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Abstract

This paper presents a new resilience optimal Byzantine consensus algorithm targeting consortium
blockchains. To this end, it first revisits the consensus validity property by requiring that the decided value
satisfies a predefined predicate, which does not systematically exclude a value proposed only by Byzantine
processes, thereby generalizing the validity properties found in the literature. Then the paper presents a
simple and modular Byzantine consensus algorithm that relies neither on a leader, nor on signatures, nor
on randomization. It consists of a reduction of multivalued Byzantine consensus to binary Byzantine con-
sensus satisfying this validity property. This reduction terminates after a constant-sized sequence of binary
Byzantine consensus instances. The idea is to spawn concurrent instances of binary consensus but to decide
only after a sequence of two of these instances. The binary consensus instances result in a bitmask that the
reduction applies to a vector of multivalued proposals to filter out a valid proposed value that is decided. The
paper then presents an underlying binary Byzantine consensus algorithm that assumes eventual synchrony
to terminate.

Keywords: Asynchronous message-passing system, Binary consensus, Byzantine process, Consen-
sus, Consortium blockchain, Eventual synchrony, Leader-freedom, Modularity, Optimal resilience,
Reduction, Signature-freedom.



1 Introduction

Blockchain: a state machine replication paradigm Blockchain, as originally coined in the seminal Bitcoin
paper [56], is a promising technology to track ownerships of digital assets within a distributed ledger. This
technology aims at allowing processes to agree on a series of consecutive blocks of transactions that may
invoke contract functions to exchange these assets. While the first instances of these distributed ledgers were
accessed by Internet users with no specific permissions, companies have since then successfully deployed other
instances in a consortium context, restricting the task of deciding blocks to a set of carefully selected institutions
with appropriate permissions [11].

In 2016, multiple scientific events devoted to blockchain-related topics outlined the growing interest of the
distributed computing community in this technology. These events included DCCL1, a satellite workshop of
ACM PODC 2016 on the topic, and keynote talks presented by C. Cachin [12] and M. Herlihy [31] at major
distributed computing conferences. For the distributed computing community, a blockchain may seem like
the application of classical state machine replication [39, 62], where processes can be Byzantine [42], to the
cryptocurrency context. In the classical state machine replication paradigm, each command (or operation) can
be invoked at any time by any process, and be applied to the state machine, regardless of the previously applied
commands. The goal in blockchain is for processes to agree on the next block of transactions to be appended
to the chain while the goal of a state machine replication is to agree on the next batch of commands to apply to
the state machine: both require consecutive consensus instances.

A major distinction between blockchain and state machine replication is, however, the relation between
consecutive consensus instances. A blockchain requires each of its consensus instances to be explicitly related
to the previous one. More precisely, for a block to be appended it must explicitly contain information pointing
to the last block previously appended to the blockchain. This is typically implemented using a collision-
resilient hash function that, when applied to the content of a block, outputs a hash identifying this block. To
be decided, a block proposed in consensus instance number x must embed the hash of the block decided at
instance number (x− 1). This is the reason why a blockchain typically starts with processes knowing about a
special sentinel block that does not embed any hash, namely the genesis block. By contrast, the classical state
machine replication simply concatenates consensus instances one after the other without relating the input of a
consensus instance to the previous consensus instance: the result of a command may depend on the previous
commands, but not the fact that it can be applied. In the terminology used in [32], each command is total.
While the total order is implementation-defined in classical state machine replication, it is determined (by an
application-defined hashing function) in the blockchain.

Which kind of consensus for blockchains? This relation between instances is interesting as it entails a
natural mechanism during a consensus instance for discarding fake proposals or, instead, considering that a
proposal is valid and could potentially be decided. Provided that processes have a copy of the blockchain
and the hashing function, they can locally evaluate whether each new block they receive is a valid candidate
for a consensus instance: they simply have to re-hash a block and compare the result to the hash embedded
in the new proposed block. If the two hashes differ, the new block is considered an invalid proposal and is
simply ignored. If the hashes are identical, then the block could potentially be decided. (Whether this block
is eventually decided depends on additional well-formedness properties of the block and the execution of the
consensus instance.) This validity generalizes common definitions of Byzantine consensus, that either assume
that no value proposed only by Byzantine processes can be decided [19, 49, 53], or, in the case where not all
non-faulty processes propose the same value, that any value can be decided (i.e., possibly a value proposed by
a Byzantine process) [21, 34, 45, 46, 61].

As it is impossible to solve consensus in asynchronous message-passing systems where even a single pro-
cess may crash (unexpected premature stop) [24], it follows that it is also impossible to solve consensus in
a more general model like the one mentioned above. We list below the classic approaches used in the past to
circumvent this impossibility, namely failure detectors, conditions, randomization, and eventual synchrony, and
describe why we believe that the additional synchrony assumption is the most suited one for blockchains.
• A classical approach in asynchronous crash-prone systems consists in providing processes with informa-

tion on failures. This is the failure detector-based approach [18]. It is shown in [17] that the eventual
leader failure detector Ω is the weakest failure detector that allows consensus to be solved in the presence
of asynchrony and process crashes. Failure detectors suited to Byzantine failures have been proposed

1https://www.zurich.ibm.com/dccl/.
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(e.g., [26, 34]), but, as they all are defined from the actual failure pattern, they are helpless when Byzan-
tine processes propose valid values. Moreover, when considering eventual leadership, a process may
behave correctly from a leader election point of view and behave in a Byzantine way once it has been
elected leader. Hence, leader-based algorithms do not seem appropriate to solve agreement issues on
valid values in the presence of processes with a Byzantine behavior.
• A second approach, called condition-based, consists in restricting the set of possible input vectors [51].

An input vector is a vector where each entry contains the value proposed by the corresponding pro-
cess. This approach established a strong connection relating Byzantine agreement and error-correcting
codes [25]. As the previous eventual leader-based approach and due to the restriction it imposes on input
vectors, this approach does not seem suited to blockchain-based applications where processes are not a
priori restricted in their proposals.
• A third approach consists in looking for randomized consensus algorithms (e.g., [2, 4, 35, 49, 60]). In the

context of Byzantine failures, this approach has mainly been investigated for binary consensus algorithms
(where the set of values that can be proposed is {0, 1}). Algorithms that reduce multivalued Byzantine
consensus to binary Byzantine consensus have been proposed for both synchronous systems (e.g., [65])
and asynchronous systems (e.g., [53]). Binary randomized algorithms rely on local coins (one coin per
process [4]) or a common coin (a coin shared by all processes [60]). When local coins are used, the
convergence time to obtain the same value is potentially exponential. When a common coin is used, the
expected number of rounds can be a small constant (e.g., 4 rounds in [49]). However, the implementation
of a distributed common coin introduces an inherent complexity [15]. Hence, it does not seem appropriate
for blockchain repeated consensus.
• The fourth (but first in chronological order) approach to circumvent the asynchronous consensus im-

possibility in the presence of faulty processes is to enrich the system with an appropriate synchrony
assumption [20, 21]. The weakest synchrony assumption that allows consensus to be solved is presented
in [8]. This last approach (additional synchrony assumption) is the one we consider in this paper. As
the synchrony assumption is assumed to hold eventually, the consensus algorithm is indulgent to initial
arbitrary delays [28]: it always preserves safety, and guarantees liveness once the synchrony assumption
holds.

Content of the paper This paper presents a time and resilience optimal Byzantine consensus algorithm suited
to consortium blockchains. As far as we know the term consortium blockchain was initially used in a blog
post2 of the founder of Ethereum [66], Vitalik Buterin, to refer to an intermediate blockchain model between
public and fully-private blockchains where only a pre-selected set of processes can participate in the consensus
and where the blockchain could potentially be accessed by anyone. The consortium blockchain is generally in
contrast with public blockchains, where any Internet users could participate in the consensus algorithm, and
fully-private blockchains, where only users of an institution can update the state of the blockchain. Public
blockchains like Bitcoin are generally pseudonymous while fully-private blockchains are typically centralized,
which makes consortium blockchain an appealing alternative blockchain model for companies. A typical ex-
ample of consortium blockchains is the testbed ran by R3, a consortium of more than 70 financial institutions
around the world.3 In 2016, R3 led some experiments on an Ethereum consortium blockchain where any insti-
tution of the consortium could participate actively in the consensus instance. It is important to note that even
within a consortium, one cannot reasonably assume synchronous communications or failures limited to crashes.
Typically, the members of the consortium often have conflicting interests—in the R3 consortium example, the
banks of the consortium are competitors—and processes cannot control the delay of messages as they typically
use Internet to communicate where congestions cannot be avoided.

The Byzantine consensus algorithm proposed in the paper is designed to comply with an extended definition
of the consensus validity property. From a structural point of view, it is made of two components.
• The first component is a reduction of multivalued consensus to binary consensus. The reduction, which

is fully asynchronous, uses neither randomization, nor an eventual leader, nor signatures. As far as we
know, this is the first asynchronous reduction that always decides a non-predetermined value in O(1)
sequence of binary consensus. The reduction only waits for the earliest terminating of the concurrent
reliable broadcast instances before spawning binary consensus instances. As it assumes t < n/3, where
n is the number of processes and t is an upper bound on the number of faulty processes, this reduction is

2https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/.
3http://www.r3cev.com/.
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resilience optimal.

• The second component is a binary Byzantine consensus (BBC) algorithm that requires neither random-
ization, nor an eventual leader, nor signatures. It is based on an appropriate binary-value broadcast
(BV-broadcast) abstraction, introduced for randomized consensus [49]. From a computability point of
view, the BBC algorithm requires t < n/3 (as the previous reduction), and an additional synchrony as-
sumption, namely, there is a time after which the transfer delay of the messages sent by the non-faulty
processes is upper bounded by some constant (but neither the time at which this occurs, nor the constant
are known by the processes [20, 21]). Practically, this means that the BBC algorithm always terminates
except if transfer delays are always increasing (in this case, a different synchrony assumption such as the
one described in [50] can be used). The binary Byzantine consensus always terminates in time O(1) if
all non-faulty processes propose the same value, otherwise it may still terminate in constant time but is
guaranteed to terminate in O(t) time, which is optimal [23].

