-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathtask_chatglm_nbce.py
135 lines (111 loc) · 5.17 KB
/
task_chatglm_nbce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#! -*- coding: utf-8 -*-
# Naive Bayes-based Context Extension (NBCE)
# 使用朴素贝叶斯增加LLM的Context处理长度
# 链接:https://kexue.fm/archives/9617
import torch
from bert4torch.models import build_transformer_model
from transformers import AutoTokenizer
import re
import json
import os
choice = 'default' # default, int4, int8, v1.1.0
if choice == 'default':
dir_path = "E:/data/pretrain_ckpt/THUDM/chatglm-6b"
config_path = dir_path + '/bert4torch_config.json'
checkpoint_path = [os.path.join(dir_path, i) for i in os.listdir(dir_path) if i.endswith('.bin')]
elif choice == 'v1.1.0':
dir_path = "E:/data/pretrain_ckpt/THUDM/chatglm-6b-v1_1_0"
config_path = dir_path + '/bert4torch_config.json'
checkpoint_path = [os.path.join(dir_path, i) for i in os.listdir(dir_path) if i.endswith('.bin')]
elif choice == 'int4':
dir_path = "E:/data/pretrain_ckpt/THUDM/chatglm-6b-int4"
config_path = dir_path + '/bert4torch_config.json'
checkpoint_path = [os.path.join(dir_path, i) for i in os.listdir(dir_path) if i.endswith('.bin')]
elif choice == 'int8':
dir_path = "E:/data/pretrain_ckpt/THUDM/chatglm-6b-int8"
config_path = dir_path + '/bert4torch_config.json'
checkpoint_path = [os.path.join(dir_path, i) for i in os.listdir(dir_path) if i.endswith('.bin')]
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_path.replace('/', '\\'), trust_remote_code=True)
tokenizer.padding_side = 'left'
# 加载chatglm-6b模型
# 建立模型,加载权重
if choice in {'default', 'v1.1.0'}:
model = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path).half()
model = model.quantize(quantization_method='cpm_kernels', quantization_bit=8).to(device)
else:
# 在config中已经写入了量化的配置参数
model = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path).to(device)
model.eval()
# 加载示例Context
contexts = json.load(open('E:/Github/bert4torch/data/nbce_contexts.json', encoding='utf-8'))
# 示例问题集(一次性问多个问题,NBCE自行根据Context逐一输出答案)
question = """请仔细阅读材料,回答下面问题:
- 创新药新巨头吉利德公司有多少个员工?
- 领英计划裁员多少人?
"""
# 拼接context和question
contexts = [''] + contexts # 添加空Context(无Context预测)
batch = ['''
要求: 基于已知内容,请用中文以要求的格式简短直接地回答用户的问题。
已知内容: %s
问题: %s
''' % (context, question) for context in contexts]
print('Context长度分布:', [len(text) for text in batch])
print('Context总长度:', sum([len(text) for text in batch]))
# print(batch)
@torch.inference_mode()
def generate(max_tokens):
"""Naive Bayes-based Context Extension 演示代码
"""
eop_list= []
inputs = tokenizer(batch, padding='longest', return_tensors='pt', return_attention_mask=True, skip_special_tokens=True).to(device)
input_ids = past_token_ids = inputs.input_ids
res = ''
n = input_ids.shape[0]
past_key_values = None
for i in range(max_tokens):
# 模型输出
#print(f'第{i+1}token开始输出')
logits, model_kwargs = model(input_ids,
past_key_values=past_key_values,
past_token_ids=past_token_ids,
use_states=True
)
past_key_values = model_kwargs['past_key_values']
torch.cuda.empty_cache()
# ===== 核心代码开始 =====
beta = 0.25
logits = logits[:, -1]
logits -= torch.max(logits,dim=1).values.reshape(logits.shape[0],-1)
probas = torch.nn.functional.softmax(logits.float(), dim=-1)
logits = probas.log()
k = (probas * logits).sum(dim=-1)[1:].argmax() + 1
logits_max = logits[k]
logits_uncond = logits[0]
logits = (1 + beta) * logits_max - beta * logits_uncond
# ===== 核心代码结束 =====
# 构建分布,采样
# tau = 0.01 # tau = 1是标准的随机采样,tau->0则是贪心搜索
probas = torch.nn.functional.softmax(logits[None], dim=-1)
next_tokens = torch.topk(probas,1).indices
s = tokenizer.convert_ids_to_tokens(next_tokens)
res += s[0]
if s[0] == '<eop>':
if len(eop_list)==3:
break
else:
eop_list.append('<eop>')
else:
eop_list = []
# prepare for next iteration
input_ids = next_tokens.tile(n, 1)
past_token_ids = torch.cat([past_token_ids, input_ids], dim=1)
print('==================question===================')
print(question)
print('===================answer====================')
print(re.sub('<n>+', '\n', re.sub('▁|<eop>|<sop>','',res)))
#['据公开报道,截至2021年6月,吉利德公司有约16,000名员工。', '领英计划裁员716人。', 'Pharmasset被吉利德以110亿美元收购。']
if __name__ == '__main__':
generate(1000)