-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathtask_sequence_labeling_ner_W2NER.py
495 lines (418 loc) · 19.7 KB
/
task_sequence_labeling_ner_W2NER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#! -*- coding:utf-8 -*-
# W2NER: https://github.com/ljynlp/W2NER
# 数据集:http://s3.bmio.net/kashgari/china-people-daily-ner-corpus.tar.gz
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from bert4torch.callbacks import Callback
from bert4torch.snippets import sequence_padding, ListDataset, seed_everything
from bert4torch.optimizers import get_linear_schedule_with_warmup
from bert4torch.layers import LayerNorm
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from tqdm import tqdm
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from collections import defaultdict, deque
from sklearn.metrics import precision_recall_fscore_support
import os
# =======================================参数=======================================
# 模型参数:训练
epochs = 20 # 训练轮数
steps_per_epoch = None # 每轮步数
maxlen = 256 # 最大长度
batch_size = 8 # 根据gpu显存设置
learning_rate = 1e-3
bert_learning_rate = 5e-6
warm_factor = 0.1
weight_decay = 0
use_bert_last_4_layers = True
categories = {'LOC':2, 'PER':3, 'ORG':4}
label_num = len(categories) + 2
# 模型参数:网络结构
dist_emb_size = 20
type_emb_size = 20
lstm_hid_size = 512
conv_hid_size = 96
bert_hid_size = 768
biaffine_size = 512
ffnn_hid_size = 288
dilation = [1, 2, 3]
emb_dropout = 0.5
conv_dropout = 0.5
out_dropout = 0.33
# 路径设置
data_dir = 'F:/data/corpus/ner/china-people-daily-ner-corpus/'
config_path = 'E:/data/pretrain_ckpt/bert/google@bert-base-chinese/config.json'
checkpoint_path = 'E:/data/pretrain_ckpt/bert/google@bert-base-chinese/pytorch_model.bin'
dict_path = 'E:/data/pretrain_ckpt/bert/google@bert-base-chinese/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 固定seed
seed_everything(42)
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
# 相对距离设置
dis2idx = np.zeros((1000), dtype='int64')
dis2idx[1] = 1
dis2idx[2:] = 2
dis2idx[4:] = 3
dis2idx[8:] = 4
dis2idx[16:] = 5
dis2idx[32:] = 6
dis2idx[64:] = 7
dis2idx[128:] = 8
dis2idx[256:] = 9
# 用到的小函数
def convert_index_to_text(index, type):
text = "-".join([str(i) for i in index])
text = text + "-#-{}".format(type)
return text
def convert_text_to_index(text):
index, type = text.split("-#-")
index = [int(x) for x in index.split("-")]
return index, int(type)
# =======================================数据=======================================
# 加载数据集
dtype_int = np.int if hasattr(np, 'int') else np.int_
dtype_bool = np.bool if hasattr(np, 'bool') else np.bool_
class MyDataset(ListDataset):
@staticmethod
def load_data(filename):
D = []
with open(filename, encoding='utf-8') as f:
f = f.read()
for l in tqdm(f.split('\n\n'), desc='Load data'):
if not l:
continue
sentence, d = [], []
for i, c in enumerate(l.split('\n')):
char, flag = c.split(' ')
sentence += char
if flag[0] == 'B':
d.append([i, i, flag[2:]])
elif flag[0] == 'I':
d[-1][1] = i
if len(sentence) > maxlen - 2:
continue
tokens = [tokenizer.tokenize(word)[1:-1] for word in sentence[:maxlen-2]]
