-
Notifications
You must be signed in to change notification settings - Fork 2
/
cifar_train_esgr_mix_balanced_v2.py
797 lines (667 loc) · 41.7 KB
/
cifar_train_esgr_mix_balanced_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
# -*- coding:utf-8 -*-
# The second implementation of the balanced version of ESGR-mix (in the paper, I only report the result of the
# first implementation of ESGR-mix (setting FLAGS.balanced to True). The difference is the composition of the
# training samples of the new classes. In the first implementation, only a portion of the incoming samples of
# new classes are utilized. In this implementation, I sample data of new classes every epoch and make each sample
# equally sampled
import tensorflow as tf
tf.set_random_seed(1993)
import utils_lenet
import utils_nin
import utils_resnet
import numpy as np
np.random.seed(1993)
import os
import pprint
import visualize_result
from sklearn.metrics import confusion_matrix
import pickle
from wgan.model_32x32 import GAN
flags = tf.app.flags
# Generator: W-GAN_GP
flags.DEFINE_integer("dim", 128, "This overfits substantially; you're probably better off with 64 [128]")
flags.DEFINE_integer("lambda_param", 10, "Gradient penalty lambda hyperparameter [10]")
flags.DEFINE_integer("critic_iters", 5, "How many critic iterations per generator iteration [5]")
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")
flags.DEFINE_integer("iters", 10000, "How many generator epochs to train for [64]")
flags.DEFINE_integer("output_dim", 3072, "Number of pixels in CIFAR10 (3*32*32) [3072]")
flags.DEFINE_string("mode", 'wgan-gp', "Valid options are dcgan, wgan, or wgan-gp")
flags.DEFINE_string("result_dir_wgan", 'result_wgan', "")
flags.DEFINE_integer("gan_save_interval", 500, 'interval to save a checkpoint(number of iters)')
flags.DEFINE_float("adam_lr", 1e-3, 'default: 1e-3')
flags.DEFINE_float("adam_beta1", 0.5, 'default: 0.5')
flags.DEFINE_float("adam_beta2", 0.9, 'default: 0.9')
flags.DEFINE_boolean("gan_finetune", False, 'if gan finetuned from the pre-trained model on all classes')
flags.DEFINE_integer("gan_finetune_from", -1,
'finetune from which iteration(-1 for final model: folder name is "final")')
flags.DEFINE_string("pretrained_model_base_dir", 'result_wgan_all_classes',
'if gan finetuned from the pre-trained model on all classes')
flags.DEFINE_string("pretrained_model_sub_dir", 'cifar-10/0.0001/200000/all_classes',
'if gan finetuned from the pre-trained model on all classes')
flags.DEFINE_boolean("only_gen_no_cls", False, "")
flags.DEFINE_boolean('use_momentum', True, 'Gradient descent or gradient descent with momentum')
flags.DEFINE_float('momentum', 0.9, '')
flags.DEFINE_integer('epochs_per_category', 70, 'number of epochs for each training session')
flags.DEFINE_integer('train_batch_size', 128, 'training batch size')
flags.DEFINE_integer('test_batch_size', 128, 'test batch size')
flags.DEFINE_float('base_lr', 0.01, 'lenet: 0.01, nin: 0.1, resnet: 0.1')
flags.DEFINE_float('weight_decay', 0.00001, '0.00001, resnet: 0.002')
flags.DEFINE_float('lr_factor', 5., '')
flags.DEFINE_integer('display_interval', 20, '')
flags.DEFINE_integer('test_interval', 100, '')
lr_strat = [49, 63]
flags.DEFINE_string('result_dir', 'result/', '')
# Network architecture
flags.DEFINE_string('network_arch', 'lenet', 'lenet, resnet, nin')
flags.DEFINE_boolean('use_dropout', True, 'only for lenet')
flags.DEFINE_integer('num_resblocks', 5, 'number of resblocks when ResNet is used')
flags.DEFINE_boolean('use_softmax', True, 'True: softmax; False: sigmoid')
flags.DEFINE_boolean('no_truncate', False, '')
# Add how many classes every time
flags.DEFINE_integer('nb_cl', 10, '')