The resulting multivalued Byzantine consensus algorithm is resilience optimal (t < n/3) but also time optimal
as it terminates in O(t). In addition to its optimalities and conceptual simplicity, the resulting multivalued
Byzantine consensus algorithm is well suited for consortium blockchains for the three following reasons:

1. The algorithm does not use an elected leader (that favors the value proposed by a particular process) or
proof-of-work, meaning that every consensus participant plays an equal role in proposing a value. In
particular, because it does not rely on the proof-of-work alternative as in Bitcoin or Ethereum, a node
of the consortium cannot outweigh other votes during consensus. We already noted that one machine
among the 50 machines of the R3 Ethereum consortium in June 2016 owned 12% of the total mining
power of the R3 Ethereum consortium blockchain, which gives a significant advantage to this machine
to attack the blockchain [57].

2. The algorithm is indulgent [28] in that it is always safe despite arbitrary delays. We believe this is an
important property for blockchain applications that trade millions of US$ volume every day4 as financial
institutions may prefer their blockchain service to be unavailable rather than compromised after conges-
tions affect the Internet communication delays. This is typically in contrast with the Ethereum algorithm
used as a testbed for the R3 consortium, where an attacker can exploit network delays to double spend
by deciding two conflicting blocks [58].

3. Finally, because we focus on the consortium blockchain model where consensus participants are re-
stricted to the members of the consortium, we can assume that the identities of the n consortium mem-
bers are known by all the participants. Typically only a subset of all blockchain participants participate
in the consensus, e.g., only n = 15 out of 50 processes of R3 were participating in the consensus [57].
These identities provide a natural protection to our algorithm against Sybil attacks without the need for
any costly proof-of-work mechanisms.

Roadmap The paper is structured in 7 sections. Section 2 presents the computation model. Section 3 intro-
duces the Blockchain Byzantine consensus. Section 4 presents a reduction of multivalued Byzantine consensus
to binary Byzantine consensus, and Section 5 presents a binary Byzantine consensus that relies on an eventual
synchrony assumption. The composition of these two algorithms provides a leader-free, randomization-free and
signature-free multivalued Byzantine consensus. Section 6 presents related works. Finally, Section 7 concludes
the paper.

2 Basic Byzantine Computation Model and Reliable Broadcast
2.1 Base computation model

Asynchronous processes The system is made up of a set Π of n asynchronous sequential processes, namely
Π = {p1, . . . , pn}; i is called the “index” of pi. “Asynchronous” means that each process proceeds at its
own speed, which can vary with time and remains unknown to the other processes. “Sequential” means that a
process executes one step at a time. This does not prevent it from executing several threads with an appropriate
multiplexing.

As local processing time are negligible with respect to message transfer delays, they are considered as
being equal to zero. (We show how to relax this assumption in Appendices B and C.) Both notations i ∈ Y and
pi ∈ Y are used to say that pi belongs to the set Y .

4https://coinmarketcap.com/.
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Communication network The processes communicate by exchanging messages through an asynchronous
reliable point-to-point network. “Asynchronous” means that there is no bound on message transfer delays, but
these delays are finite. “Reliable” means that the network does not lose, duplicate, modify, or create messages.
“Point-to-point” means that any pair of processes is connected by a bidirectional channel. Hence, when a
process receives a message, it can identify its sender.

A process pi sends a message to a process pj by invoking the primitive “send TAG(m) to pj”, where TAG
is the type of the message and m its content. To simplify the presentation, it is assumed that a process can send
messages to itself. A process pi receives a message by executing the primitive “receive()”. The macro-operation
broadcast TAG(m) is used as a shortcut for “for each pi ∈ Π do send TAG(m) to pj end for”.

Failure model Up to t processes can exhibit a Byzantine behavior [59]. A Byzantine process is a process
that behaves arbitrarily: it can crash, fail to send or receive messages, send arbitrary messages, start in an arbi-
trary state, perform arbitrary state transitions, etc. Moreover, Byzantine processes can collude to “pollute” the
computation (e.g., by sending messages with the same content, while they should send messages with distinct
content if they were non-faulty). A process that exhibits a Byzantine behavior is called faulty. Otherwise, it is
non-faulty.

Let us notice that, as each pair of processes is connected by a channel, no Byzantine process can impersonate
another process. Byzantine processes can control the network by modifying the order in which messages are
received, but they cannot postpone forever message receptions.

Notation The acronym BAMPn,t[∅] is used to denote the previous basic Byzantine Asynchronous Message-
Passing computation model; ∅ means that there is no additional assumption.

2.2 Reliable broadcast in Byzantine systems

Definition This broadcast abstraction (in short, RB-broadcast) was proposed by G. Bracha [9]. It is a one-shot
one-to-all communication abstraction, which provides processes with two operations denoted RB_broadcast()
and RB_deliver(). When pi invokes the operation RB_broadcast() (resp., RB_deliver()), we say that it “RB-
broadcasts” a message (resp., “RB-delivers” a message). An RB-broadcast instance, where process px is the
sender, is defined by the following properties.
• RB-Validity. If a non-faulty process RB-delivers a message m from a non-faulty process px, then px

RB-broadcast m.
• RB-Unicity. A non-faulty process RB-delivers at most one message from px.
• RB-Termination-1. If px is non-faulty and RB-broadcasts a message m, all the non-faulty processes

eventually RB-deliver m from px.
• RB-Termination-2. If a non-faulty process RB-delivers a message m from px (possibly faulty) then all

the non-faulty processes eventually RB-deliver the same message m from px.
The RB-Validity property relates the output to the input, while RB-Unicity states that there is no message

duplication. The termination properties state the cases where processes have to RB-deliver messages. The
second of them is what makes the broadcast reliable. It is shown in [10] that t < n/3 is an upper bound on t
when one has to implement such an abstraction.

Let us remark that it is possible that a value may be RB-delivered by the non-faulty process while its sender
is actually Byzantine and has not invoked RB_broadcast(). This may occur for example when the Byzantine
sender played at the network level, at which it sent several messages to different subsets of processes, and the
RB-delivery predicate of the algorithm implementing the RB-broadcast abstraction is eventually satisfied for
one of these messages. When this occurs, by abuse of language, we say that the sender invoked RB-broadcast.
This is motivated by the fact that, in this case, a non-faulty process cannot distinguish if the sender is faulty or
not.

Notation The basic computing model strengthened with the additional constraint t < n/3 is denotedBAMPn,t[t <
n/3].

Algorithms The algorithm described in [9] implements RB-broadcast in BAMPn,t[t < n/3]. Hence, it is
t-resilience optimal. This algorithm requires three communication steps to broadcast an application message.
An algorithm requiring only two communication steps in the system model BAMPn,t[t < n/5] is presented
in [33].
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3 Blockchain Byzantine Consensus

As in all message-passing consensus algorithms, it is assumed (in both the multivalued and binary consensus
algorithms presented below) that all non-faulty processes propose a value.

3.1 Multivalued Byzantine consensus with predicate-based validity
In this paper we consider a generalization of the classical Byzantine consensus problem, informally stated in the
Introduction. As its validity requirement is motivated by blockchain and relies on an application-specific valid()
predicate to indicate whether a value is valid, we call this problem the Validity Predicate-based Byzantine
Consensus (denoted VPBC) and define it as follows. Assuming that each non-faulty process proposes a valid
value, each of them has to decide on a value in such a way that the following properties are satisfied.5

• VPBC-Termination. Every non-faulty process eventually decides on a value.
• VPBC-Agreement. No two non-faulty processes decide on different values.
• VPBC-Validity. A decided value is valid, it satisfies the predefined predicate denoted valid().

This definition generalizes the classical definition of Byzantine consensus, which does not include the pred-
icate valid(). As an example, in the crash failure model, any proposed value is valid. In the basic Byzantine
consensus, any proposed value is valid, except when all non-faulty processes propose the same value v, in
which case only v is valid. This predicate is introduced to take into account the distinctive characteristics of
consortium blockchains, and possibly other specific Byzantine consensus problems. In the context of consor-
tium blockchains, a proposal is not valid if it does not contain an appropriate hash of the last block added to the
Blockchain.

3.2 Binary Byzantine consensus
The implementation of multivalued VPBC relies on an underlying binary Byzantine consensus (denoted BBC).
A leader-free, randomization-free and signature-free implementation of it will be described in Section 5.

The validity property of this binary Byzantine consensus is the following: if all non-faulty processes pro-
pose the same value, no other value can be decided. To prevent confusion, the validity, agreement and termina-
tion properties of BBC are denoted BBC-Validity, BBC-Agreement and BBC-Termination.

4 From Multivalued to Binary Consensus in a Byzantine System

This section describes a reduction of multivalued Byzantine consensus to the previous binary Byzantine con-
sensus. Our reduction is guaranteed to terminate after a sequence of 2 binary consensus instances. This is, as far
as we know, the first reduction that decides a non-predetermined value in a sequence of O(1) binary consensus
instances. Other reductions either return a predefined ⊥ value as if the consensus aborted [19, 54, 65], or do
not tolerate Byzantine failures and require the execution of dlog ne sequential binary consensus instances [67].
Our reduction is based on the RB-broadcast communication abstraction, and underlying instances of binary
Byzantine consensus. Let BBC denote the computational power needed to solve binary Byzantine consen-
sus. Hence, the “multivalued to binary” reduction works in the model BAMPn,t[t < n/3,BBC], which is
resilience optimal.