pieces = [piece for pieces in tokens for piece in pieces]
tokens_ids = [tokenizer._token_start_id] + tokenizer.tokens_to_ids(pieces) + [tokenizer._token_end_id]
assert len(tokens_ids) <= maxlen
length = len(tokens)
# piece和word的对应关系,中文两者一致,除了[CLS]和[SEP]
_pieces2word = np.zeros((length, len(tokens_ids)), dtype=dtype_bool)
e_start = 0
for i, pieces in enumerate(tokens):
if len(pieces) == 0:
continue
pieces = list(range(e_start, e_start + len(pieces)))
_pieces2word[i, pieces[0] + 1:pieces[-1] + 2] = 1
e_start += len(pieces)
# 相对距离
_dist_inputs = np.zeros((length, length), dtype=dtype_int)
for k in range(length):
_dist_inputs[k, :] += k
_dist_inputs[:, k] -= k
for i in range(length):
for j in range(length):
if _dist_inputs[i, j] < 0:
_dist_inputs[i, j] = dis2idx[-_dist_inputs[i, j]] + 9
else:
_dist_inputs[i, j] = dis2idx[_dist_inputs[i, j]]
_dist_inputs[_dist_inputs == 0] = 19
# golden标签
_grid_labels = np.zeros((length, length), dtype=dtype_int)
_grid_mask2d = np.ones((length, length), dtype=dtype_bool)
for entity in d:
e_start, e_end, e_type = entity[0], entity[1]+1, entity[-1]
if e_end >= maxlen - 2:
continue
index = list(range(e_start, e_end))
for i in range(len(index)):
if i + 1 >= len(index):
break
_grid_labels[index[i], index[i + 1]] = 1
_grid_labels[index[-1], index[0]] = categories[e_type]
_entity_text = set([convert_index_to_text(list(range(e[0], e[1]+1)), categories[e[-1]]) for e in d])
D.append((tokens_ids, _pieces2word, _dist_inputs, _grid_labels, _grid_mask2d, _entity_text))
return D
def collate_fn(data):
tokens_ids, pieces2word, dist_inputs, grid_labels, grid_mask2d, _entity_text = map(list, zip(*data))
sent_length = torch.tensor([i.shape[0] for i in pieces2word], dtype=torch.long, device=device)
# max_wordlen: word长度,非token长度,max_tokenlen:token长度
max_wordlen = torch.max(sent_length).item()
max_tokenlen = np.max([len(x) for x in tokens_ids])
tokens_ids = torch.tensor(sequence_padding(tokens_ids), dtype=torch.long, device=device)
batch_size = tokens_ids.size(0)
def fill(data, new_data):
for j, x in enumerate(data):
new_data[j, :x.shape[0], :x.shape[1]] = torch.tensor(x, dtype=torch.long, device=device)
return new_data
dis_mat = torch.zeros((batch_size, max_wordlen, max_wordlen), dtype=torch.long, device=device)
dist_inputs = fill(dist_inputs, dis_mat)
labels_mat = torch.zeros((batch_size, max_wordlen, max_wordlen), dtype=torch.long, device=device)
grid_labels = fill(grid_labels, labels_mat)
mask2d_mat = torch.zeros((batch_size, max_wordlen, max_wordlen), dtype=torch.bool, device=device)
grid_mask2d = fill(grid_mask2d, mask2d_mat)
sub_mat = torch.zeros((batch_size, max_wordlen, max_tokenlen), dtype=torch.bool, device=device)
pieces2word = fill(pieces2word, sub_mat)
return [tokens_ids, pieces2word, dist_inputs, sent_length, grid_mask2d], [grid_labels, grid_mask2d, _entity_text]
# 加载数据
train_dataloader = DataLoader(MyDataset(os.path.join(data_dir, 'example.train')), batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
valid_dataloader = DataLoader(MyDataset(os.path.join(data_dir, 'example.dev')), batch_size=batch_size, collate_fn=collate_fn)
