-
Notifications
You must be signed in to change notification settings - Fork 2
/
imagenet_64x64_dogs_train_joint_training.py
404 lines (321 loc) · 16.7 KB
/
imagenet_64x64_dogs_train_joint_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# -*- coding:utf-8 -*-
'''
Implememtation of the joint training which can be seen as the upperbound
'''
import tensorflow as tf
tf.set_random_seed(1993)
import utils_resnet_64x64
import numpy as np
np.random.seed(1993)
import os
import pprint
import visualize_result
from sklearn.metrics import confusion_matrix
import pickle
import imagenet_64x64
flags = tf.app.flags
flags.DEFINE_string("dataset", "imagenet_64x64_dogs", "The name of dataset")
flags.DEFINE_boolean('use_momentum', True, 'Gradient descent or gradient descent with momentum')
flags.DEFINE_float('momentum', 0.9, '')
flags.DEFINE_integer('epochs_per_category', 60, 'number of epochs for each training session')
flags.DEFINE_integer('train_batch_size', 128, 'training batch size')
flags.DEFINE_integer('test_batch_size', 128, 'test batch size')
flags.DEFINE_float('base_lr', .2, '2. for sigmoid, .2 for softmax')
flags.DEFINE_float('weight_decay', 0.00001, '0.00001')
flags.DEFINE_float('lr_factor', 5., '')
flags.DEFINE_integer('display_interval', 20, '')
flags.DEFINE_integer('test_interval', 100, '')
lr_strat = [20, 30, 40, 50]
flags.DEFINE_string('result_dir', 'result/', '')
# Network architecture
flags.DEFINE_string('network_arch', 'resnet', 'resnet')
# flags.DEFINE_integer('num_resblocks', 5, 'number of resblocks when ResNet is used')
flags.DEFINE_boolean('use_softmax', True, 'True: softmax; False: sigmoid')
flags.DEFINE_boolean('no_truncate', False, '')
# Add how many classes every time
flags.DEFINE_integer('nb_cl', 10, '')
# DEBUG
flags.DEFINE_integer('from_class_idx', 0, 'starting category_idx')
flags.DEFINE_integer('to_class_idx', 119, 'ending category_idx')
# Init params when new nodes added
flags.DEFINE_string('init_strategy', 'no', 'no | last | all')
# Order file
flags.DEFINE_string('order_file', 'order_1', '')
# Data aug
flags.DEFINE_boolean('flip', False, '')
FLAGS = flags.FLAGS
pp = pprint.PrettyPrinter()
def main(_):
pp.pprint(flags.FLAGS.__flags)
order = []
with open('imagenet_64x64_dogs_%s.txt' % FLAGS.order_file) as file_in:
for line in file_in.readlines():
order.append(int(line))
order = np.array(order)
NUM_CLASSES = 120
NUM_TEST_SAMPLES_PER_CLASS = 50
def build_cnn(inputs, is_training):
train_or_test = {True: 'train', False: 'test'}
if FLAGS.network_arch == 'resnet':
logits, end_points = utils_resnet_64x64.ResNet(inputs, train_or_test[is_training], num_outputs=NUM_CLASSES,
alpha=0.0,
scope=('ResNet-'+train_or_test[is_training]))
else:
raise Exception()
return logits, end_points
# Save all intermediate result in the result_folder
method_name = '_'.join(os.path.basename(__file__).split('.')[0].split('_')[4:])
cls_func = '' if FLAGS.use_softmax else '_sigmoid'
result_folder = os.path.join(FLAGS.result_dir, FLAGS.dataset + ('_flip' if FLAGS.flip else '') + '_' + FLAGS.order_file,
'nb_cl_' + str(FLAGS.nb_cl),
'non_truncated' if FLAGS.no_truncate else 'truncated',
FLAGS.network_arch + cls_func + '_init_' + FLAGS.init_strategy,
'weight_decay_' + str(FLAGS.weight_decay),
'base_lr_' + str(FLAGS.base_lr), method_name)