# DEBUG
flags.DEFINE_integer('from_class_idx', 0, 'starting category_idx')
flags.DEFINE_integer('to_class_idx', 99, 'ending category_idx')
# Init params when new nodes added
flags.DEFINE_string('init_strategy', 'no', 'no | last | all')
# Order file
flags.DEFINE_string('order_file', 'order_1', '[order_1, order_2, order_3]')
# PROTO
flags.DEFINE_integer('num_exemplars_per_class', 20, '')
flags.DEFINE_string('exemplar_select_criterion', 'high', 'high | low | random')
flags.DEFINE_float('proto_weight', 1., 'the weight of the proto')
flags.DEFINE_float('gen_weight', 1., 'the weight of the generated samples')
flags.DEFINE_boolean('reorder_exemplars', False, '')
flags.DEFINE_boolean('visualize_exemplars', True, 'save exemplars into pngs files')
# PROTO AUTO
flags.DEFINE_boolean('auto_choose_num_exemplars', False, 'choose the samples with the highest prob as exemplars or not')
flags.DEFINE_boolean('memory_constrained', True, '')
flags.DEFINE_integer('memory_upperbound', 2000, '2000 for CIFAR-100(to make fair comparison with iCaRL')
flags.DEFINE_float('auto_param1', 39, '')
flags.DEFINE_float('auto_param2', 8, '')
# Accelerate
flags.DEFINE_boolean('use_cache_for_gen_samples', False, 'use GANs once to generate samples for each class to accelerate')
flags.DEFINE_boolean('cache_size_per_class', 1000, 'max samples generated')
# Generate more and select distinctive ones
flags.DEFINE_boolean('gen_more_and_select', False, '')
flags.DEFINE_integer('gen_how_many', 2000, '')
flags.DEFINE_float('label_smoothing', 1., 'the smoothed label for generated samples')
flags.DEFINE_boolean('balanced', True, '')
FLAGS = flags.FLAGS
pp = pprint.PrettyPrinter()
def main(_):
assert FLAGS.balanced
pp.pprint(flags.FLAGS.__flags)
# Load the class order
order = []
with open('cifar-100_%s.txt' % FLAGS.order_file) as file_in:
for line in file_in.readlines():
order.append(int(line))
order = np.array(order)
assert FLAGS.mode == 'wgan-gp'
import cifar100
NUM_CLASSES = 100 # number of classes
NUM_TRAIN_SAMPLES_PER_CLASS = 500 # number of training samples per class
NUM_TEST_SAMPLES_PER_CLASS = 100 # number of test samples per class
train_images, train_labels, train_one_hot_labels, \
test_images, test_labels, test_one_hot_labels, \
raw_images_train, raw_images_test, pixel_mean = cifar100.load_data(order, mean_subtraction=True)
# Number of all training samples
NUM_TRAIN_SAMPLES_TOTAL = NUM_CLASSES * NUM_TRAIN_SAMPLES_PER_CLASS
NUM_TEST_SAMPLES_TOTAL = NUM_CLASSES * NUM_TEST_SAMPLES_PER_CLASS
def build_cnn(inputs, is_training):
train_or_test = {True: 'train', False: 'test'}
if FLAGS.network_arch == 'lenet':
logits, end_points = utils_lenet.lenet(inputs, num_classes=NUM_CLASSES, is_training=is_training,
use_dropout=FLAGS.use_dropout,
scope=('LeNet-' + train_or_test[is_training]))
elif FLAGS.network_arch == 'resnet':
logits, end_points = utils_resnet.ResNet(inputs, train_or_test[is_training], num_outputs=NUM_CLASSES,
alpha=0.0, n=FLAGS.num_resblocks,
scope=('ResNet-' + train_or_test[is_training]))
elif FLAGS.network_arch == 'nin':
logits, end_points = utils_nin.nin(inputs, is_training=is_training, num_classes=NUM_CLASSES,
scope=('NIN-' + train_or_test[is_training]))
else:
raise Exception('Invalid network architecture')
return logits, end_points
'''
Define variables
'''
if not FLAGS.only_gen_no_cls:
# Save all intermediate result in the result_folder
method_name = '_'.join(os.path.basename(__file__).split('.')[0].split('_')[2:])
method_name += '_gen_%d_and_select' % FLAGS.gen_how_many if FLAGS.gen_more_and_select else ''
method_name += '_auto-%.1f-%.1f' % (FLAGS.auto_param1, FLAGS.auto_param2) \
if FLAGS.auto_choose_num_exemplars else (