4.1 The reduction

Binary consensus objects As just said, in addition to the RB-broadcast abstraction, the processes cooperate
with an array of binary Byzantine consensus objects denoted BIN _CONS [1..n]. The instance BIN _CONS [k]
allows the non-faulty processes to find an agreement on the value proposed by pk. This object is implemented
with the binary Byzantine consensus algorithm presented in Section 5.

To simplify the presentation, we consider that a process pi launches its participation in BIN _CONS [k] by
invoking BIN _CONS [k].bin_propose(v), where v ∈ {0, 1}. Then, it executes the corresponding code in a
specific thread, which eventually returns the value decided by BIN _CONS [k].

5 Note that our consensus definition decouples the validity of a value from the nature (faulty or non-faulty) of the process proposing
it. We assume that every non-faulty process proposes a valid value for the sake of simplicity. However, if we assume that the Byzantine
behavior of a process is related only to its code and not to its input value (which is application-dependent), our algorithm remains
correct as long as at least one non-faulty process proposes a valid value.
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Local variables Each process pi manages the following local variables; ⊥ denotes a default value that cannot
be proposed by a (faulty or non-faulty) process.

• An array proposals i[1..n] initialized to [⊥, · · · ,⊥]. The aim of proposals i[j] is to contain the value
proposed by pj .
• An array bin_decisions i[1..n] initialized to [⊥, · · · ,⊥]. The aim of bin_decisions i[k] is to contain the

value (0 or 1) decided by the binary consensus object BIN _CONS [k].

operation mv_propose(vi) is
(01) RB_broadcast VAL(vi);
(02) repeat if

(
∃ k : (proposalsi[k] 6= ⊥) ∧ (BIN _CONS [k].bin_propose() not invoked)

)
(03) then invoke BIN _CONS [k].bin_propose(1) end if;
(04) until (∃` : bin_decisionsi[`] = 1) end repeat;
(05) for each k such that BIN _CONS [k].bin_propose() not yet invoked
(06) do invoke BIN _CONS [k].bin_propose(0) end for;
(07) wait_until (

∧
1≤x≤n bin_decisionsi[x] 6= ⊥);

(08) j ← min{x such that bin_decisionsi[x] = 1};
(09) wait_until (proposalsi[j] 6= ⊥);
(10) return(proposalsi[j]).

(11) when VAL(v) is RB-delivered from pj do if valid(v) then proposalsi[j]← v end if.

(12) when BIN _CONS [k].bin_propose() returns a value b do bin_decisionsi[k]← b.

Figure 1: From multivalued to binary Byzantine consensus in BAMPn,t[t < n/3,BBC]

The algorithm The algorithm reducing multivalued Byzantine consensus to binary Byzantine consensus is
described in Figure 1. In this algorithm, a process invokes the operation mv_propose(v), where v is the value
it proposes to the multivalued consensus. The behavior of a process pi can be decomposed into four phases.

• Phase 1: pi disseminates its value (lines 01 and 11). A process pi first sends its value to all the processes
by invoking the RB-broadcast operation (line 01). When a process RB-delivers the value v RB-broadcast
by a process pj , it stores it in proposalsi[j] if v is valid (line 11).
• Phase 2: pi starts participating in a first set of binary consensus instances (lines 02-04).

Then, pi enters a loop in which it starts participating in the binary consensus instances BIN _CONS [k],
to which it proposes the value 1, associated with each process pk from which it has RB-delivered the
proposed value (lines 02-03). This loop stops as soon as pi discovers a binary consensus instance
BIN _CONS [`] in which 1 was decided (line 04). (The binary consensus we propose later allows to
reach the end of phase (2) after only O(1) message delays.)
• Phase 3: pi starts participating in all other binary consensus instances (lines 05-06).

After it knows a binary consensus instance decided 1, pi invokes bin_propose(0) on all the binary con-
sensus instances BIN _CONS [k] in which it has not yet participated. Let us notice that it is possible that,
for some of these instances BIN _CONS [k], no process has RB-delivered a value from the associated
process pk. The aim of these consensus participations is to ensure that all binary consensus instances
eventually terminate.
• Phase 4: pi decides a value (lines 07-10 and 12).

Finally pi considers the first (according to the process index order) among the successful binary consensus
objects, i.e., the ones that returned 1 (line 08).6 Let BIN _CONS [j] be this binary consensus object. As
the associated decided value is 1, at least one non-faulty process proposed 1, which means that it RB-
delivered a value from the process pj (lines 02-03). Let us observe that, due to the RB-Termination-2
property, this value is eventually RB-delivered by every non-faulty process. Consequently, pi decides it
(lines 09-10).

4.2 Correctness proof
Lemma 1. There is at least one binary consensus instance that decides value 1, and all non-faulty processes
exit the repeat loop.

6One could replace min by a deterministic function suited for blockchain that returns the value that represents the block with the
maximum number of transactions to prevent a Byzantine process from exploiting a lack of fairness to its own benefit.
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From an operational point of view, this lemma can be re-stated as follows: there is at least one ` ∈ [1..n] such
that at each non-faulty process pi, we eventually have bin_decisions i[`] = 1.
Proof The proof is by contradiction. Let us assume that, at any non-faulty process pi, no bin_decisions i[`],
1 ≤ ` ≤ n, is ever set to 1 (line 12). It follows that no non-faulty process exits the “repeat” loop (lines 02-
04). As a non-faulty process pj RB-broadcasts a valid value, it follows from the RB-Termination-1 property,
that each non-faulty process pi RB-delivers the valid proposal of pj , and consequently we eventually have
proposals i[j] 6= ⊥ at each non-faulty process pi (line 11).

It follows from the first sub-predicate of line 02 that all non-faulty processes pi invokes bin_propose(1).
on the BBC object BIN _CONS [j]. Hence, from its BBC-Termination, BBC-Agreement, BBC-Validity, and
Intrusion-tolerance properties, this BBC instance returns the value 1 to all non-faulty processes, which exit the
“repeat” loop. 2Lemma 1

Lemma 2. A decided value is a valid value (i.e., it satisfies the predicate valid()).

Proof Let us first observe that, for a value proposals i[j] to be decided by a process pi, we need to have
bin_decisions i[j] = 1 (lines 08-10).

If the value 1 is decided by BIN _CONS [j], bin_decisions i[j] = 1 is eventually true at each non-faulty
process pi (line 12). If follows from (i) the fact that the value 1 can be proposed to a BBC instance only
at line 03, and (ii) the Intrusion-tolerance property of BIN _CONS [j], that at least one non-faulty process
pi invoked BIN _CONS [j].bin_propose(1). Due to the predicate of line 02, this non-faulty process pi was
such that proposals i[j] 6= ⊥ when it invoked BIN _CONS [j].bin_propose(1). Due to line 11, it follows that
proposals i[j] contains a valid value. 2Lemma 2

Lemma 3. No two non-faulty processes decide different values.

Proof Let us consider any two non-faulty processes pi and pj , such that pi decides proposals i[k1] and pj
decides proposalsj [k2]. It follows from line 08 that k1 = min{x such that bin_decisions i[x] = 1} and k2 =
min{x such that bin_decisionsj [x] = 1}.

On the one hand, it follows from line 07 that (
∧

1≤x≤n bin_decisions i[x] 6= ⊥) and
(
∧

1≤x≤n bin_decisionsj [x] 6= ⊥), from which we conclude that both pi and pj know the binary value decided
by each binary consensus instance (line 12). Due to the BBC-Agreement property of each binary consensus
instance, we also have ∀x : bin_decisions i[x] = bin_decisionsj [x]. Let dec[x] = bin_decisions i[x] =
bin_decisionsj [x]. It follows then from line 08 that k1 = k2 = min{x such that dec[x] = 1} = k. Hence,
dec[k] = 1.

On the other hand, it follows from the Intrusion-tolerance property of BIN _CONS [k] that a non-faulty
process p` invoked BIN _CONS [k].bin_propose(1). As this invocation can be issued only at line 03, we
conclude (from the predicate of line 02) that proposals`[k] = v 6= ⊥. As p` is non-faulty, it follows from the
RB-Unicity and RB-Termination-2 properties that all non-faulty processes RB-delivers v from pk. Hence, we
eventually have proposals i[k] = proposalsj [k], which concludes the proof of the lemma. 2Lemma 3

Lemma 4. Every non-faulty process decides a value.

Proof It follows from Lemma 1 that there is some pj such that we eventually have bin_decisions i[j] = 1 at
all non-faulty processes, and no non-faulty process blocks forever at line 04. Hence, all non-faulty processes
invoke each binary consensus instance (at line 03 or line 06). Moreover, due to their BBC-Termination property,
each of the n binary consensus instances returns a result at each non-faulty process (line 12). It follows that
no non-faulty process pi blocks forever at line 07. Finally, as seen in the proof of Lemma 3, the predicate of
line 09 is eventually satisfied at each non-faulty process, which concludes the proof of the lemma. 2Lemma 4

Theorem 1. The algorithm described in Figure 1 implements multivalued Byzantine consensus (VPBC) in the
system model BAMPn,t[t < n/3,BBC].

Proof Follows from Lemma 2 (VPBC-Validity), Lemma 3 (VPBC-Agreement), and Lemma 4 (VPBC-Termination).
2Theorem 1
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5 Binary Consensus in Eventually Synchronous Byzantine Systems

This section describes the underlying binary Byzantine consensus algorithm BBC, which provides the processes
with the operation bin_propose(). An advantage of this algorithm is that it is guaranteed to terminate if all
non-faulty processes propose the same value, even without synchrony, and always in a constant number of
message delays. This algorithm may terminate in constant time, this happens for example if all non-faulty
processes propose the same value. This algorithm relies on an all-to-all binary communication abstraction (BV-
broadcast) and an eventual synchrony assumption, which are described in the next subsections. The algorithm
is built incrementally. We first present a simple algorithm that satisfies only the consensus safety properties
(BBC-Validity and BBC-Agreement). This algorithm is then extended with the eventual synchrony assumption
to satisfy the consensus liveness property (BBC-Termination). The aim of this incremental approach is to
facilitate the understanding and the proofs.