# Add a "_run-i" suffix to the folder name if the folder exists
if os.path.exists(result_folder):
temp_i = 2
while True:
result_folder_mod = result_folder + '_run-' + str(temp_i)
if not os.path.exists(result_folder_mod):
result_folder = result_folder_mod
break
temp_i += 1
os.makedirs(result_folder)
print('Result folder: %s' % result_folder)
'''
Define variables
'''
batch_images = tf.placeholder(tf.float32, shape=[None, 64, 64, 3])
batch = tf.Variable(0, trainable=False)
learning_rate = tf.placeholder(tf.float32, shape=[])
'''
Network output mask
'''
mask_output = tf.placeholder(tf.bool, shape=[NUM_CLASSES])
'''
Old and new ground truth
'''
one_hot_labels_truncated = tf.placeholder(tf.float32, shape=[None, None])
'''
Define the training network
'''
train_logits, _ = build_cnn(batch_images, True)
train_masked_logits = tf.gather(train_logits, tf.squeeze(tf.where(mask_output)), axis=1)
train_masked_logits = tf.cond(tf.equal(tf.rank(train_masked_logits), 1),
lambda: tf.expand_dims(train_masked_logits, 1),
lambda: train_masked_logits)
train_pred = tf.argmax(train_masked_logits, 1)
train_ground_truth = tf.argmax(one_hot_labels_truncated, 1)
correct_prediction = tf.equal(train_pred, train_ground_truth)
train_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
reg_weights = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
regularization_loss = FLAGS.weight_decay * tf.add_n(reg_weights)
'''
More Settings
'''
if FLAGS.use_softmax:
empirical_loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels_truncated,
logits=train_masked_logits)
else:
empirical_loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=one_hot_labels_truncated,
logits=train_masked_logits)
loss = empirical_loss + regularization_loss
if FLAGS.use_momentum:
opt = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum).minimize(loss, global_step=batch)
else:
opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=batch)
'''
Define the testing network
'''
test_logits, _ = build_cnn(batch_images, False)
test_masked_logits = tf.gather(test_logits, tf.squeeze(tf.where(mask_output)), axis=1)
test_masked_logits = tf.cond(tf.equal(tf.rank(test_masked_logits), 1),
lambda: tf.expand_dims(test_masked_logits, 1),
lambda: test_masked_logits)
test_pred = tf.argmax(test_masked_logits, 1)
test_accuracy = tf.placeholder(tf.float32)
'''
Copy network (define the copying op)
'''
if FLAGS.network_arch == 'resnet':
all_variables = tf.get_collection(tf.GraphKeys.WEIGHTS)
else:
raise Exception('Invalid network architecture')
copy_ops = [all_variables[ix + len(all_variables) // 2].assign(var.value()) for ix, var in
enumerate(all_variables[0:len(all_variables) // 2])]
'''
Init certain layers when new classes added
'''
init_ops = tf.no_op()
if FLAGS.init_strategy == 'all':
init_ops = tf.global_variables_initializer()
elif FLAGS.init_strategy == 'last':
if FLAGS.network_arch == 'resnet':
init_vars = [var for var in tf.global_variables() if 'fc' in var.name and 'train' in var.name]
init_ops = tf.initialize_variables(init_vars)
'''
Create session
'''
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
'''
Summary
'''
train_loss_summary = tf.summary.scalar('train_loss', loss)
train_acc_summary = tf.summary.scalar('train_accuracy', train_accuracy)
test_acc_summary = tf.summary.scalar('test_accuracy', test_accuracy)