'_%d' % FLAGS.num_exemplars_per_class if not FLAGS.memory_constrained else '')
method_name += '_%s' % FLAGS.exemplar_select_criterion
method_name += '_%.1f-%.1f' % (FLAGS.proto_weight, FLAGS.gen_weight)
method_name += '_cache_%d' % FLAGS.cache_size_per_class if FLAGS.use_cache_for_gen_samples else ''
method_name += '_icarl_%d' % FLAGS.memory_upperbound if FLAGS.memory_constrained else ''
method_name += '_reorder' if FLAGS.reorder_exemplars else ''
method_name += '' if FLAGS.label_smoothing == 1. else '_smoothing_%.1f' % FLAGS.label_smoothing
cls_func = '' if FLAGS.use_softmax else '_sigmoid'
result_folder = os.path.join(FLAGS.result_dir, 'cifar-100_' + FLAGS.order_file,
'nb_cl_' + str(FLAGS.nb_cl),
'non_truncated' if FLAGS.no_truncate else 'truncated',
FLAGS.network_arch + (
'_%d' % FLAGS.num_resblocks if FLAGS.network_arch == 'resnet' else '') + cls_func + '_init_' + FLAGS.init_strategy,
'weight_decay_' + str(FLAGS.weight_decay),
'base_lr_' + str(FLAGS.base_lr),
'adam_lr_' + str(FLAGS.adam_lr))
if FLAGS.gan_finetune and 'gan' in method_name:
result_folder = os.path.join(result_folder,
method_name + '_finetune_' + FLAGS.pretrained_model_sub_dir.replace('/', '_'))
else:
result_folder = os.path.join(result_folder,
method_name)
# Add a "_run-i" suffix to the folder name if the folder exists
if os.path.exists(result_folder):
temp_i = 2
while True:
result_folder_mod = result_folder + '_run-' + str(temp_i)
if not os.path.exists(result_folder_mod):
result_folder = result_folder_mod
break
temp_i += 1
os.makedirs(result_folder)
print('Result folder: %s' % result_folder)
graph_cls = tf.Graph()
with graph_cls.as_default():
'''
Define variables
'''
batch_images = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
batch = tf.Variable(0, trainable=False, name='LeNet-train/iteration')
learning_rate = tf.placeholder(tf.float32, shape=[])
'''
Network output mask
'''
mask_output = tf.placeholder(tf.bool, shape=[NUM_CLASSES])
'''
Old and new ground truth
'''
one_hot_labels_truncated = tf.placeholder(tf.float32, shape=[None, None])
'''
Define the training network
'''
train_logits, _ = build_cnn(batch_images, True)
train_masked_logits = tf.gather(train_logits, tf.squeeze(tf.where(mask_output)),
axis=1)
train_masked_logits = tf.cond(tf.equal(tf.rank(train_masked_logits), 1),
lambda: tf.expand_dims(train_masked_logits, 1),
lambda: train_masked_logits)
train_pred = tf.argmax(train_masked_logits, 1)
train_ground_truth = tf.argmax(one_hot_labels_truncated, 1)
correct_prediction = tf.equal(train_pred, train_ground_truth)
train_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
train_batch_weights = tf.placeholder(tf.float32, shape=[None])
reg_weights = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
regularization_loss = FLAGS.weight_decay * tf.add_n(reg_weights)
'''
More Settings
'''
if FLAGS.use_softmax:
empirical_loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels_truncated,
logits=train_masked_logits,
weights=train_batch_weights)
else:
empirical_loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=one_hot_labels_truncated,
logits=train_masked_logits,
weights=train_batch_weights)
loss = empirical_loss + regularization_loss
if FLAGS.use_momentum:
opt = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum).minimize(loss, global_step=batch)
else:
opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=batch)
'''
Define the testing network
'''
test_logits, _ = build_cnn(batch_images, False)
test_masked_logits = tf.gather(test_logits, tf.squeeze(tf.where(mask_output)), axis=1)
test_masked_logits = tf.cond(tf.equal(tf.rank(test_masked_logits), 1),
lambda: tf.expand_dims(test_masked_logits, 1),
lambda: test_masked_logits)
test_masked_prob = tf.nn.softmax(test_masked_logits)