5.1 The BV-broadcast all-to-all communication abstraction
The binary value broadcast (BV-broadcast) communication abstraction has been introduced in [49] (its imple-
mentation is recalled in Appendix A).

Definition BV-broadcast is an all-to-all communication abstraction that provides the processes with a single
operation denoted BV_broadcast(). When a process invokes BV_broadcast TAG(m), we say that it “BV-
broadcasts the message TAG(m)”. The content of a message m is 0 or 1 (hence the term “binary-value” in the
name of this communication abstraction).

In a BV-broadcast instance, each non-faulty process pi BV-broadcasts a binary value and obtains a set of
binary values, stored in a local read-only set variable denoted bin_values i. This set, initialized to ∅, increases
when new values are received. BV-broadcast is defined by the four following properties.

• BV-Obligation. If at least (t + 1) non-faulty processes BV-broadcast the same value v, v is eventually
added to the set bin_values i of each non-faulty process pi.
• BV-Justification. If pi is non-faulty and v ∈ bin_values i, v has been BV-broadcast by a non-faulty

process.
• BV-Uniformity. If a value v is added to the set bin_values i of a non-faulty process pi, eventually v ∈
bin_valuesj at every non-faulty process pj .
• BV-Termination. Eventually the set bin_values i of each non-faulty process pi is not empty.

A BV-broadcast property The following property is an immediate consequence of the previous proper-
ties. Eventually the sets bin_valuesi of the non-faulty processes pi (i) become non-empty, (ii) become equal,
(iii) contain all the values broadcast by non-faulty processes, and (iv) never contain a value broadcast only by
Byzantine processes. However, no non-faulty process knows when (ii) and (iii) occur.

5.2 A safe binary Byzantine consensus algorithm in BAMPn,t[t < n/3]
Figure 2 describes a simple binary Byzantine consensus algorithm, which satisfies the BBC-Validity and BBC-
Agreement properties in the system model BAMPn,t[t < n/3]. This algorithm, which is round-based and
relies on the previous BV-broadcast abstraction, has the same structure as the randomized consensus algorithm
introduced in [49].

Local variables Each process pi manages the following local variables.

• esti: local current estimate of the decided value. It is initialized to the value proposed by pi.
• ri: local round number, initialized to 0.
• bin_values i[1..]: array of binary values; bin_values i[r] (initialized to ∅) stores the local output set filled

by BV-broadcast associated with round r. (This unbounded array can be replaced by a single local
variable bin_values i, reset to ∅ at the beginning of every round. We consider here an array to simplify
the presentation.)
• bi: auxiliary binary value.
• values i: auxiliary set of values.

Message types The algorithm uses two message types, denoted EST and AUX. Both are used in each round,
hence they always appear with a round number.
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• EST[r]() is used at round r by pi to BV-broadcast its current decision estimate esti.
• AUX[r]() is used by pi to disseminate its current value of bin_values i[r] (with the help of the broadcast()

macro-operation).

The algorithm Let us consider Figure 2. After it has deposited its binary proposal in esti (line 01), each
non-faulty process pi enters a sequence of asynchronous rounds. Each round r uses a BV-broadcast instance
whose associated local variable at process pi is bin_values i[r].

operation bin_propose(vi) is
(01) esti ← vi; ri ← 0;
(02) while (true) do
(03) ri ← ri + 1;
(04) BV_broadcast EST[ri](esti);
(05) wait_until

(
bin_valuesi[ri] 6= ∅

)
;

(06) broadcast AUX[ri](bin_valuesi[ri]);
(07) wait_until

(
messages AUX[ri](b_valp(1)), ..., AUX[ri](b_valp(n−t)) have been received
from (n− t) different processes p(x), 1 ≤ x ≤ n− t, and their contents are
such that ∃ a non-empty set valuesi such that (i) valuesi ⊆ bin_valuesi[ri]
and (ii) valuesi = ∪1≤x≤n−tb_valx

)
;

(08) bi ← ri mod 2;
(09) if (valuesi = {v}) // valuesi is a singleton whose element is v
(10) then esti ← v; if (v = bi) then decide(v) if not yet done end if;
(11) else esti ← bi
(12) end if;
(13) end while.

Figure 2: A safe algorithm for binary Byzantine consensus in BAMPn,t[t < n/3]

The behavior of a non-faulty process pi during a round r can be decomposed in three phases.

• Phase 1: Coordinated exchange of current estimates (lines 03-05).
Process pi first progresses to the next round, and BV-broadcasts its current estimate (line 04). Then pi
waits until its set bin_values i[r] is not empty (let us recall that, when bin_values i[r] becomes non-empty,
it has not necessarily its final value).
• Phase 2: Second exchange of estimates to favor convergence (lines 06-07).

In this second phase, pi broadcasts (hence, this is neither a BV-broadcast nor a RB-broadcast) a message
AUX[r]() whose content is bin_values i[r] (line 06). Then, pi waits until it has received a set of values
values i satisfying the two following properties.

– values i ⊆ bin_values i[r]. Thanks to the BV-Justification property, this ensures that (even if Byzan-
tine processes send fake messages AUX[r]() containing values proposed only by Byzantine pro-
cesses) values i will contain only values broadcast by non-faulty processes.

– The values in values i come from the messages AUX[r]() of at least (n− t) different processes.

Hence, at any round r, after line 07, values i ⊆ {0, 1} and contains only values BV-broadcast at line 04
by non-faulty processes.
• Phase 3: Try to decide (lines 08-12).

This phase is a purely local computation phase, during which (if not yet done) pi tries to decide the value
b = r mod 2 (lines 08 and 10), depending on the content of values i.

– If values i contains a single element v (line 09), then v becomes pi’s new estimate. Moreover, v is
candidate to be decided. To ensure BBC-Agreement, v can be decided only if v = b. The decision
is realized by the statement decide(v) (line 10).

– If values i = {0, 1}, then pi cannot decide. As both values have been proposed by non-faulty
processes, to entail convergence to agreement, pi selects one of them (b, which is the same at all
non-faulty processes) as its new estimate (line 11).

Let us observe that the invocation of decide(v) by pi does not terminate the participation of pi in the
algorithm, namely pi continues looping forever. The algorithm can be made terminating, using the ran-
domized technique presented in [49]. Instead we preserve the simplicity of this algorithm and postpone
a deterministic terminating solution in Section 5.5.
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5.3 Safety proof
Process pi being a non-faulty process, let valuesri denote the value of the set values i which satisfies the pred-
icate of line 07. Moreover, let us recall that, given a run, C denotes the set of non-faulty processes in this
run.

Lemma 5. Let t < n/3. If at the beginning of a round r, all non-faulty processes have the same estimate v,
they never change their estimate value thereafter.

Proof Let us assume that all non-faulty processes (which are at least n− t > t+ 1) have the same estimate v
when they start round r. Hence, they all BV-broadcast the same message EST[r](v) at line 04. It follows from
the BV-Justification and BV-Obligation properties that each non-faulty process pi is such that bin_values i[r] =
{v} at line 05, and consequently can broadcast only AUX[r]({v}) at line 06. Considering any non-faulty process
pi, it then follows from the predicate of line 07 (values i contains only v), the predicate of line 09 (values i is a
singleton), and the assignment of line 10, that esti keeps the value v. 2Lemma 5

Lemma 6. Let t < n/3.
(
(pi, pj ∈ C) ∧ (valuesri = {v}) ∧ (valuesrj = {w})

)
⇒ (v = w).

Proof Let pi be a non-faulty process such that valuesri = {v}. It follows from line 07 that pi received the
same message AUX[r]({v}) from (n − t) different processes, i.e., from at least (n − 2t) different non-faulty
processes. As n− 2t ≥ t+ 1, this means that pi received the message AUX[r]({v}) from a set Qi including at
least (t+ 1) different non-faulty processes.

Let pj be a non-faulty process such that valuesrj = {w}. Hence, pj received AUX[r]({w}) from a set Qj of
at least (n− t) different processes. As (n− t) + (t+ 1) > n, it follows that Qi ∩Qj 6= ∅. Let pk ∈ Qi ∩Qj .
As pk ∈ Qi, it is a non-faulty process. Hence, at line 06, pk sent the same message AUX[r]({}) to pi and pj ,
and we consequently have v = w. 2Lemma 6

Lemma 7. Let t < n/3. The value decided by a non-faulty process was proposed by a non-faulty process.

Proof Let us consider the round r = 1. Due to the BV-Justification property of the BV-broadcast of line 04,
it follows that the sets bin_values i[1] contains only values proposed by non-faulty processes. Consequently,
the non-faulty processes broadcast at line 06 messages AUX[1]() containing sets with values proposed only by
non-faulty processes. It then follows from the predicate (i) of line 07 (values1i ⊆ bin_values i[1]), and the BV-
Justification property of the BV-broadcast abstraction, that the set values1i of each non-faulty process contains
only values proposed by non-faulty processes. Hence, the assignment of esti (be it at line 10 or 11) provides it
with a value proposed by a non-faulty process. The same reasoning applies to rounds r = 2, r = 3, etc., which
concludes the proof of the lemma. 2Lemma 7

Lemma 8. Let t < n/3. No two non-faulty processes decide different values.

Proof Let r be the first round during which a non-faulty process decides, let pi be a non-faulty process that
decides in round r (line 10), and let v be the value it decides. Hence, we have valuesri = {v} where v =
(r mod 2).