# =======================================模型=======================================
# 定义bert上的模型结构
class ConvolutionLayer(nn.Module):
'''卷积层
'''
def __init__(self, input_size, channels, dilation, dropout=0.1):
super(ConvolutionLayer, self).__init__()
self.base = nn.Sequential(
nn.Dropout2d(dropout),
nn.Conv2d(input_size, channels, kernel_size=1),
nn.GELU(),
)
self.convs = nn.ModuleList(
[nn.Conv2d(channels, channels, kernel_size=3, groups=channels, dilation=d, padding=d) for d in dilation])
def forward(self, x):
x = x.permute(0, 3, 1, 2).contiguous()
x = self.base(x)
outputs = []
for conv in self.convs:
x = conv(x)
x = F.gelu(x)
outputs.append(x)
outputs = torch.cat(outputs, dim=1)
outputs = outputs.permute(0, 2, 3, 1).contiguous()
return outputs
class Biaffine(nn.Module):
'''仿射变换
'''
def __init__(self, n_in, n_out=1, bias_x=True, bias_y=True):
super(Biaffine, self).__init__()
self.n_in = n_in
self.n_out = n_out
self.bias_x = bias_x
self.bias_y = bias_y
weight = torch.zeros((n_out, n_in + int(bias_x), n_in + int(bias_y)))
nn.init.xavier_normal_(weight)
self.weight = nn.Parameter(weight, requires_grad=True)
def extra_repr(self):
s = f"n_in={self.n_in}, n_out={self.n_out}"
if self.bias_x:
s += f", bias_x={self.bias_x}"
if self.bias_y:
s += f", bias_y={self.bias_y}"
return s
def forward(self, x, y):
if self.bias_x:
x = torch.cat((x, torch.ones_like(x[..., :1])), -1)
if self.bias_y:
y = torch.cat((y, torch.ones_like(y[..., :1])), -1)
# [batch_size, n_out, seq_len, seq_len]
s = torch.einsum('bxi,oij,byj->boxy', x, self.weight, y)
# remove dim 1 if n_out == 1
s = s.permute(0, 2, 3, 1)
return s
class MLP(nn.Module):
'''MLP全连接
'''
def __init__(self, n_in, n_out, dropout=0):
super().__init__()
self.linear = nn.Linear(n_in, n_out)
self.activation = nn.GELU()
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.dropout(x)
x = self.linear(x)
x = self.activation(x)
return x
class CoPredictor(nn.Module):
def __init__(self, cls_num, hid_size, biaffine_size, channels, ffnn_hid_size, dropout=0):
super().__init__()
self.mlp1 = MLP(n_in=hid_size, n_out=biaffine_size, dropout=dropout)
self.mlp2 = MLP(n_in=hid_size, n_out=biaffine_size, dropout=dropout)
self.biaffine = Biaffine(n_in=biaffine_size, n_out=cls_num, bias_x=True, bias_y=True)
self.mlp_rel = MLP(channels, ffnn_hid_size, dropout=dropout)
self.linear = nn.Linear(ffnn_hid_size, cls_num)
self.dropout = nn.Dropout(dropout)
def forward(self, x, y, z):
h = self.dropout(self.mlp1(x))
t = self.dropout(self.mlp2(y))
o1 = self.biaffine(h, t)
z = self.dropout(self.mlp_rel(z))
o2 = self.linear(z)
return o1 + o2
class Model(BaseModel):
def __init__(self, use_bert_last_4_layers=False):
super().__init__()
self.use_bert_last_4_layers = use_bert_last_4_layers
self.bert = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, # segment_vocab_size=0,
output_all_encoded_layers = True if use_bert_last_4_layers else False)
lstm_input_size = self.bert.configs['hidden_size']
self.dis_embs = nn.Embedding(20, dist_emb_size)
self.reg_embs = nn.Embedding(3, type_emb_size)
self.encoder = nn.LSTM(lstm_input_size, lstm_hid_size // 2, num_layers=1, batch_first=True,