test_pred = tf.argmax(test_masked_logits, 1)
test_accuracy = tf.placeholder(tf.float32)
'''
Copy network (define the copying op)
'''
if FLAGS.network_arch == 'resnet':
all_variables = tf.get_collection(tf.GraphKeys.WEIGHTS)
else:
all_variables = tf.trainable_variables()
copy_ops = [all_variables[ix + len(all_variables) // 2].assign(var.value()) for ix, var in
enumerate(all_variables[0:len(all_variables) // 2])]
'''
Init certain layers when new classes added
'''
init_ops = tf.no_op()
if FLAGS.init_strategy == 'all':
init_ops = tf.global_variables_initializer()
elif FLAGS.init_strategy == 'last':
if FLAGS.network_arch == 'lenet':
init_vars = [var for var in tf.global_variables() if 'fc4' in var.name and 'train' in var.name]
elif FLAGS.network_arch == 'resnet':
init_vars = [var for var in tf.global_variables() if 'fc' in var.name and 'train' in var.name]
elif FLAGS.network_arch == 'nin':
init_vars = [var for var in tf.global_variables() if 'ccp6' in var.name and 'train' in var.name]
init_ops = tf.initialize_variables(init_vars)
'''
Create session
'''
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config, graph=graph_cls)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
'''
Summary
'''
train_loss_summary = tf.summary.scalar('train_loss', loss)
train_acc_summary = tf.summary.scalar('train_accuracy', train_accuracy)
test_acc_summary = tf.summary.scalar('test_accuracy', test_accuracy)
summary_dir = os.path.join(result_folder, 'summary')
if not os.path.exists(summary_dir):
os.makedirs(summary_dir)
train_summary_writer = tf.summary.FileWriter(os.path.join(summary_dir, 'train'), sess.graph)
test_summary_writer = tf.summary.FileWriter(os.path.join(summary_dir, 'test'))
iteration = 0
'''
Declaration of other vars
'''
# Average accuracy on seen classes
aver_acc_over_time = dict()
aver_acc_per_class_over_time = dict()
conf_mat_over_time = dict()
# Network mask
mask_output_val = np.zeros([NUM_CLASSES], dtype=bool)
'''
Cache(accelerate)
'''
cache_dir = os.path.join(result_folder, 'cache')
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
'''
Exemplars(for ablation study and other purposes)
'''
exemplars_dir = os.path.join(result_folder, 'exemplars')
if not os.path.exists(exemplars_dir):
os.makedirs(exemplars_dir)
'''
Train generative model(DC-GAN)
'''
run_config = tf.ConfigProto()
run_config.gpu_options.allow_growth = True
graph_gen = tf.Graph()
sess_wgan = tf.Session(config=run_config, graph=graph_gen)
wgan_obj = GAN(sess_wgan, graph_gen,
dataset_name='cifar-100',
mode=FLAGS.mode,
batch_size=FLAGS.batch_size,
dim=FLAGS.dim,
output_dim=FLAGS.output_dim,
lambda_param=FLAGS.lambda_param,
critic_iters=FLAGS.critic_iters,
iters=FLAGS.iters,
result_dir=FLAGS.result_dir_wgan,
checkpoint_interval=FLAGS.gan_save_interval,
adam_lr=FLAGS.adam_lr,
adam_beta1=FLAGS.adam_beta1,
adam_beta2=FLAGS.adam_beta2,
finetune=FLAGS.gan_finetune,
finetune_from=FLAGS.gan_finetune_from,
pretrained_model_base_dir=FLAGS.pretrained_model_base_dir,
pretrained_model_sub_dir=FLAGS.pretrained_model_sub_dir)
exemplars = []
'''
Class Incremental Learning
'''
print('Starting from category ' + str(FLAGS.from_class_idx + 1) + ' to ' + str(FLAGS.to_class_idx + 1))
print('Adding %d categories every time' % FLAGS.nb_cl)
assert (FLAGS.from_class_idx % FLAGS.nb_cl == 0)
for category_idx in range(FLAGS.from_class_idx, FLAGS.to_class_idx + 1, FLAGS.nb_cl):
to_category_idx = category_idx + FLAGS.nb_cl - 1
if FLAGS.nb_cl == 1:
print('Adding Category ' + str(category_idx + 1))
else:
print('Adding Category %d-%d' % (category_idx + 1, to_category_idx + 1))
for category_idx_in_group in range(category_idx, to_category_idx + 1):
