forked from PaddlePaddle/PaddleYOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
281 lines (249 loc) ยท 9.77 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import os
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import math
def visualize_box_mask(im, results, labels, threshold=0.5):
"""
Args:
im (str/np.ndarray): path of image/np.ndarray read by cv2
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape:[N, im_h, im_w]
labels (list): labels:['class1', ..., 'classn']
threshold (float): Threshold of score.
Returns:
im (PIL.Image.Image): visualized image
"""
if isinstance(im, str):
#im = Image.open(im).convert('RGB')
im = tim_open_image(im)
elif isinstance(im, np.ndarray):
im = Image.fromarray(im)
if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0:
im = draw_mask(im, results['boxes'], results['masks'], labels, threshold=threshold)
if 'boxes' in results and len(results['boxes']) > 0:
im = draw_box(im, results['boxes'], labels, threshold=threshold)
if 'segm' in results:
im = draw_segm(
im,
results['segm'],
results['label'],
results['score'],
labels,
threshold=threshold)
return im
def get_color_map_list(num_classes):
"""
Args:
num_classes (int): number of class
Returns:
color_map (list): RGB color list
"""
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
return color_map
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5):
"""
Args:
im (PIL.Image.Image): PIL image
np_boxes (np.ndarray): shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
np_masks (np.ndarray): shape:[N, im_h, im_w]
labels (list): labels:['class1', ..., 'classn']
threshold (float): threshold of mask
Returns:
im (PIL.Image.Image): visualized image
"""
color_list = get_color_map_list(len(labels))
w_ratio = 0.4
alpha = 0.7
im = np.array(im).astype('float32')
clsid2color = {}
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
np_boxes = np_boxes[expect_boxes, :]
np_masks = np_masks[expect_boxes, :, :]
im_h, im_w = im.shape[:2]
np_masks = np_masks[:, :im_h, :im_w]
for i in range(len(np_masks)):
clsid, score = int(np_boxes[i][0]), np_boxes[i][1]
mask = np_masks[i]
if clsid not in clsid2color:
clsid2color[clsid] = color_list[clsid]
color_mask = clsid2color[clsid]
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
color_mask = np.array(color_mask)
im[idx[0], idx[1], :] *= 1.0 - alpha
im[idx[0], idx[1], :] += alpha * color_mask
return Image.fromarray(im.astype('uint8'))
def draw_box(im, np_boxes, labels, threshold=0.5):
"""
Args:
im (PIL.Image.Image): PIL image
np_boxes (np.ndarray): shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
labels (list): labels:['class1', ..., 'classn']
threshold (float): threshold of box
Returns:
im (PIL.Image.Image): visualized image
"""
draw_thickness = min(im.size) // 320
draw = ImageDraw.Draw(im)
clsid2color = {}
color_list = get_color_map_list(len(labels))
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
np_boxes = np_boxes[expect_boxes, :]
for dt in np_boxes:
clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
if clsid not in clsid2color:
clsid2color[clsid] = color_list[clsid]
color = tuple(clsid2color[clsid])
if len(bbox) == 4:
xmin, ymin, xmax, ymax = bbox
print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],'
'right_bottom:[{:.2f},{:.2f}]'.format(
int(clsid), score, xmin, ymin, xmax, ymax))
# draw bbox
draw.line(