If another non-faulty process pj decides during round r, we have valuesrj = {w}, and, due to Lemma 6,
we have w = v. Hence, all non-faulty processes that decide in round r, decide v. Moreover, each non-faulty
process that decides in round r has previously assigned v = (r mod 2) to its local estimate esti.

Let pj be a non-faulty that does not decide in round r. As valuesri = {v}, and pj does not decide in round
r, it follows from Lemma 6 that we cannot have valuesrj = {1 − v}, and consequently valuesrj = {0, 1}.
Hence, in round r, pj executes line 11, where it assigns the value (r mod 2) = v to its local estimate estj .

It follows that all non-faulty processes start round (r+1) with the same local estimate v = r mod 2. Due to
Lemma 5, they keep this estimate value forever. Hence, no different value can be decided in a future round by
a non-faulty process that has not decided during round r, which concludes the proof of the lemma. 2Lemma 8

Lemma 9. Let the system model be BAMPn,t[t < n/3]. No non-faulty process remains blocked forever in a
round.
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Proof Let us assume by contradiction that there is a first round in which some non-faulty process pi remains
blocked forever. As all non-faulty processes terminate round (r − 1), they all start round r and all invoke the
round r instance of BV-broadcast. Due to the BV-Termination property, the wait_until() statement of line 05
terminates at each non-faulty process. Then, as all non-faulty processes broadcast a message AUX[r]() (line 06),
it follows that the wait_until() statement of line 07 terminates at each non-faulty process. It follows that there
is no first round at which a non-faulty process remains blocked forever during round r. 2Lemma 9

Lemma 10. Let the system model be BAMPn,t[t < n/3]. If all non-faulty processes pi terminate a round r
with valuesri = {v}, they all decide by round (r + 1).

Proof If all non-faulty processes are such that valuesri = {v}, and the round r is such that v = (r mod 2), it
follows from lines 08-10 that (if not yet done) each non-faulty process decides during round r.

If r is such that v 6= (r mod 2), each non-faulty process sets its current estimate to v (line 10). As during
the next round we have v = ((r + 1) mod 2), and valuesr+1

i = bin_values i[r + 1] = {v} at each non-faulty
process pi, each non-faulty process decides during round (r + 1). 2Lemma 10

Lemma 11. Let the system model be BAMPn,t[t < n/3]. If every non-faulty process pi terminates a round r
with valuesri = {0, 1}, they it decides by round (r + 2).

Proof If every non-faulty processes pi is such that valuesri = {0, 1}, it executes line 11 during round r, and
we have esti = (r mod 2) = v when it starts round (r + 1). Due to Lemma 5, it keeps this estimate forever.
As all non-faulty processes execute rounds (r + 1) and (r + 2) (Lemma 9) and v = ((r + 2) mod 2), we
have valuesr+2

i = {v}, at each non-faulty process pi. It follows that each non-faulty process decides at line 10.
2Lemma 11

Theorem 2. The algorithm described in Figure 2 satisfies the safety consensus properties.

Proof The proof follows from Lemma 7 (BBC-Validity) and Lemma 8 (BBC-Agreement). 2Theorem 2

Decision The algorithm described in Figure 2 does not guarantee decision. This may occur for example when
some non-faulty processes propose 0, the other non-faulty processes propose 1, and the Byzantine processes
play double game, each proposing 0 or 1 to each non-faulty process, so that it never happens that at the end of
a round all non-faulty processes have either values i = {0, 1}, or they all have values i = {v} with v either 0 or
1. In other words, if not all non-faulty processes propose the same initial value, Byzantine processes can make,
round after round, some non-faulty processes have values i = {0, 1}, while the rest of non-faulty processes
have values i = {v}, with v 6= (r mod 2), avoiding them to decide.7

5.4 Eventual synchrony assumption

Consensus impossibility It it well-known that there is no consensus algorithm ensuring both safety and live-
ness properties in fully asynchronous message-passing systems in which even a single process may crash [24].
As the crash failure model is less severe than the Byzantine failure model, the consensus impossibility remains
true if processes may commit Byzantine failures.

To circumvent such an impossibility, and ensure the consensus termination property, the model must be
enriched with additional computational power. Examples of such a power can be provided with failure de-
tectors [18, 26, 34], constraints on the set of input vectors [25, 51], randomization [4, 49, 60], or synchrony
assumptions [20, 21] (see [61] for more developments). As announced, we consider here the approach based
on additional synchrony assumptions.

Additional synchrony assumption In the following, it is assumed that after some finite time τ , there is
an upper bound δ on message transfer delays. This assumption is denoted 3Synch (Eventual Synchrony
assumption). To exploit it through the use of timers, we also assume that processes can measure accurately
intervals of time, although they do not need to have synchronized clocks.

Notation The model BAMPn,t[t < n/3] enriched with 3Synch is denoted BAMPn,t[t < n/3,3Synch].
7In the case of the randomized binary consensus algorithm of [49], the common coin guarantees termination with probability 1,

because eventually the singleton value in valuesi will match the coin.
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5.5 A binary Byzantine consensus algorithm in BAMPn,t[t < n/3,3Synch]
In this section, we describe our binary Byzantine consensus algorithm that is guaranteed to terminate in O(t)
rounds, which is known to be optimal [23]. The algorithm described in Figure 3 is an extension of the safe
algorithm of Figure 2, whose aim is to add the consensus termination property. The lines with the same
numbers are the same in both algorithms. The new lines in Figure 3 are numbered “Newx”, where x is an
integer, and the lines that are modified are prefixed by “M-”. In addition to the use of local timers, to eventually
benefit from the 3Synch assumption, this extended round-based algorithm uses the round coordinator notion:
in each round a predetermined process plays a special role, namely, the round coordinator strives to impose
a value that the other processes would decide. To this end, each process in turn plays the round coordinator
role [18, 21]. More precisely, the processes being p1, .., pn, the coordinator of round r is the process pi such
that i = ((r − 1) mod n) + 1.8

Additional local variables and message type In addition to esti, ri, bin_values i[r], and values i, each
process pi manages the following local variables.

• timeri is a local timer, and timeouti a timeout value, both used to exploit the assumption 3Synch .
• coordi is the index of the current round coordinator.
• auxi is an auxiliary set of values, used to store the value (if any) that the current coordinator strives to

impose as decision value.

The coordinator of round r, uses the message type COORD_VALUE[r]() to broadcast the value it tries to
favor to become the decided value.

operation bin_propose(vi) is
(01) esti ← vi; ri ← 0;

timeouti ← 0;
(02) while (true) do
(03) ri ← ri + 1;
(New1) coord i ← ((ri − 1) mod n) + 1;

timeouti ← timeouti + 1; set timeri to timeouti;
(04) BV_broadcast EST[ri](esti);
(New2) if (i = coord i) then

wait_until (bin_valuesi[ri] = {w}); // w is the first value to enter bin_valuesi[ri]

broadcast COORD_VALUE[ri](w)
end if;

(M-05) wait_until
(
(bin_valuesi[ri] 6= ∅) ∧ (timeri expired)

)
;

(New3) set timeri to timeouti;
(New4) if

(
(COORD_VALUE[ri](w) received from pcoordi ) ∧ (w ∈ bin_valuesi[ri])

)
then auxi ← {w}
else auxi ← bin_valuesi[ri]

end if;
(M-06) broadcast AUX[ri](auxi);
(M-07) wait_until

(
(messages AUX[ri](b_valp(1)), ..., AUX[ri](b_valp(n−t)) have been received
from (n− t) different processes p(x), 1 ≤ x ≤ n− t, and their contents are
such that ∃ a non-empty set valuesi such that (i) valuesi ⊆ bin_valuesi[ri]
and (ii) valuesi = ∪1≤x≤n−tb_valx) ∧ (timeri expired)

)
;

(New5) if (when considering the whole set of the messages AUX[ri]() received, several sets
values1i, values2i, ... satisfy the previous wait predicate) ∧ (one of them is auxi)

then valuesi ← auxi end if;
(08) bi ← ri mod 2;
(09) if (valuesi = {v}) // valuesi is a singleton whose element is v
(10) then esti ← v; if (v = bi) then decide(v) if not yet done end if;
(11) else esti ← bi
(12) end if;
(13) end while.

Figure 3: A safe and live algorithm for binary Byzantine consensus in BAMPn,t[t < n/3,3Synch]

Description of the extended algorithm The following items explain the new and modified statements that
appear in Figure 3.

8Let us notice that the notion of round coordinator is different from the notion of an eventual leader. A round coordinator is a simple
algorithmic mechanism which can be implemented in BAMPn,t[t < n/3], while an eventual leader is an oracle which cannot be
implemented in BAMPn,t[t < n/3].
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• At line New1, pi computes the current round coordinator, and sets its local timer whose expiry is used in
the predicate of line M-05. The timeout value is initialized before entering the loop, and then increased
at every round.
• Line New3 is a simple reset of the timer, whose expiry is used in the predicate of the modified line M-07.
• Lines New2, New4, M-06, and New5 realize a mechanism that allows the current round coordinator to

try to impose the first value that enters into its bin_values set as the decided value9. Combined with the
fact that there is a time after which the messages exchanged by the non-faulty processes are timely, this
ensures that there will be a round during which the non-faulty processes will have a single value in their
sets values i (which –by Lemma 10– entails their decision).
• Modified lines M-05 and M-07: addition of the timer expiration in the predicate considered at the corre-

sponding line.