# Training set(current category)
train_indices_gan = [idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if
train_labels[idx] == category_idx_in_group]
test_indices_cur_cls_gan = [idx for idx in range(NUM_TEST_SAMPLES_TOTAL) if
test_labels[idx] == category_idx_in_group]
train_x_gan = raw_images_train[train_indices_gan, :]
test_x_cur_cls_gan = raw_images_test[test_indices_cur_cls_gan, :]
'''
Train generative model(W-GAN)
'''
real_class_idx = order[category_idx_in_group]
if wgan_obj.check_model(real_class_idx):
print(" [*] Model of Class %d exists. Skip the training process" % (real_class_idx + 1))
else:
print(" [*] Model of Class %d does not exist. Start the training process" % (real_class_idx + 1))
wgan_obj.train(train_x_gan, test_x_cur_cls_gan, real_class_idx)
'''
Train classification model
'''
# No need to train the classifier if there is only one class
if not FLAGS.only_gen_no_cls:
if FLAGS.no_truncate:
mask_output_val[:] = True
else:
mask_output_val[:to_category_idx + 1] = True
if to_category_idx > 0:
# init certain layers
sess.run(init_ops)
'''
Generate samples of new classes
'''
train_indices_new = [idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if
category_idx <= train_labels[idx] <= to_category_idx]
train_x_new = raw_images_train[train_indices_new]
if FLAGS.no_truncate:
train_y_truncated_new = train_one_hot_labels[train_indices_new, :]
else:
train_y_truncated_new = train_one_hot_labels[train_indices_new, :to_category_idx + 1]
train_weights_val_new = np.ones(len(train_x_new))
train_x = raw_images_train[[], :]
if FLAGS.no_truncate:
train_y_truncated = train_one_hot_labels[[], :]
else:
train_y_truncated = train_one_hot_labels[[], :to_category_idx + 1]
train_weights_val = np.zeros([0])
for new_category_idx in range(category_idx, to_category_idx + 1):
if len(exemplars) == 0:
num_gen_samples_x_needed = 0
else:
num_gen_samples_x_needed = NUM_TRAIN_SAMPLES_PER_CLASS * (
NUM_TRAIN_SAMPLES_PER_CLASS - len(exemplars[0])) / len(exemplars[0])
if num_gen_samples_x_needed > 0:
gen_samples_x = []
packs, last_pack = divmod(num_gen_samples_x_needed, 500)
batch_size_gens = []
for _ in range(packs):
batch_size_gens.append(500)
if last_pack > 0:
batch_size_gens.append(last_pack)
wgan_obj.load(new_category_idx)
for pack_num in batch_size_gens:
gen_samples_x_batch, _, _ = wgan_obj.test(pack_num)
gen_samples_x.extend(gen_samples_x_batch)
train_x_new = np.concatenate((train_x_new, gen_samples_x))
train_weights_val_new = np.concatenate((train_weights_val_new,
np.ones(len(gen_samples_x)) * FLAGS.proto_weight))
if FLAGS.no_truncate:
gen_samples_y = np.ones((num_gen_samples_x_needed, NUM_CLASSES)) * (
(1 - FLAGS.label_smoothing) / (NUM_CLASSES - 1))
else:
gen_samples_y = np.ones((num_gen_samples_x_needed, to_category_idx + 1)) * (
(1 - FLAGS.label_smoothing) / to_category_idx)
gen_samples_y[:, new_category_idx] = np.ones(
(num_gen_samples_x_needed)) * FLAGS.label_smoothing
train_y_truncated_new = np.concatenate((train_y_truncated_new, gen_samples_y))
'''
Generate samples of old classes
'''
for old_category_idx in range(0, category_idx):
# Load old class model
num_gen_samples_x_needed = NUM_TRAIN_SAMPLES_PER_CLASS - len(exemplars[old_category_idx])
if num_gen_samples_x_needed > 0:
# if FLAGS.use_cache_for_gen_samples:
# cache_file = os.path.join(cache_dir, 'class_%d.npy' % (old_category_idx + 1))
# if os.path.exists(cache_file):
# gen_samples_x = np.load(cache_file)
# else:
# if not wgan_obj.load(old_category_idx)[0]:
# raise Exception("[!] Train a model first, then run test mode")
# gen_samples_x, _, _ = wgan_obj.test(FLAGS.cache_size_per_class)
# np.save(cache_file, gen_samples_x)
#
# gen_samples_x_idx = np.random.choice(len(gen_samples_x),
# num_gen_samples_x_needed,
# replace=False)
# gen_samples_x = gen_samples_x[gen_samples_x_idx]
# else:
# if not wgan_obj.load(old_category_idx)[0]:
# raise Exception("[!] Train a model first, then run test mode")
# gen_samples_x, _, _ = wgan_obj.test(num_gen_samples_x_needed)
real_class_idx = order[old_category_idx]