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
(xmin, ymin)],
width=draw_thickness,
fill=color)
elif len(bbox) == 8:
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
draw.line(
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
width=2,
fill=color)
xmin = min(x1, x2, x3, x4)
ymin = min(y1, y2, y3, y4)
# draw label
text = "{} {:.4f}".format(labels[clsid], score)
tw, th = draw.textsize(text)
draw.rectangle(
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
return im
def draw_segm(im,
np_segms,
np_label,
np_score,
labels,
threshold=0.5,
alpha=0.7):
"""
Draw segmentation on image
"""
mask_color_id = 0
w_ratio = .4
color_list = get_color_map_list(len(labels))
im = np.array(im).astype('float32')
clsid2color = {}
np_segms = np_segms.astype(np.uint8)
for i in range(np_segms.shape[0]):
mask, score, clsid = np_segms[i], np_score[i], np_label[i]
if score < threshold:
continue
if clsid not in clsid2color:
clsid2color[clsid] = color_list[clsid]
color_mask = clsid2color[clsid]
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
color_mask = np.array(color_mask)
idx0 = np.minimum(idx[0], im.shape[0] - 1)
idx1 = np.minimum(idx[1], im.shape[1] - 1)
im[idx0, idx1, :] *= 1.0 - alpha
im[idx0, idx1, :] += alpha * color_mask
sum_x = np.sum(mask, axis=0)
x = np.where(sum_x > 0.5)[0]
sum_y = np.sum(mask, axis=1)
y = np.where(sum_y > 0.5)[0]
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
cv2.rectangle(im, (x0, y0), (x1, y1),
tuple(color_mask.astype('int32').tolist()), 1)
bbox_text = '%s %.2f' % (labels[clsid], score)
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3),
tuple(color_mask.astype('int32').tolist()), -1)
cv2.putText(
im,
bbox_text, (x0, y0 - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.3, (0, 0, 0),
1,
lineType=cv2.LINE_AA)
return Image.fromarray(im.astype('uint8'))
def tim_open_image(ori_image_path):
# PIL็ๆนๅผๆๅผimage
cur_image = Image.open(ori_image_path).convert('RGB')
# ๅฐๅพๅ่ฝฌๅไธบnumpyๆฐ็ป
cur_image = np.array(cur_image)
# ่ฟ่ก3*3็ๅๅผๆปคๆณข
smooth_image = cv2.blur(cur_image, (3, 3))
# RGB->lab
lab_image = cv2.cvtColor(smooth_image, cv2.COLOR_RGB2LAB)
L, A, B = cv2.split(lab_image)
# ๅบไบLๅ้่ฟ่ก้ๅผๅๅฒ
# ่ฎก็ฎๅพๅไธญๅฟๅบๅ50*50็Lๅ้ๅๅผ ๅพๅฐ้ๅผ
width, height = L.shape
if width > 512 and height > 512:
center_mean = np.mean(L[width // 2 - 25: width // 2 + 25, height // 2 - 25: height // 2 + 25])
threshold = 0.8 * center_mean
# ้ๅผๅๅฒ ไบๅผๅ
binary_L = np.zeros_like(L)
binary_L[L > threshold] = 255
# ไบๅผๅๅพๅ็่จ่ๆไฝ
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (11, 11))
dilate_L = cv2.dilate(binary_L, kernel)
# ่ฟ้ๅๆๅ, ๆพๅฐ้ข็งฏๆๅคง็่ฟ้ๅ๏ผ่ทๅ่ฏฅ่ฟ้ๅ็ๅคๆฅ็ฉๅฝข
_, labels, stats, centroids = cv2.connectedComponentsWithStats(dilate_L, connectivity=8)
max_label, max_num = 0, 0
for i in range(1, len(stats)):
if stats[i][4] > max_num:
max_num = stats[i][4]
max_label = i
x, y, w, h = stats[max_label][:4]
# ๅฏนๅๅงๅพๅ่ฟ่กcropๆไฝ
L = L[y: y + h, x: x + w]
A = A[y: y + h, x: x + w]
B = B[y: y + h, x: x + w]
# Lๅ้่ฐๆดๅฐๅๅผ127
avg_L = np.mean(L)
scale_val = max(min(127.0 / avg_L, 2.5), 1.0)
add_val = min(max(127 - avg_L * scale_val, 0), 50)
L = L * scale_val + add_val
L = L.astype(np.uint8)
lab_image = cv2.merge([L, A, B])
# lab->RGB
smooth_image = cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)
# ๅฐnumpyๆฐ็ป่ฝฌๅไธบPILๆ ผๅผ
dst_image = Image.fromarray(smooth_image)
return dst_image