As just seen, the idea made operational by these new or modified statements is the following: benefit from
a non-faulty round coordinator to entail decision, by requiring this process to broadcast a proposed value so
that all non-faulty processes adopt it. To this end:

• The round coordinator pk broadcasts the message COORD_VALUE[ri](w), where w is the first value that
enters its bin_values set (line New2). If pk is non-faulty, the timeout values of the non-faulty processes
are big enough, and there is a bound on message transfer delays, all non-faulty processes will receive it
before their timer expiration at line M-06.
• Then, assuming the previous item, all non-faulty processes set auxi to {w} (line New4), and broadcast it

(line M-06). The predicate w ∈ bin_values i[ri] is used to prevent a Byzantine coordinator to send fake
values that would foil non-faulty processes.
• Finally, all the non-faulty processes will receive the message AUX[ri]({w}) from (n − t) different pro-

cesses, and by line New5 will set values i = {w}. This will entail their decision during the round (r+ 1)
or (r + 2).

From asynchrony to synchrony In order to guarantee decision, after the eventual synchrony assumption
holds and the timeout value at each non-faulty process is big enough (i.e., bigger than the upper bound on
message transmission delay), we need that eventually all non-faulty processes execute rounds synchronously.
Observe that, due to initial asynchrony, non-faulty processes can start the consensus algorithm at different
instants. Moreover, due to the potential participation of Byzantine processes, some non-faulty processes can
advance rounds, without deciding, while other non-faulty processes are still executing previous rounds. By
using a timeout that grows by 1 each round all processes eventually reach a round from which they behave
synchronously.

Lemma 12. Let us consider the algorithm of Figure 3. Eventually the non-faulty processes attain a round from
which they behave synchronously.

Proof By 3Synch there is eventually an unknown bound δ on message transfer delays. As indicated in
Section 2, it is assumed that local processing time is equal to zero. (Alternatively, two additional proofs are
provided in Appendices B and C that do not rely on this assumption.) In the following, time units will be given
in integers. The notation twith a subscript (for example tfirst0) wil be used to represent a time measurement that
is given by the number of time units that have passed since the algorithm started, as measured by an omniscient
global observer G. G observes time passing at the same rate as the non-faulty processes and events can occur
on integer time units.

We will use the following definitions:
• tfirstr is the time as measured by G at which the first non-faulty process pfirst reaches round r (tfirst0 is

the time when the first non-faulty process starts the consensus).
• tlastr is the time as measured by G at which the last non-faulty process plast reaches round r (tlast0 is the

time when the last non-faulty process starts the consensus).
For a round to be synchronous, all non-faulty processes must arrive at that round with enough time to

broadcast their messages to all non-faulty processes before the timeout of that round expires at any non-faulty
process. In the case that the last non-faulty process to arrive at the round is the coordinator, it may take up to

9A similar mechanism based on a round coordinator and the same message exchange pattern is used in the Byzantine synchronous
algorithm presented in [3] and in [52] to solve asynchronous k-set agreement with restricted failure detectors.
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3 message delays before its COORD_VALUE[r]() message is received by all non-faulty processes (this includes
up to 2 message delays until a value enters its bin_values[r] and an additional message delay to broadcast
COORD_VALUE[r]()). Therefore, we must have a round r where

tlastr + δ ≤ tfirstr + timeoutr. (1)

Note that given the timeout starts at 0 on round 0 and grows by one each round, we can replace timeoutr for r
for any round r.

Consider the first round r′ where timeoutr′ ≥ δ is satisfied. For any round r′′ where r′′ ≥ r′ the maximum
amount of time for plastr′′ to complete the round will be 2 × timeoutr′′ . This is due to the fact that the last
non-faulty process to arrive at a round will not have to wait longer than δ to receive the messages needed to
satisfy the conditions on lines M-05 and M-07, thus the time taken to execute the round will be no more than
the length of the two timeouts. All other non-faulty processes will take at least 2 × timeoutr′′ to complete
round r′′.

From this the time where the last non-faulty process reaches some round r′′ can be written as:

tlastr′′ = tlastr′ + 2

(
r′′−1∑
x=r′

x

)
.

And the time when the first non-faulty process reaches round r′′ as:

tfirstr′′ ≥ tfirstr′ + 2

(
r′′−1∑
x=r′

x

)
.

Plugging this into inequality 1 results in:

tlastr′ + 2

(
r′′−1∑
x=r′

x

)
+ 3× δ ≤ tfirstr′ + 2

(
r′′−1∑
x=r′

x

)
+ r′′.

Removing equal components we have:

tlastr′ + 3× δ ≤ tfirstr′ + r′′.

Thus, by round r′′ = tlastr′ + 3× δ − tfirstr′ synchrony is ensured.
It will now be shown that once Inequality (1) is satisfied for one round r′′ (where timeoutr′′ ≥ δ), it will

remain satisfied in the all following rounds. Consider round r′′ + 1, given that Inequality (1) is satisfied for
round r′′, we have:

tlastr′′ + 3× δ ≤ tfirstr′′ + timeoutr′′ . (2)

And it needs to be shown that the following inequality is true:

tlastr′′+1
+ 3× δ ≤ tfirstr′′+1

+ timeoutr′′+1 (3)

Using the same argument as above, the times at which the last and first processes arrive at round r′′ + 1 are:
tlastr′′+1

= tlastr′′ + 2 × timeoutr′′ and tfirstr′′+1
≥ tfirstr′′ + 2 × timeoutr′′ . Plugging this into inequality

(3) results in:

tlastr′′ + 2× timeoutr′′ + 3× δ ≤ tfirstr′′ + 2× timeoutr′′ + timeoutr′′+1.

Removing equal parts leads to:

tlastr′′ + 3× δ ≤ tfirstr′′ + timeoutr′′+1.

This inequality, which is equivalent to Inequality (3) has the same components as Inequality (2), except having
timeoutr′′+1 instead of timeoutr′′ . Therefore, Inequality (3) must be satisfied, given that Inequality (2) is
satisfied. By induction this holds true for any round after r′′. 2Lemma 12
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5.6 Proof of the 3Synch-based algorithm
The proof consists of two parts: (i) show that the added statements preserve the consensus safety properties
proved for the time-free algorithm of Figure 2, and (ii) show that all non-faulty processes eventually decide.

Lemma 13. The algorithm described in Figure 3 satisfies the BBC-Validity and BBC-Agreement properties.

Proof The proof consists in showing that the Lemmas 5, 6, 7 and 8 remain correct when considering the
algorithm of Figure 3. Basically, these proofs remain correct because, as the new and modified statements
do not assign values to the sets bin_values i[r] at the non-faulty processes, and no property of bin_values i
is related to a timing assumption, the set bin_values i[r] of a non-faulty process pi can never contain values
proposed by Byzantine processes only. It follows from this observation that the local variables esti and values i
of any non-faulty process (defined or updated at lines M-07, New5, 10, or 11) can contain only values from
non-faulty processes. More specifically we have the following.

• Lemma 5. Let r be the considered round, and v be the current estimate of the non-faulty processes. We
then have bin_values i[r] = {v} at line M-05 of every non-faulty process pi.

– If the round coordinator pk is non-faulty, we have at every non-faulty process auxi = bin_values i[r] =
{v}. It then follows that valuesri = {v} and the lemma remains true due to lines 09 and 10.

– If the round coordinator pk is Byzantine and sends possibly different values to the non-faulty pro-
cesses, let us consider a non-faulty process that receives the message COORD_VALUE[r]({1− v}).
As (1 − v) /∈ bin_values i[r], at line New4, pi executes the “else” part where it sets auxi to {v}
(the only value in bin_values i[r]), and the lemma follows.

• Lemma 6. As it does not depend on the timers, and is related only to the fact that each of the sets valuesri
and valuesrj of two non-faulty processes are singletons, the proof remains valid.
• Lemma 7. The proof follows from the fact that the sets bin_values i of any non-faulty process can contain

only values proposed by non-faulty processes.
• Lemma 8. As it relies only on the sets valuesri of the non-faulty processes, this proof remains correct.

2Lemma 13

Lemma 14. The algorithm described in Figure 3 ensures that every non-faulty process decides.

Proof Let us first observe that, as timers always expire, the “wait” statements (modified lines M-05 and M-
07) always terminate, and consequently Lemma 9 remains true. The reader can also check that the proof of
Lemma 10 remains valid.

It remains to show that there is eventually a round r at the end of which all non-faulty processes pi have
the same value w in their set variables (valuesri = {w}) (from which decision follows due to Lemma 10) The
proof shows that, due to (a) the eventual synchrony assumption, (b) the round coordinator mechanism, and (c)
the messages COORD_VALUE[ ]() sent by the round coordinators, there is a round r such that valuesri = {w}
at each non-faulty process.

Let us consider a time τ from which (due to Lemma 12) the system behaves synchronously (the timeout
values of all non-faulty processes are such that all the messages exchanged by the non-faulty processes arrive
timely). Let r be the smallest round number coordinated by a non-faulty process pk after τ . At line New2 of
round r, pk broadcasts COORD_VALUE[r](w), being w the first value that enters its set bin_valuesk[r]. The
message COORD_VALUE[r](w) is received timely by all non-faulty processes, that set auxi to {w} in line
New4. Consequently, in line M-06 all non-faulty processes broadcast AUX[r]({w}), and receive in line M-07
(n− t) AUX[r]({w}) messages from different processes, setting in line New5 values i to {w}. By Lemma 10,
all non-faulty processes decide w by round r + 1, which concludes the proof of the lemma. 2Lemma 14

Theorem 3. The algorithm described in Figure 3 solves binary Byzantine consensus in the system model
BAMPn,t[t < n/3,3Synch].