bidirectional=True)
conv_input_size = lstm_hid_size + dist_emb_size + type_emb_size
self.convLayer = ConvolutionLayer(conv_input_size, conv_hid_size, dilation, conv_dropout)
self.dropout = nn.Dropout(emb_dropout)
self.predictor = CoPredictor(label_num, lstm_hid_size, biaffine_size,
conv_hid_size * len(dilation), ffnn_hid_size, out_dropout)
self.cln = LayerNorm(lstm_hid_size, conditional_size=lstm_hid_size)
def forward(self, token_ids, pieces2word, dist_inputs, sent_length, grid_mask2d):
bert_embs = self.bert([token_ids, torch.zeros_like(token_ids)])
if self.use_bert_last_4_layers:
bert_embs = torch.stack(bert_embs[-4:], dim=-1).mean(-1)
length = pieces2word.size(1)
min_value = torch.min(bert_embs).item()
# 最大池化
_bert_embs = bert_embs.unsqueeze(1).expand(-1, length, -1, -1)
_bert_embs = torch.masked_fill(_bert_embs, pieces2word.eq(0).unsqueeze(-1), min_value)
word_reps, _ = torch.max(_bert_embs, dim=2)
# LSTM
word_reps = self.dropout(word_reps)
packed_embs = pack_padded_sequence(word_reps, sent_length.cpu(), batch_first=True, enforce_sorted=False)
packed_outs, (hidden, _) = self.encoder(packed_embs)
word_reps, _ = pad_packed_sequence(packed_outs, batch_first=True, total_length=sent_length.max())
# 条件LayerNorm
cln = self.cln(word_reps.unsqueeze(2), word_reps)
# concat
dis_emb = self.dis_embs(dist_inputs)
tril_mask = torch.tril(grid_mask2d.clone().long())
reg_inputs = tril_mask + grid_mask2d.clone().long()
reg_emb = self.reg_embs(reg_inputs)
conv_inputs = torch.cat([dis_emb, reg_emb, cln], dim=-1)
# 卷积层
conv_inputs = torch.masked_fill(conv_inputs, grid_mask2d.eq(0).unsqueeze(-1), 0.0)
conv_outputs = self.convLayer(conv_inputs)
conv_outputs = torch.masked_fill(conv_outputs, grid_mask2d.eq(0).unsqueeze(-1), 0.0)
# 输出层
outputs = self.predictor(word_reps, word_reps, conv_outputs)
return outputs
model = Model(use_bert_last_4_layers).to(device)
class Loss(nn.CrossEntropyLoss):
def forward(self, outputs, labels):
grid_labels, grid_mask2d, _ = labels
grid_mask2d = grid_mask2d.clone()
return super().forward(outputs[grid_mask2d], grid_labels[grid_mask2d])
bert_params = set(model.bert.parameters())
other_params = list(set(model.parameters()) - bert_params)
no_decay = ['bias', 'LayerNorm.weight']
params = [
{'params': [p for n, p in model.bert.named_parameters() if not any(nd in n for nd in no_decay)],
'lr': bert_learning_rate,
'weight_decay': weight_decay},
{'params': [p for n, p in model.bert.named_parameters() if any(nd in n for nd in no_decay)],
'lr': bert_learning_rate,
'weight_decay': 0.0},
{'params': other_params,
'lr': learning_rate,
'weight_decay': weight_decay},
]
optimizer = optim.Adam(params, lr=learning_rate, weight_decay=weight_decay)
updates_total = (len(train_dataloader) if steps_per_epoch is None else steps_per_epoch) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warm_factor * updates_total, num_training_steps=updates_total)
model.compile(loss=Loss(), optimizer=optimizer, scheduler=scheduler, clip_grad_norm=5.0)
class Evaluator(Callback):
"""评估与保存
"""
def __init__(self):
self.best_val_f1 = 0.
