-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathbasic_language_model_t5_pegasus.py
55 lines (45 loc) · 2.33 KB
/
basic_language_model_t5_pegasus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#! -*- coding: utf-8 -*-
# 调用T5 PEGASUS, 使用到是BertTokenizer
import torch
from bert4torch.models import build_transformer_model
from bert4torch.tokenizers import Tokenizer, load_vocab
from bert4torch.generation import AutoRegressiveDecoder, Seq2SeqGeneration
import jieba
jieba.initialize()
# bert配置
# model_dir = 'E:/data/pretrain_ckpt/Tongjilibo/chinese_t5_pegasus_small/'
model_dir = 'E:/data/pretrain_ckpt/Tongjilibo/chinese_t5_pegasus_base/'
config_path = model_dir + 'bert4torch_config.json'
checkpoint_path = model_dir + 'pytorch_model.bin'
dict_path = model_dir + 'vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 加载并精简词表,建立分词器
tokenizer = Tokenizer(
dict_path,
do_lower_case=True,
pre_tokenize=lambda s: jieba.cut(s, HMM=False)
)
model = build_transformer_model(config_path, checkpoint_path).to(device)
# 第一种自定义方式
class AutoTitle(AutoRegressiveDecoder):
"""seq2seq解码器
"""
@AutoRegressiveDecoder.wraps(default_rtype='logits')
def predict(self, inputs, output_ids, states):
# inputs中包含了[decoder_ids, encoder_hidden_state, encoder_attention_mask]
res = model.decoder.predict([output_ids] + inputs)
return res[-1][:, -1, :] if isinstance(res, list) else res[:, -1, :] # 保留最后一位
def generate(self, text, top_k=1):
token_ids, _ = tokenizer.encode(text, maxlen=256)
token_ids = torch.tensor([token_ids], device=device)
encoder_output = model.encoder.predict([token_ids])
output_ids = self.beam_search(encoder_output, top_k=top_k)[0] # 基于beam search
return tokenizer.decode([int(i) for i in output_ids.cpu().numpy()])
autotitle = AutoTitle(bos_token_id=tokenizer._token_start_id, eos_token_id=tokenizer._token_end_id, max_new_tokens=32, device=device) # 这里end_id可以设置为tokenizer._token_end_id这样结果更短
# 第二种方式
# autotitle = Seq2SeqGeneration(model, tokenizer, bos_token_id=tokenizer._token_start_id, eos_token_id=tokenizer._token_end_id,
# max_length=32, default_rtype='logits', mode='beam_search')
if __name__ == '__main__':
print(autotitle.generate('今天天气不错啊', top_k=1))
# small版输出:我是个女的,我想知道我是怎么想的
# base版输出:请问明天的天气怎么样啊?