summary_dir = os.path.join(result_folder, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
train_summary_writer = tf.summary.FileWriter(os.path.join(summary_dir, 'train'), sess.graph)
test_summary_writer = tf.summary.FileWriter(os.path.join(summary_dir, 'test'))
iteration = 0
'''
Declaration of other vars
'''
# Average accuracy on seen classes
aver_acc_over_time = dict()
aver_acc_per_class_over_time = dict()
conf_mat_over_time = dict()
# Network mask
mask_output_val = np.zeros([NUM_CLASSES], dtype=bool)
mask_output_test = np.zeros([NUM_CLASSES], dtype=bool)
# train and test data of seen classes
train_x = np.zeros([0, 64, 64, 3], dtype=np.float32)
train_y = np.zeros([0, NUM_CLASSES], dtype=np.float32)
test_x = np.zeros([0, 64, 64, 3], dtype=np.float32)
test_y = np.zeros([0], dtype=np.float32)
test_images, test_labels, test_one_hot_labels, _ = imagenet_64x64.load_test_data()
'''
Class Incremental Learning
'''
print('Starting from category ' + str(FLAGS.from_class_idx + 1) + ' to ' + str(FLAGS.to_class_idx + 1))
print('Adding %d categories every time' % FLAGS.nb_cl)
assert(FLAGS.from_class_idx % FLAGS.nb_cl == 0)
for category_idx in range(FLAGS.from_class_idx, FLAGS.to_class_idx + 1, FLAGS.nb_cl):
to_category_idx = category_idx + FLAGS.nb_cl - 1
if FLAGS.nb_cl == 1:
print('Adding Category ' + str(category_idx + 1))
else:
print('Adding Category %d-%d' % (category_idx + 1, to_category_idx + 1))
if FLAGS.no_truncate:
mask_output_val[:] = True
else:
mask_output_val[:to_category_idx+1] = True
# Test on all seen classes
mask_output_test[:to_category_idx+1] = True
for category_idx_in_group in range(category_idx, to_category_idx + 1):
real_category_idx = order[category_idx_in_group]
real_images_train_cur_cls, _ = imagenet_64x64.load_train_data(real_category_idx, flip=FLAGS.flip)
train_y_cur_cls = np.zeros([len(real_images_train_cur_cls), NUM_CLASSES])
train_y_cur_cls[:, category_idx_in_group] = np.ones([len(real_images_train_cur_cls)])
train_x = np.concatenate((train_x, real_images_train_cur_cls))
train_y = np.concatenate((train_y, train_y_cur_cls))
test_indices_cur_cls = [idx for idx in range(len(test_labels)) if
test_labels[idx] == real_category_idx]
test_x_cur_cls = test_images[test_indices_cur_cls, :]
test_y_cur_cls = np.ones([len(test_indices_cur_cls)]) * category_idx_in_group
test_x = np.concatenate((test_x, test_x_cur_cls))
test_y = np.concatenate((test_y, test_y_cur_cls))
if FLAGS.no_truncate:
train_y_truncated = train_y[:, :]
else:
train_y_truncated = train_y[:, :to_category_idx + 1]
# No need to train the classifier if there is only one class
if to_category_idx > 0 or not FLAGS.use_softmax:
# init certain layers
sess.run(init_ops)
# Shuffle the indices and create mini-batch
batch_indices_perm = []
epoch_idx = 0
lr = FLAGS.base_lr
while True:
# Generate mini-batch
if len(batch_indices_perm) == 0:
if epoch_idx >= FLAGS.epochs_per_category:
break
if epoch_idx in lr_strat:
lr /= FLAGS.lr_factor
print("NEW LEARNING RATE: %f" % lr)
epoch_idx = epoch_idx + 1
shuffled_indices = range(len(train_x))
np.random.shuffle(shuffled_indices)
for i in range(0, len(shuffled_indices), FLAGS.train_batch_size):
batch_indices_perm.append(shuffled_indices[i:i + FLAGS.train_batch_size])
batch_indices_perm.reverse()
popped_batch_idx = batch_indices_perm.pop()