if not wgan_obj.load(real_class_idx)[0]:
raise Exception("[!] Train a model first, then run test mode")
if FLAGS.gen_more_and_select:
gen_samples_x_more, _, _ = wgan_obj.test(FLAGS.gen_how_many)
gen_samples_x_more_real = cifar100.convert_images(gen_samples_x_more, pixel_mean=pixel_mean)
gen_samples_prob = sess.run(test_masked_prob,
feed_dict={batch_images: gen_samples_x_more_real,
mask_output: mask_output_val})
gen_samples_scores_cur_cls = gen_samples_prob[:, old_category_idx]
top_k_indices = np.argsort(-gen_samples_scores_cur_cls)[:num_gen_samples_x_needed]
gen_samples_x = gen_samples_x_more[top_k_indices]
else:
gen_samples_x, _, _ = wgan_obj.test(num_gen_samples_x_needed)
# import wgan.tflib.save_images
# wgan.tflib.save_images.save_images(gen_samples_x[:128].reshape((128, 3, 32, 32)),
# 'test.jpg')
train_x = np.concatenate((train_x, gen_samples_x, exemplars[old_category_idx]))
train_weights_val = np.concatenate((train_weights_val,
np.ones(len(gen_samples_x)) * FLAGS.gen_weight,
np.ones(
len(exemplars[old_category_idx])) * FLAGS.proto_weight))
elif num_gen_samples_x_needed == 0:
train_x = np.concatenate((train_x, exemplars[old_category_idx]))
train_weights_val = np.concatenate((train_weights_val,
np.ones(
len(exemplars[old_category_idx])) * FLAGS.proto_weight))
# if FLAGS.no_truncate:
# gen_samples_y = np.zeros((NUM_TRAIN_SAMPLES_PER_CLASS, NUM_CLASSES))
# else:
# gen_samples_y = np.zeros((NUM_TRAIN_SAMPLES_PER_CLASS, to_category_idx+1))
# gen_samples_y[:, old_category_idx] = np.ones((NUM_TRAIN_SAMPLES_PER_CLASS))
if FLAGS.no_truncate:
gen_samples_y = np.ones((NUM_TRAIN_SAMPLES_PER_CLASS, NUM_CLASSES)) * (
(1 - FLAGS.label_smoothing) / (NUM_CLASSES - 1))
else:
gen_samples_y = np.ones((NUM_TRAIN_SAMPLES_PER_CLASS, to_category_idx + 1)) * (
(1 - FLAGS.label_smoothing) / to_category_idx)
gen_samples_y[:, old_category_idx] = np.ones((NUM_TRAIN_SAMPLES_PER_CLASS)) * FLAGS.label_smoothing
train_y_truncated = np.concatenate((train_y_truncated, gen_samples_y))
# Training set
# Convert the raw images from the data-files to floating-points.
train_x = cifar100.convert_images(train_x, pixel_mean=pixel_mean)
train_x_new = cifar100.convert_images(train_x_new, pixel_mean=pixel_mean)
# Testing set
test_indices = [idx for idx in range(len(test_labels)) if test_labels[idx] <= to_category_idx]
test_x = test_images[test_indices]
test_y = test_labels[test_indices]
# Shuffle the indices and create mini-batch
batch_indices_perm = []
epoch_idx = 0
lr = FLAGS.base_lr
'''
Training with mixed data
'''
old_ratio = float(category_idx) / (to_category_idx + 1)
old_batch_size = int(FLAGS.train_batch_size * old_ratio)
new_batch_size = FLAGS.train_batch_size - old_batch_size
while True:
# Generate mini-batch
if len(batch_indices_perm) == 0:
if epoch_idx >= FLAGS.epochs_per_category:
break
if epoch_idx in lr_strat:
lr /= FLAGS.lr_factor
print("NEW LEARNING RATE: %f" % lr)
epoch_idx = epoch_idx + 1
# print('Epoch %d' % epoch_idx)
if len(train_x) > 0:
shuffled_indices = range(train_x.shape[0])
np.random.shuffle(shuffled_indices)
for i in range(0, len(shuffled_indices), old_batch_size):
batch_indices_perm.append(shuffled_indices[i:i + old_batch_size])
batch_indices_perm.reverse()
elif len(train_x) == 0:
for i in range(0, len(train_x_new), new_batch_size):
batch_indices_perm.append([])
popped_batch_idx = batch_indices_perm.pop()