def on_epoch_end(self, steps, epoch, logs=None):
f1, p, r, e_f1, e_p, e_r = self.evaluate(valid_dataloader)
if e_f1 > self.best_val_f1:
self.best_val_f1 = e_f1
# model.save_weights('best_model.pt')
print(f'[val-token level] f1: {f1:.5f}, p: {p:.5f} r: {r:.5f}')
print(f'[val-entity level] f1: {e_f1:.5f}, p: {e_p:.5f} r: {e_r:.5f} best_f1: {self.best_val_f1:.5f}\n')
def evaluate(self, data_loader):
def cal_f1(c, p, r):
if r == 0 or p == 0:
return 0, 0, 0
r = c / r if r else 0
p = c / p if p else 0
if r and p:
return 2 * p * r / (p + r), p, r
return 0, p, r
pred_result = []
label_result = []
total_ent_r = 0
total_ent_p = 0
total_ent_c = 0
for data_batch in tqdm(data_loader, desc='Evaluate'):
(token_ids, pieces2word, dist_inputs, sent_length, grid_mask2d), (grid_labels, grid_mask2d, entity_text) = data_batch
outputs = model.predict([token_ids, pieces2word, dist_inputs, sent_length, grid_mask2d])
grid_mask2d = grid_mask2d.clone()
outputs = torch.argmax(outputs, -1)
ent_c, ent_p, ent_r, _ = self.decode(outputs.cpu().numpy(), entity_text, sent_length.cpu().numpy())
total_ent_r += ent_r
total_ent_p += ent_p
total_ent_c += ent_c
grid_labels = grid_labels[grid_mask2d].contiguous().view(-1)
outputs = outputs[grid_mask2d].contiguous().view(-1)
label_result.append(grid_labels.cpu())
pred_result.append(outputs.cpu())
label_result = torch.cat(label_result)
pred_result = torch.cat(pred_result)
p, r, f1, _ = precision_recall_fscore_support(label_result.numpy(), pred_result.numpy(), average="macro")
e_f1, e_p, e_r = cal_f1(total_ent_c, total_ent_p, total_ent_r)
return f1, p, r, e_f1, e_p, e_r
def decode(self, outputs, entities, length):
class Node:
def __init__(self):
self.THW = [] # [(tail, type)]
self.NNW = defaultdict(set) # {(head,tail): {next_index}}
ent_r, ent_p, ent_c = 0, 0, 0
decode_entities = []
q = deque()
for instance, ent_set, l in zip(outputs, entities, length):
predicts = []
nodes = [Node() for _ in range(l)]
count = 0
for cur in reversed(range(l)):
# if count >= 29:
# print(count)
count += 1
heads = []
for pre in range(cur+1):
# THW
if instance[cur, pre] > 1:
nodes[pre].THW.append((cur, instance[cur, pre]))
heads.append(pre)
# NNW
if pre < cur and instance[pre, cur] == 1:
# cur node
for head in heads:
nodes[pre].NNW[(head,cur)].add(cur)
# post nodes
for head,tail in nodes[cur].NNW.keys():
if tail >= cur and head <= pre:
nodes[pre].NNW[(head,tail)].add(cur)
# entity
for tail,type_id in nodes[cur].THW:
if cur == tail:
predicts.append(([cur], type_id))
continue
q.clear()
q.append([cur])
while len(q) > 0:
chains = q.pop()
for idx in nodes[chains[-1]].NNW[(cur,tail)]:
if idx == tail:
predicts.append((chains + [idx], type_id))
else:
q.append(chains + [idx])
predicts = set([convert_index_to_text(x[0], x[1]) for x in predicts])
decode_entities.append([convert_text_to_index(x) for x in predicts])
ent_r += len(ent_set)
ent_p += len(predicts)
ent_c += len(predicts.intersection(ent_set))
return ent_c, ent_p, ent_r, decode_entities
if __name__ == '__main__':
evaluator = Evaluator()
model.fit(train_dataloader, epochs=epochs, steps_per_epoch=steps_per_epoch, callbacks=[evaluator])
else:
model.load_weights('best_model.pt')