# Use the random index to select random images and labels.
train_x_batch = train_x[popped_batch_idx, :, :, :]
train_y_batch = [train_y_truncated[k] for k in popped_batch_idx]
# Train
train_loss_summary_str, train_acc_summary_str, train_accuracy_val, \
train_loss_val, train_empirical_loss_val, train_reg_loss_val, _ = sess.run(
[train_loss_summary, train_acc_summary, train_accuracy, loss, empirical_loss,
regularization_loss, opt], feed_dict={batch_images: train_x_batch,
one_hot_labels_truncated: train_y_batch,
mask_output: mask_output_val,
learning_rate: lr})
# Test
if iteration % FLAGS.test_interval == 0:
sess.run(copy_ops)
# Divide and conquer: to avoid allocating too much GPU memory
test_pred_val = []
for i in range(0, len(test_x), FLAGS.test_batch_size):
test_x_batch = test_x[i:i + FLAGS.test_batch_size]
test_pred_val_batch = sess.run(test_pred, feed_dict={batch_images: test_x_batch,
mask_output: mask_output_test})
test_pred_val.extend(test_pred_val_batch)
test_accuracy_val = 1. * np.sum(np.equal(test_pred_val, test_y)) / (len(test_pred_val))
test_per_class_accuracy_val = np.diag(confusion_matrix(test_y, test_pred_val)) * 2
# I simply multiply the correct predictions by 2 to calculate the accuracy since there are 50 samples per class in the test set
test_acc_summary_str = sess.run(test_acc_summary, feed_dict={test_accuracy: test_accuracy_val})
test_summary_writer.add_summary(test_acc_summary_str, iteration)
print("TEST: step %d, lr %.4f, accuracy %g" % (iteration, lr, test_accuracy_val))
print("PER CLASS ACCURACY: " + " | ".join(str(o) + '%' for o in test_per_class_accuracy_val))
# Print the training logs
if iteration % FLAGS.display_interval == 0:
train_summary_writer.add_summary(train_loss_summary_str, iteration)
train_summary_writer.add_summary(train_acc_summary_str, iteration)
print("TRAIN: epoch %d, step %d, lr %.4f, accuracy %g, loss %g, empirical %g, reg %g" % (
epoch_idx, iteration, lr, train_accuracy_val, train_loss_val,
train_empirical_loss_val, train_reg_loss_val))
iteration = iteration + 1
'''
Final test(before the next class is added)
'''
sess.run(copy_ops)
# Divide and conquer: to avoid allocating too much GPU memory
test_pred_val = []
for i in range(0, len(test_x), FLAGS.test_batch_size):
test_x_batch = test_x[i:i + FLAGS.test_batch_size]
test_pred_val_batch = sess.run(test_pred, feed_dict={batch_images: test_x_batch,
mask_output: mask_output_test})
test_pred_val.extend(test_pred_val_batch)
test_accuracy_val = 1. * np.sum(np.equal(test_pred_val, test_y)) / (len(test_pred_val))
conf_mat = confusion_matrix(test_y, test_pred_val)
test_per_class_accuracy_val = np.diag(conf_mat)
# Record and save the cumulative accuracy
aver_acc_over_time[to_category_idx] = test_accuracy_val
aver_acc_per_class_over_time[to_category_idx] = test_per_class_accuracy_val
conf_mat_over_time[to_category_idx] = conf_mat
dump_obj = dict()
dump_obj['flags'] = flags.FLAGS.__flags
dump_obj['aver_acc_over_time'] = aver_acc_over_time
dump_obj['aver_acc_per_class_over_time'] = aver_acc_per_class_over_time
dump_obj['conf_mat_over_time'] = conf_mat_over_time
np_file_result = os.path.join(result_folder, 'acc_over_time.pkl')
with open(np_file_result, 'wb') as file:
pickle.dump(dump_obj, file)
visualize_result.vis(np_file_result, 'ImageNetDogs')
# Save the final model
checkpoint_dir = os.path.join(result_folder, 'checkpoints')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt'))
sess.close()
if __name__ == '__main__':
tf.app.run()