# Use the random index to select random images and labels.
train_weights_batch_val_old = train_weights_val[popped_batch_idx]
train_x_batch_old = train_x[popped_batch_idx, :, :, :]
train_y_batch_old = np.array([train_y_truncated[k] for k in popped_batch_idx])
popped_batch_idx_new = np.random.choice(range(len(train_x_new)), new_batch_size, replace=False)
train_weights_batch_val_new = train_weights_val_new[popped_batch_idx_new]
train_x_batch_new = train_x_new[popped_batch_idx_new, :, :, :]
train_y_batch_new = np.array([train_y_truncated_new[k] for k in popped_batch_idx_new])
if len(train_y_batch_old) == 0:
train_y_batch_old.shape = (0, train_y_batch_new.shape[1])
train_x_batch = np.concatenate((train_x_batch_old, train_x_batch_new))
train_y_batch = np.concatenate((train_y_batch_old, train_y_batch_new))
train_weights_batch_val = np.concatenate((train_weights_batch_val_old, train_weights_batch_val_new))
# Train
train_loss_summary_str, train_acc_summary_str, train_accuracy_val, \
train_loss_val, train_empirical_loss_val, train_reg_loss_val, _ = sess.run(
[train_loss_summary, train_acc_summary, train_accuracy, loss, empirical_loss,
regularization_loss, opt], feed_dict={batch_images: train_x_batch,
one_hot_labels_truncated: train_y_batch,
mask_output: mask_output_val,
learning_rate: lr,
train_batch_weights: train_weights_batch_val})
# Test
if iteration % FLAGS.test_interval == 0:
sess.run(copy_ops)
# Divide and conquer: to avoid allocating too much GPU memory
test_pred_val = []
for i in range(0, len(test_x), FLAGS.test_batch_size):
test_x_batch = test_x[i:i + FLAGS.test_batch_size]
test_pred_val_batch = sess.run(test_pred, feed_dict={batch_images: test_x_batch,
mask_output: mask_output_val})
test_pred_val.extend(test_pred_val_batch)
test_accuracy_val = 1. * np.sum(np.equal(test_pred_val, test_y)) / (len(test_pred_val))
test_per_class_accuracy_val = np.diag(confusion_matrix(test_y, test_pred_val))
test_acc_summary_str = sess.run(test_acc_summary, feed_dict={test_accuracy: test_accuracy_val})
test_summary_writer.add_summary(test_acc_summary_str, iteration)
print("TEST: step %d, lr %.4f, accuracy %g" % (iteration, lr, test_accuracy_val))
print("PER CLASS ACCURACY: " + " | ".join(str(o) + '%' for o in test_per_class_accuracy_val))
# Print the training logs
if iteration % FLAGS.display_interval == 0:
train_summary_writer.add_summary(train_loss_summary_str, iteration)
train_summary_writer.add_summary(train_acc_summary_str, iteration)
print("TRAIN: epoch %d, step %d, lr %.4f, accuracy %g, loss %g, empirical %g, reg %g" % (
epoch_idx, iteration, lr, train_accuracy_val, train_loss_val,
train_empirical_loss_val, train_reg_loss_val))
iteration = iteration + 1
'''
Final test(before the next class is added)
'''
sess.run(copy_ops)
# Divide and conquer: to avoid allocating too much GPU memory
test_pred_val = []
for i in range(0, len(test_x), FLAGS.test_batch_size):
test_x_batch = test_x[i:i + FLAGS.test_batch_size]
test_pred_val_batch = sess.run(test_pred, feed_dict={batch_images: test_x_batch,
mask_output: mask_output_val})
test_pred_val.extend(test_pred_val_batch)
test_accuracy_val = 1. * np.sum(np.equal(test_pred_val, test_y)) / (len(test_pred_val))
conf_mat = confusion_matrix(test_y, test_pred_val)
test_per_class_accuracy_val = np.diag(conf_mat)
# Record and save the cumulative accuracy
aver_acc_over_time[to_category_idx] = test_accuracy_val
aver_acc_per_class_over_time[to_category_idx] = test_per_class_accuracy_val
conf_mat_over_time[to_category_idx] = conf_mat
dump_obj = dict()
dump_obj['flags'] = flags.FLAGS.__flags
dump_obj['aver_acc_over_time'] = aver_acc_over_time
dump_obj['aver_acc_per_class_over_time'] = aver_acc_per_class_over_time
dump_obj['conf_mat_over_time'] = conf_mat_over_time
np_file_result = os.path.join(result_folder, 'acc_over_time.pkl')
with open(np_file_result, 'wb') as file:
pickle.dump(dump_obj, file)
visualize_result.vis(np_file_result)
# reorder the exemplars
if FLAGS.reorder_exemplars:
for old_category_idx in range(category_idx):
sess.run(copy_ops)
# divide and conquer: to avoid allocating too much GPU memory
train_prob_cur_cls_exemplars_val = sess.run(test_masked_prob,