Proof The proof follows directly from Lemma 13 (BBC-Validity and BBC-Agreement) and Lemma 14 (BBC-
Termination). 2Theorem 3
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6 Related Work

Byzantine consensus Our validated predicate-based consensus differs from previous definitions in the way
validity is defined. The seminal paper on the agreement between Byzantine generals considers a single source;
its validity requires that if the source proposes only one value, then only this value can be decided [42]. In
the case where multiple, potentially Byzantine, processes propose values, validity often requires that if all non-
faulty processes propose the same value then this value should be decided [21]. The classic validity used in
the crash model is sometimes used in the Byzantine model requiring that a decided value is proposed by some
process [18] but the notion of valid value proposed by a Byzantine process can be unclear. A predicate was
previously used to assess whether a value is valid, however, the resulting predicate-based validity requires that
if all non-faulty processes propose the same valid value then this value should be decided [37]. A variant of
this definition does not require the value proposed by all correct to be decided but can be violated with a non-
null probability [14]. It has been informally suggested for randomized consensus that a binary value could be
decided if it was provided along with some validating data [15]. When values are not necessarily binary, the
decided value must sometimes be within the range of the values proposed by the non-faulty processes [6] or
sufficiently close to the median of values proposed by non-faulty processes [64]. Finally, validity sometimes
requires that the decided value is either a special value ⊥ or is a value proposed by a non-faulty process [19].
As ⊥ is a predefined value, deciding this value is similar to aborting [29]. Our validity property allows for a
valid value proposed only by Byzantine processes to be decided rather than aborting.

Multivalued to binary consensus reduction Despite its simplicity of presentation, there are surprisingly few
reductions of multivalued consensus to binary consensus. The first reduction was designed for the synchronous
model [65]. The key idea is to use a single binary consensus instance such that a non-faulty process would
only propose value 1 in a round if it knows that all non-faulty processes received the same value before. In the
crash model, some reductions executed multiple binary consensus instances, but always sequentially [55, 67].
The first crash-resilient reduction completes after n binary consensus instances [55] whereas the second one
improved upon it to complete after dlog ne sequential binary consensus instances [67]. By contrast, our reduc-
tion algorithm, besides applying to the Byzantine model, executes all binary consensus instances in parallel.
Interestingly, a very similar algorithm to our reduction was used to solve agreement on a common subset in
order to acheive secure computation [5]. The same single binary instance reduction to [65] was later used in
the asynchronous model for randomized consensus [19, 54]. Besides being randomized, the drawback of these
reductions is that they may have to return ⊥ in case no decision can be taken regarding the proposed value. By
contrast, our reduction decides a valid value that was proposed.

As far as we know, eventually-synchronous signature-free Byzantine consensus algorithms do not use re-
duction. The classic implementation can only terminate in a round coordinated by a non-faulty process if the
faulty coordinator sends inappropriate values [21], a drawback our algorithm does not have.

Leader-based consensus It is well known that leader-based consensus algorithms have some drawbacks.
In crash-prone systems, the weakest class of failure detectors that allows to solve the consensus problem is
3S [18] (which is equivalent to the eventual leader failure detector Ω introduced in [17]). Its eventual accuracy
property guarantees that there is a time after which there is a non-faulty process that is never suspected by
the non-faulty processes. Building upon this guarantee, several consensus algorithms were proposed, namely,
the processes proceed in asynchronous rounds managed by a pre-determined leader or coordinator that tries to
impose a value as the decision. The approach is similar to our binary Byzantine consensus algorithm, with the
difference that we do not rely on any failure detector or eventual leader. Moreover, 3S and Ω cannot be easily
implemented in Byzantine systems.

Leader-based algorithms, like PBFT [16], FAB [46] or Zyzzyva [36], do not adopt the rotating coordinator
approach. The drawback of classic rotating coordinator approaches is that they may have to run through the
t+ 1 rounds even in periods of synchrony [21]. Instead, leader-based algorithms may terminate faster in period
of synchrony if the leader is non-faulty because they do not have to run through the t+ 1 rounds, as explained
in [13]. These leader-based approaches require a period of synchrony long enough not only for consensus to
terminate, provided that the leader is non-faulty or the value is stable [46], but also to elect a non-faulty leader
or obtain a stable value. Another interesting point is that PBFT executes O(t) rounds in which all non-faulty
processes broadcast 2t + 1 checkpoint messages, which results in O(n4) bits exchanged when t = Ω(n),
whereas in our multivalued consensus algorithm, all the non-faulty processes broadcast in each of O(t) rounds
of n binary consensus instances, leading to the same O(n4) bits complexity.
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To bypass the difficulty of electing a leader in the presence of Byzantine failures, a synchronous Byzantine
agreement that implements a virtual leader was proposed [41], it avoids having to detect and remove a malicious
leader. Similar to our algorithm, processes exchange proposals that they record in a vector where proposals
from non-faulty processes are identical. The main difference is that it assumes that processes synchronize their
clocks as it requires the vector to be full and contain proposals from all non-faulty processes within some fixed
time ∆ [40]. Our approach is different as we do not need the vector to be full or to contain proposals from all
non-faulty processes, we simply apply the results of the binary consensus instances as a bitmask to the vector.

To conclude, our algorithm does not need a leader, making it harder to delay termination. In addition, while
our algorithm is based on a rotating coordinator it does not require t+ 1 rounds to terminate if good conditions
are met, in which case non-faulty processes can decide even in rounds coordinated by faulty processes.

Unrestricted blockchains Original blockchain systems like Bitcoin [56] and Ethereum [66] target a peer-to-
peer model where the number of processes is frequently changing and is not known by processes. Their con-
sensus algorithms rely on processes to generate a computationally-intensive proof-of-work to limit the power of
malicious processes when trying to reach consensus. The drawback is that they usually solve consensus prob-
abilistically [27]. To improve the scalability of Bitcoin, Bitcoin-NG [22] solves a variant of consensus with
probabilistic termination and probabilistic agreement by relying on a leader. Elastico [44] reaches a variant
of consensus whose proposed values satisfy a specific predicate function among subcommittees of c processes
each, but requires the communication to be synchronous.

Private and consortium blockchains With the advent of private and consortium blockchains, where the
participation is restricted to n processes, new blockchain systems suggested the use of classic Byzantine fault
tolerant algorithms (e.g., [16]) when n > 3t. After the seminal PBFT approach, several implementations were
proposed to reduce latency when n > 5t (e.g., [46]), simplify the development (e.g., [1]) or trade fault-tolerance
for performance (e.g., [43]). Tendermint consensus uses a variant of PBFT with a rotating leader election [38].
Ripple’s consensus algorithm relies on unique node lists that define a quorum system where sufficient nodes
are controlled by the Ripple company [63]. Stellar uses adaptive quorum systems to implement consensus [47].
R3 has just released Corda that may use a Byzantine fault tolerant algorithm or a crash-tolerant consensus
algorithm with stronger assumption [30]. Hyperledger Fabric [12] uses PBFT but should provide support to a
variant of Apache Kafka in the near future. A recent implementation [48] suggested to reach consensus with a
probabilistic termination.

7 Conclusion

This paper has presented a new multivalued Byzantine consensus algorithm tailored for consortium blockchains.
It is asymptotically time optimal and resilience optimal and does not rely on a leader, randomization or sig-
natures. It combines a reduction from multivalued to binary consensus that applies a bitmask to an array of
proposals and a binary consensus to build this bitmask. By spawning binary consensus instances in parallel,
our reduction is as far as we know the first to decide a non-predefined value in a sequence of O(1) binary
consensus instances.

Despite the large interest in blockchains (and cryptocurrency applications), there is relatively few results
on the formalization of this problem. Our paper tried to address this limitation by formalizing the blockchain
consensus as a general variant of Byzantine consensus. The resulting algorithm decouples the problem of
validating a block from the problem of deciding on a block; it builds upon the number n of consortium members
to avoid Sybil attacks; and it is indulgent in that safety is not affected when communication is delayed.
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A A BV-broadcast algorithm

A simple self-explanatory algorithm implementing the BV-broadcast abstraction in the system modelBAMPn,t[t <
n/3] is described in Figure 4. A proof of it can be found in [49] where BV-broadcast was used in the context
of randomized consensus.

B Correctness proof of the 3Synch algorithm with Byzantine tolerant dis-
tributed clocks

It is possible to replace the timeouts used in the algorithm in Figure 3 and to relax the assumption that processing
time is null with the Byzantine fault tolerant distributed clocks of [21] to decide when processes can move
forward in rounds. We have then the following lemma, which is then used instead of Lemma 12 in the proof of
Theorem 3.

Lemma 15. Let us consider the algorithm of Figure 3 with the addition of Byzantine fault tolerant distributed
clocks from [21]. Eventually the non-faulty processes attain a round from which they behave synchronously.
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operation BV_broadcast MSG(vi) is
(01) broadcast B_VAL(vi).

when B_VAL(v) is received
(02) if

(
B_VAL(v) received from (t+ 1) different processes and B_VAL(v) not yet broadcast

)
(03) then broadcast B_VAL(v) // a process echoes a value only once
(04) end if;
(05) if

(
B_VAL(v) received from (2t+ 1) different processes

)
(06) then bin_valuesi ← bin_valuesi ∪ {v} // local delivery of a value
(07) end if.

Figure 4: An algorithm implementing BV-broadcast in BAMPn,t[t < n/3] (from [49])

C Correctness proof of the 3Synch algorithm with a catch-up mechanism

From asynchrony to synchrony Here a catch-up mechanism is provided as a modification to the algorithm
in Figure 3 that ensures processes eventually execute synchronous rounds where non-faulty processes may
observe time at different rates and processing time is non-negligible.

Lemma 12 ensures that all non-faulty processes eventually participate in synchronous rounds in a system
where eventually the non-faulty processors run at the same speed and computation time is negligible. As
this timing assumption cannot be ensured in all systems, this section extends the algorithm with a catch-up
mechanism, which guarantees progress in systems where the difference in process speed is bounded by some
unknown constant.

