a
blockchain C; with a signature of j if there exist a transaction tr(j — i,s) or tr(i —
J,s), or a transaction tr(j — k,s) or tr(l — j,s) which is the source of tr(i — u,s’) or
tr(v — i,s"), or recursively the source of the sources.

This requirement seems to be quite strong, especially a transaction has two copies
in our scheme. However, comparing to most of the blockchain techniques which re-
quires all transactions to be stored in all nodes, our scheme could possibly reduce
the storage requirement by a huge amount depending on the network structure and
the transactions. The storage requirement is at most at o(|V|), where V is the set
of all transactions, which is at the same order as most of the traditional blockchain
techniques.

5.2 Communication Requirements

For consensus process, it is clear that our scheme is very similar to the one used in [4].
However, our throughput is remarkably higher since no actual transactions are agreed
during the consensus process. More precisely, the communication cost is reduced from
o(N?|V|) in most of the other consensus algorithms to o(N?) in our scheme. Moreover,
since the time consumption of the consensus process is independent of the amount
of transactions, we achieves an unbounded throughput. More precisely, although the
delay still scales as a square function as N, the throughput will not be limited by N
like the most of the other blockchains do.

In traditional blockchain techniques, all transactions in the blockchains are un-
forgeable, unforkable, and valid, which requires the global agreement on both of the
unforgeability and validity of each transaction. In our case, the unforgeability is agreed
globally, which prevents forking. However, the validity is checked locally. In other
words, individual nodes are responsible for the validation of the transactions, and their
validation is not trusted by others.

It seems to result in a flood of communications and wasted duplications of work
since a transaction will be individually validated by multiple parties and the trust does
not propagate. However, we have 4 good reasons to do that. First, not all transactions
are interested by all parties. For example, a transaction tr(i — u,s’) will only be
interested to node i, 7, and all parties that use this transaction as the source. A global
agreement on the validity of this transactions will actually be a huge waste. Second,
if all nodes keep tracks of the valid transactions, the overhead in validation process
can be minimal. More precisely, by our validation process, if all other pieces required
for the validation of a transaction is already validated, the communication will stop at
the first step, which contains only a few bits. Also, this is not achieved at the cost of
increasing storage requirement since by our structure, keeping tracks of the valid CP’s,
instead of all transactions, is enough. If all nodes keep tracks of their validations,
the communication cost is actually at most o(N?|V|), which is the case that all nodes
want to validate all transactions. This is again at the same order of reaching global
agreement. Third, the communications are most of the time in between two parties,
which will reduce the latency due to less waiting and responding time. Also, since our
validation is independent of the consensus process and the transactions, the latency in
validation will not affect the throughput of our system. Fourth, in fact, this validation
is similar to the real-life scenario. For example, a contract is signed with 2 parties only.
There is no need for this contract to be agreed globally as long as it is legal, which in
our scenario, cannot be forged and can be validated by everyone.

References

[1] J. A. Pouwelse, P. Otte, and M. de Vos, “TrustChain: A Sybil-resistant scalable
blockchain,” Future Generation Computing Systems, SI: Cryptocurrency, under re-
view.

2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[3] Cachin C, Tessaro S. “Asynchronous verifiable information dispersal”, Reliable Dis-
tributed Systems, IEEE Symposium on. IEEE, 2005: 191-201.

[4] Miller A, Xia Y, Croman K, et al. “The honey badger of BFT protocols”, Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2016: 31-42.

	Preliminaries
	TrustChain
	Notations

	Consensus Process
	Definitions
	Consensus Scheme

	Validation Protocol
	Definitions
	Validation Process

	Proofs
	Requirements of the Protocol
	Storage Requirement
	Communication Requirements