feed_dict={batch_images: cifar100.convert_images(
exemplars[old_category_idx]),
mask_output: mask_output_val})
train_prob_cur_cls_exemplars_val = train_prob_cur_cls_exemplars_val[:, old_category_idx]
reorder_indices = np.argsort(-train_prob_cur_cls_exemplars_val)
exemplars[old_category_idx] = exemplars[old_category_idx][reorder_indices]
# select the exemplars
for category_idx_in_group in range(category_idx, to_category_idx + 1):
train_indices_cur_cls = [idx for idx in range(NUM_TRAIN_SAMPLES_TOTAL) if
train_labels[idx] == category_idx_in_group]
train_x_cur_cls = raw_images_train[train_indices_cur_cls]
train_x_cur_cls_normalized = cifar100.convert_images(train_x_cur_cls, pixel_mean=pixel_mean)
sess.run(copy_ops)
# Divide and conquer: to avoid allocating too much GPU memory
train_prob_cur_cls_val = sess.run(test_masked_prob, feed_dict={batch_images: train_x_cur_cls_normalized,
mask_output: mask_output_val})
train_prob_cur_cls_val = train_prob_cur_cls_val[:, category_idx_in_group]
# use iCaRL-like memory mechanism to save exemplars or not
if FLAGS.memory_constrained:
if FLAGS.auto_choose_num_exemplars: # auto or fixed number of exemplars
# check if we can save all new samples as exemplars
if NUM_TRAIN_SAMPLES_PER_CLASS > FLAGS.memory_upperbound - sum(
[len(exemplars[i]) for i in range(len(exemplars))]):
# load inception scores of all classes
save_exemplars_ratios = []
for i in range(category_idx_in_group + 1):
real_class_idx = order[i]
inception_score = wgan_obj.load_inception_score(real_class_idx)
save_exemplars_ratio = FLAGS.auto_param1 - FLAGS.auto_param2 * inception_score
save_exemplars_ratios.append(save_exemplars_ratio)
save_exemplars_ratios = np.array(save_exemplars_ratios)
keep_exemplars_num = np.floor(save_exemplars_ratios * FLAGS.memory_upperbound
/ sum(save_exemplars_ratios)).astype(int)
for old_category_idx in range(category_idx_in_group):
exemplars[old_category_idx] = exemplars[old_category_idx][
:keep_exemplars_num[old_category_idx]]
num_exemplars_cur_cls = keep_exemplars_num[-1]
else:
num_exemplars_cur_cls = NUM_TRAIN_SAMPLES_PER_CLASS
else:
num_exemplars_per_cls = int(FLAGS.memory_upperbound // (category_idx_in_group + 1))
num_exemplars_per_cls = min(num_exemplars_per_cls, NUM_TRAIN_SAMPLES_PER_CLASS)
# remove redundant elements in the memory for previous classes
if category_idx_in_group > 0 and len(exemplars[0]) > num_exemplars_per_cls:
for old_category_idx in range(category_idx_in_group):
exemplars[old_category_idx] = exemplars[old_category_idx][:num_exemplars_per_cls]
# add how many new elements in the memory for the current class
num_exemplars_cur_cls = num_exemplars_per_cls
print(' [*] Store %d exemplars for each class' % num_exemplars_cur_cls)
else:
if FLAGS.auto_choose_num_exemplars: # auto or fixed number of exemplars
real_class_idx = order[category_idx_in_group]
inception_score = wgan_obj.load_inception_score(real_class_idx)
num_exemplars_cur_cls = int(np.floor(FLAGS.auto_param1 - FLAGS.auto_param2 * inception_score))
print(' [*] Inception score %f, store %d exemplars' % (inception_score, num_exemplars_cur_cls))
else:
num_exemplars_cur_cls = FLAGS.num_exemplars_per_class
selected_indices = np.array(range(len(train_prob_cur_cls_val)))
if FLAGS.exemplar_select_criterion == 'high':
selected_indices = train_prob_cur_cls_val.argsort()[
:-(num_exemplars_cur_cls + 1):-1] # select the last 20
elif FLAGS.exemplar_select_criterion == 'low':
selected_indices = train_prob_cur_cls_val.argsort()[:num_exemplars_cur_cls] # select the last 20
elif FLAGS.exemplar_select_criterion == 'random':
random_idx = range(len(train_prob_cur_cls_val))
np.random.shuffle(random_idx)
selected_indices = random_idx[:num_exemplars_cur_cls]
exemplars.append(train_x_cur_cls[selected_indices])
np_file_exemplars = os.path.join(exemplars_dir, 'exemplars_%d' % (category_idx_in_group + 1))
np.save(np_file_exemplars, exemplars)
# Save the final model
if not FLAGS.only_gen_no_cls:
checkpoint_dir = os.path.join(result_folder, 'checkpoints')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver.save(sess, os.path.join(checkpoint_dir, 'model.ckpt'))
sess.close()
if __name__ == '__main__':
tf.app.run()