-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
257 lines (198 loc) · 7.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import math
import sys
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as Func
from torch.nn import init
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.optim as optim
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from numpy import linalg as LA
import networkx as nx
from utils import *
from metrics import *
import pickle
import argparse
from torch import autograd
import torch.optim.lr_scheduler as lr_scheduler
from model import *
parser = argparse.ArgumentParser()
# Model specific parameters
parser.add_argument('--input_size', type=int, default=2)
parser.add_argument('--output_size', type=int, default=5)
parser.add_argument('--n_stgcnn', type=int, default=1, help='Number of ST-GCNN layers')
parser.add_argument('--n_txpcnn', type=int, default=5, help='Number of TXPCNN layers')
parser.add_argument('--kernel_size', type=int, default=3)
# Data specifc paremeters
parser.add_argument('--obs_seq_len', type=int, default=8)
parser.add_argument('--pred_seq_len', type=int, default=12)
parser.add_argument('--dataset', default='HEV',
help='HEV')
# Training specifc parameters
parser.add_argument('--batch_size', type=int, default=1024,
help='minibatch size')
parser.add_argument('--num_epochs', type=int, default=250,
help='number of epochs')
parser.add_argument('--clip_grad', type=float, default=None,
help='gadient clipping')
parser.add_argument('--lr', type=float, default=0.000001,
help='learning rate')
parser.add_argument('--lr_sh_rate', type=int, default=50,
help='number of steps to drop the lr')
parser.add_argument('--use_lrschd', action="store_true", default=True,
help='Use lr rate scheduler')
parser.add_argument('--tag', default='your-experiment-name',
help='personal tag for the model ')
parser.add_argument('--use_image', default=True,
help='if use image information')
parser.add_argument('--use_flow', default=True,
help='if use optical flow information')
args = parser.parse_args()
print('*' * 30)
print("Training initiating....")
print(args)
def graph_loss(V_pred, V_target):
return bivariate_loss(V_pred, V_target)
# Data prep
obs_seq_len = args.obs_seq_len
pred_seq_len = args.pred_seq_len
data_set = './datasets/' + args.dataset + '/'
dset_train = TrajectoryDataset(
data_set + 'train/',
data_set + 'flow_train/',
data_set + 'image_train/',
obs_len=obs_seq_len,
pred_len=pred_seq_len,
skip=1, norm_lap_matr=True)
loader_train = DataLoader(
dset_train,
batch_size=1, # This is irrelative to the args batch size parameter
shuffle=True,
num_workers=0)
dset_val = TrajectoryDataset(
data_set + 'val/',
data_set + 'flow_val/',
data_set + 'image_val/',
obs_len=obs_seq_len,
pred_len=pred_seq_len,
skip=1, norm_lap_matr=True)
loader_val = DataLoader(
dset_val,
batch_size=1, # This is irrelative to the args batch size parameter
shuffle=False,
num_workers=0)
# Defining the model
model = social_stgcnn(n_stgcnn=args.n_stgcnn, n_txpcnn=args.n_txpcnn,
output_feat=args.output_size, seq_len=args.obs_seq_len,
kernel_size=args.kernel_size, pred_seq_len=args.pred_seq_len, use_image=args.use_image,
use_flow=args.use_flow).cuda()
# Training settings
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.use_lrschd:
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_sh_rate, gamma=0.2)
checkpoint_dir = './checkpoint/' + args.tag + '/'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
with open(checkpoint_dir + 'args.pkl', 'wb') as fp:
pickle.dump(args, fp)
# model.load_state_dict(torch.load(checkpoint_dir + 'val_best.pth'))
print('Data and model loaded')
print('Checkpoint dir:', checkpoint_dir)
# Training
metrics = {'train_loss': [], 'val_loss': []}
constant_metrics = {'min_val_epoch': -1, 'min_val_loss': 9999999999999999}
def train(epoch):
global metrics, loader_train
model.train()
loss_batch = 0
batch_count = 0
loss_metric = 0
is_fst_loss = True
loader_len = len(loader_train)
turn_point = int(loader_len / args.batch_size) * args.batch_size + loader_len % args.batch_size - 1
for cnt, batch in enumerate(loader_train):
batch_count += 1
# Get data
batch = [tensor.cuda() for tensor in batch]
obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel, obs_flow, pred_flow, \
obs_image, pred_image, non_linear_ped, loss_mask, V_obs, A_obs, V_tr, A_tr = batch
# V_tr shape = (1,12,2,2)
# print('V_tr shape:', V_tr.shape)
# print('obs_traj shape:', obs_traj.shape)
# print('obs_image shape:', obs_image.shape)
optimizer.zero_grad()
# Forward
# V_obs = batch,seq,node,feat, shape为(1,8,2,2)
# V_obs_tmp = batch,feat,seq,node
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_tmp, A_obs.squeeze(), obs_flow, obs_image)
# print('V predict:', V_pred.shape)
# (1,12,2,5)
V_pred = V_pred.permute(0, 2, 3, 1)
V_tr = V_tr.squeeze()
A_tr = A_tr.squeeze()
V_pred = V_pred.squeeze()
loss = graph_loss(V_pred, V_tr)
loss.backward()
if args.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
optimizer.step()
# Metrics
if batch_count % 100 == 0:
print('TRAIN:', '\t Epoch:', epoch, '\t Loss:', loss.item())
loss_metric = loss
metrics['train_loss'].append(loss_metric)
def vald(epoch):
global metrics, loader_val, constant_metrics
model.eval()
loss_batch = 0
batch_count = 0
is_fst_loss = True
loader_len = len(loader_val)
turn_point = int(loader_len / args.batch_size) * args.batch_size + loader_len % args.batch_size - 1
for cnt, batch in enumerate(loader_val):
batch_count += 1
# Get data
batch = [tensor.cuda() for tensor in batch]
obs_traj, pred_traj_gt, obs_traj_rel, pred_traj_gt_rel, obs_flow, pred_flow, \
obs_image, pred_image, non_linear_ped, loss_mask, V_obs, A_obs, V_tr, A_tr = batch
V_obs_tmp = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_tmp, A_obs.squeeze(), obs_flow, obs_image)
V_pred = V_pred.permute(0, 2, 3, 1)
V_tr = V_tr.squeeze()
A_tr = A_tr.squeeze()
V_pred = V_pred.squeeze()
loss = graph_loss(V_pred, V_tr)
# loss.backward()
optimizer.step()
# Metrics
if batch_count % 100 == 0:
print('VALD:', '\t Epoch:', epoch, '\t Loss:', loss.item())
loss_metric = loss
metrics['val_loss'].append(loss_metric)
if metrics['val_loss'][-1] < constant_metrics['min_val_loss']:
constant_metrics['min_val_loss'] = metrics['val_loss'][-1]
constant_metrics['min_val_epoch'] = epoch
torch.save(model.state_dict(), checkpoint_dir + 'val_best.pth') # OK
print('Training started ...')
for epoch in range(args.num_epochs):
train(epoch)
with torch.autograd.no_grad():
vald(epoch)
if args.use_lrschd:
scheduler.step()
print('*' * 30)
print('Epoch:', args.tag, ":", epoch)
for k, v in metrics.items():
if len(v) > 0:
print(k, v[-1])
print(constant_metrics)
print('*' * 30)
with open(checkpoint_dir + 'metrics.pkl', 'wb') as fp:
pickle.dump(metrics, fp)
with open(checkpoint_dir + 'constant_metrics.pkl', 'wb') as fp:
pickle.dump(constant_metrics, fp)