As we have seen, in order to guarantee a decision, after the assumed 3Synch assumption holds, it is needed
that eventually all non-faulty processes execute rounds synchronously. Observe that, due to initial asynchrony,
non-faulty processes can start the consensus algorithm at different instants. Moreover, due to the potential
participation of Byzantine processes, some non-faulty processes can advance rounds –without deciding– while
other non-faulty processes are still executing previous rounds.

Before describing the catch-up mechanism the mini-round notation will be defined. Each round r is split
into two mini-rounds, with the first mini-round representing lines 03 to (New4) and the second representing
lines M-06 to 12. Like rounds, mini-rounds can be identified by a number with the first mini-round starting at
0 and increasing by one. For example round 3 is made up of mini-rounds 6 and 7.

Catch-up mechanism The mechanism that allows non-faulty processes to catch up relies on the following
two changes to the algorithm10:
• First, the timers are started only when the conditions of lines M-05 and M-07 are satisfied, i.e., on line

M-05 only once bin_values i[ri] 6= ∅ is true, is the timer started. Similarly on line M-07 the timer is only
started when n − t AUX[ri]() messages satisfying the conditions are received. Let the timeout start at 0
on mini-round 0 and grow by 1 each mini-round.
• Second, when a process is in a mini-round ρ and receives messages corresponding to another mini-round
ρ′ > ρ from (t+ 1) different processes (i.e., from at least one non-faulty process), the process no longer
waits for timers in mini-rounds ρ, .., (ρ′ − 1). It still completes these mini-rounds, but does it without
waiting for timers expiration.

The idea of these mechanisms is to allow late or slow non-faulty processes to catch up to the most advanced
non-faulty processes (as measured by their mini-round number).

We assume that each process has a local clock that allows it to measure time units. Time units will be
given in integers. A process uses its local clock to measure the amount of time it waits for a timeout (where
a timeout of 1 is 1 time unit). The notation t with a subscript (for example tfirst0) will be used to represent
a time measurement that is given by the number of time units that have passed since the algorithm started, as
measured by an omniscient global observer G. By 3Synch , processes are able to observe time at different
rates, but within an unknown fixed bound. For simplicity assume that the fastest process observes time at a rate
no faster than observed by the global observer G and all other processes observe time at this rate or slower.

Notations Similarly to previous sections, the following notations and definitions are used in the following.
• δ is a fixed, but unknown bound on message transfer delays as ensured by 3Synch and measured in time

units as observed by G.
10Similar mechanisms are used by PBFT [16].
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• tfirstρ is the time, as measured by G, at which the first non-faulty process pfirstρ reaches mini-round ρ
(tfirst0 is the time at which the first non-faulty process starts the consensus).
• tlastρ is the time, as measured by G, at which the last non-faulty process plastρ reaches mini-round ρ

(tlast0 is the time at which the last non-faulty process starts the consensus).
• θfast (resp. θslow) is the minimum (resp. maximum) amount of time, as observed by G, for any process

to perform the computation of any mini-round (a unknown bounded difference between θfast and θslow
is ensured by 3Synch).
• γfastρ is the minimum amount of time, as observed by G, in a mini-round ρ that any process waits on

line M-05 or M-07 before starting its timer for that mini-round.
• Mini-round ρδ is the first mini-round where timeout > δ.

Lemma 16. Consider the algorithm of Figure 3 enriched with the previous catch-up mechanism. There is a
mini-round ρt such that in ρt and all following mini-rounds all non-faulty processes must wait for at least part
of the timeout, i.e., they do not receive t+ 1 messages from a round larger than ρt until after they start waiting
at the timeout of round ρt.

Proof Let us only consider mini-rounds where ρt > ρδ. For all non-faulty processes to wait at a timeout in
a mini-round ρt the last non-faulty process to arrive at that mini-round must arrive before it could receive a
message from some other non-faulty process that is executing a later mini-round (note that given ρt > ρδ, this
can only be ensured when the processes are no more than 1 mini-round apart), i.e., the following must hold:

tlastρt < tfirstρt+1
. (4)

Let us now find when this can be satisfied. By definition, a process can spend no less time than (γfastρ′ +

θfast + timeout) in a mini-round ρ′. Given that the timeout starts at 0 on mini-round 0 and grows by 1 in each
mini-round, timeout can be replaced with ρ for any mini-round ρ. We then have:

tfirstρ′ ≥ tfirstρδ +

ρ′−1∑
x=ρδ

γfastx + θfast + x

 .

Notice that from the component
∑ρ′−1

x=ρδ
x (i.e., the timeout), the value of tfirstρ′ is quadratic in the number of

mini-rounds.
Now consider the slowest non-faulty process starting from mini-round ρδ that does not wait at a timeout.

This process can spend no more time in a mini-round ρ′ than 2 message delays plus the processing time for
the mini-round, i.e., 2 × δ + θslow. The reason for this is as follows: To complete the mini-round the process
must satisfy the condition on line M-05 or M-07. Keep in mind that, given that the process does not wait at a
timeout, it must have received t + 1 messages from a later mini-round, meaning that some non-faulty process
has already completed ρ′. Line M-05 requires (bin_values i[ri] 6= ⊥). It is known that a non-faulty process
has completed this round and that process has therefore already satisfied this condition, and that all non-faulty
processes have executed line 04 (given that this is the slowest process). With this, and the BV-Uniformity
property of the BV_broadcast() operation, all non-faulty processes will have a value in bin_values i[ri] after
at most 2 message delays after the slowest process executes the BV_broadcast(). Similarly, on line M-07 all
non-faulty processes will receive the n − t AUX messages needed to satisfy the condition in 1 message delay
after the slowest non-faulty process broadcasts its AUX message, but may need to wait another message delay
in case a non-faulty process had a value enter its bin_values i[ri] immediately before broadcasting its AUX
message. We then have:

tlastρ′ ≤ tlastρδ +

ρ′−1∑
x=ρδ

2× δ + θslow

 .

Notice that the value of tlastρ′ is linear in the number of mini-rounds.
Now given tfirstρ′ is quadratic while tlastρ′ is linear, inequality (4) must eventually be satisfied, thus there

will be a mini-round where all non-faulty processes wait for at least part of their timeout.
It will now be shown by induction that after timeout > (2×δ+θslow) inequality (4) holds for all following

mini-rounds. Consider tlastρt < tfirstρt+1
is satisfied, let us now show that tlastρt+1 < tfirstρt+2

is satisfied
as well. For this to not hold, the slowest non-faulty process must spend more time on round ρt than the fastest

v



non-faulty process spends on round (ρt + 1). Given that ρt > ρδ, process plastρt must receive (t+ 1) messages
from round (ρt + 1) before process pfirstρt+1 completes round (ρt + 1). Once these messages are received we
have already shown that this process will take no more than 2 × δ + θslow time to complete the round. Thus,
as long as timeout > (2 × δ + θslow), which will eventually be true given 3Synch and the growing timeout,
process plastρt will reach round (ρt + 1) before pfirstρt+1 reaches round (ρt + 2). 2Lemma 16

Lemma 17. Consider the algorithm of Figure 3 enriched with the previous catch-up mechanism. Eventually
the non-faulty processes attain a mini-round from which they behave synchronously.

Proof By Lemma 16 it is known that there exists a mini-round ρt where all non-faulty processes wait for at
least part of their timeout. This is ensured after rounds where timeout > (2× δ + θslow). Consider we are in
such rounds. Now for a mini-round to be synchronous, all non-faulty processes need to arrive at that mini-round
with enough time to broadcast its messages to all non-faulty processes before any non-faulty process moves
onto the next mini-round. In the case that the last non-faulty process to arrive at the round is the coordinator, it
may take up to 3 message delays before its COORD_VALUE[r]() message is received by all non-faulty processes
(this includes up to 2 message delays until a value enters its bin_values[r] and an additional message delay to
broadcast COORD_VALUE[r]()). Notice that before a non-faulty process starts its timer for a mini-round it must
wait until the condition on line M-05 or M-07 is satisfied. Thus, for a mini-round ρ′t to by synchronous where
ρ′t ≥ ρt, the following needs to be ensured:

tlastρ′t
+ (3× δ) + θslow ≤ tfirstρ′t + γfastρ′t

+ timeout. (5)

By time (tfirstρ′t
+ γfastρ′t

+ θfast) at least one process has satisfied the condition on line M-05 or M-07 (this

is given by the definition of γ). As a result all processes will receive (t + 1) messages from mini-round ρ′t by
time (tfirstρ′t

+ γfastρ′t
+ θfast + δ). Now given Lemma 16 and that (ρ′t − 1) > δ, it is known that that the

slowest process is no further behind than waiting at the timeout of mini-round (ρ′t − 1). After getting these
(t + 1) messages from mini-round ρ′t the slow process will then skip the timeout of mini-round (ρ′t − 1) and
reach the following mini-round in at most 2 additional message delays (2 message delays are needed for the
same reasons given in Lemma 16 to satisfy the condition line M-05 or M-07) plus any processing time, i.e.:

tlastρ′t
≤ tfirstρ′t + γfastρ′t

+ θfast + θslow + (3× δ).

Now plugging this into inequality (5) leads to timeout ≥ (7× δ) + (2× θslow) + θfast (note that 2× θslow is
included to account for possible processing times in both rounds (ρ′t − 1) and ρ′t). But given that the timeout
grows in each mini-round and that δ, θfast, and θslow are bound by 3Synch there will eventually be a mini-
round where this holds true.

Finally, notice that as long as the timeout is this large (i.e. timeout ≥ (7 × δ) + (2 × θslow) + θfast)
and Lemma 16 holds then the above argument is valid for any round. Now given that timeout ≥ (7 × δ) +
(2 × θslow) + θfast is larger than the timeout needed for Lemma 16 to hold for every following round, once
inequality (5), i.e. synchrony, it true for one round, it will also hold for every following round. 2Lemma 17
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