-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy path443N.txt
1260 lines (1118 loc) · 61.4 KB
/
443N.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
sbc-bench v0.9.8 Apple MacBook Pro (14-inch, M1 Pro, 2021) extensive (Mon, 11 Jul 2022 20:52:33 +1000)
Distributor ID: Gentoo
Description: Gentoo Base System release 2.8
Release: 2.8
/usr/bin/gcc (Gentoo 12.1.1_p20220625 p8) 12.1.1 20220625
Uptime: 20:52:33 up 3:10, 2 users, load average: 0.58, 0.49, 0.82, 0°C
Linux 5.18.0-asahi-ARCH (usagi) 07/11/22 _aarch64_ (10 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
11.81 0.00 1.45 0.04 0.00 86.70
Device tps kB_read/s kB_wrtn/s kB_dscd/s kB_read kB_wrtn kB_dscd
nvme0n1 13.97 264.12 833.00 0.00 3023780 9536700 0
nvme0n2 0.00 0.07 0.00 0.00 752 0 0
nvme0n3 0.01 0.19 0.00 0.00 2224 0 0
total used free shared buff/cache available
Mem: 15Gi 224Mi 14Gi 27Mi 156Mi 14Gi
Swap: 16Gi 0B 16Gi
Filename Type Size Used Priority
/dev/nvme0n1p6 partition 16782416 0 -2
##########################################################################
Checking cpufreq OPP for cpu0-cpu1:
Cpufreq OPP: 2064 Measured: 2060 (2060.995/2060.953/2060.932)
Cpufreq OPP: 1704 Measured: 1700 (1701.029/1700.921/1700.903)
Cpufreq OPP: 1332 Measured: 1328 (1328.907/1328.538/1327.746)
Cpufreq OPP: 972 Measured: 968 (968.946/968.833/968.765)
Cpufreq OPP: 600 Measured: 597 (597.101/597.060/597.040)
Checking cpufreq OPP for cpu2-cpu5:
Cpufreq OPP: 3036 Measured: 3033 (3033.924/3033.705/3033.522)
Cpufreq OPP: 2904 Measured: 2901 (2901.698/2901.531/2900.830)
Cpufreq OPP: 2676 Measured: 2673 (2673.522/2673.408/2673.295)
Cpufreq OPP: 2448 Measured: 2444 (2445.763/2445.674/2443.423)
Cpufreq OPP: 2208 Measured: 2203 (2205.786/2205.038/2198.718)
Cpufreq OPP: 1980 Measured: 1977 (1977.635/1977.489/1977.005)
Cpufreq OPP: 1752 Measured: 1749 (1749.727/1749.595/1749.462)
Cpufreq OPP: 1524 Measured: 1521 (1521.792/1521.774/1521.433)
Cpufreq OPP: 1296 Measured: 1293 (1293.731/1293.692/1293.692)
Cpufreq OPP: 1056 Measured: 1053 (1054.112/1053.800/1053.757)
Cpufreq OPP: 828 Measured: 825 (825.785/825.610/825.156)
Cpufreq OPP: 600 Measured: 597 (597.803/597.783/597.701)
Checking cpufreq OPP for cpu6-cpu9:
Cpufreq OPP: 3036 Measured: 3032 (3033.851/3033.595/3030.606)
Cpufreq OPP: 2904 Measured: 2901 (2901.999/2901.765/2901.665)
Cpufreq OPP: 2676 Measured: 2673 (2673.295/2673.040/2672.757)
Cpufreq OPP: 2448 Measured: 2448 (2454.182/2445.674/2445.644)
Cpufreq OPP: 2208 Measured: 2205 (2206.003/2205.737/2205.303)
Cpufreq OPP: 1980 Measured: 1977 (1977.950/1977.683/1977.562)
Cpufreq OPP: 1752 Measured: 1748 (1749.708/1749.670/1747.265)
Cpufreq OPP: 1524 Measured: 1521 (1521.846/1521.792/1521.505)
Cpufreq OPP: 1296 Measured: 1293 (1293.796/1293.666/1293.550)
Cpufreq OPP: 1056 Measured: 1053 (1053.833/1053.736/1053.671)
Cpufreq OPP: 828 Measured: 825 (825.785/825.641/825.599)
Cpufreq OPP: 600 Measured: 598 (598.357/597.951/597.769)
##########################################################################
Hardware sensors:
macsmc_ac-isa-0000
in0: 20.00 V
macsmc_battery-virtual-0
temp1: +32.3 C
macsmc_battery-isa-0000
in0: 12.91 V
temp: +32.3 C
curr1: 0.00 A
/dev/nvme0n1: 35°C
##########################################################################
Executing benchmark on cpu0:
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 13232.6 MB/s
C copy backwards (32 byte blocks) : 12309.2 MB/s
C copy backwards (64 byte blocks) : 12310.1 MB/s
C copy : 13202.9 MB/s
C copy prefetched (32 bytes step) : 14260.4 MB/s
C copy prefetched (64 bytes step) : 14533.6 MB/s
C 2-pass copy : 7413.0 MB/s
C 2-pass copy prefetched (32 bytes step) : 7988.8 MB/s
C 2-pass copy prefetched (64 bytes step) : 8052.4 MB/s
C fill : 15849.7 MB/s
C fill (shuffle within 16 byte blocks) : 15845.7 MB/s
C fill (shuffle within 32 byte blocks) : 15972.5 MB/s
C fill (shuffle within 64 byte blocks) : 15659.5 MB/s
---
standard memcpy : 15554.3 MB/s
standard memset : 19814.4 MB/s
---
NEON LDP/STP copy : 15670.2 MB/s
NEON LDP/STP copy pldl2strm (32 bytes step) : 15445.9 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 15512.7 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 15689.4 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 15701.1 MB/s
NEON LD1/ST1 copy : 15667.0 MB/s
NEON STP fill : 19809.1 MB/s
NEON STNP fill : 31538.7 MB/s
ARM LDP/STP copy : 15641.8 MB/s
ARM STP fill : 19808.1 MB/s
ARM STNP fill : 31539.2 MB/s
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON LDP/STP copy (from framebuffer) : 15917.1 MB/s
NEON LDP/STP 2-pass copy (from framebuffer) : 12931.9 MB/s
NEON LD1/ST1 copy (from framebuffer) : 15918.6 MB/s
NEON LD1/ST1 2-pass copy (from framebuffer) : 12931.0 MB/s
ARM LDP/STP copy (from framebuffer) : 15891.8 MB/s
ARM LDP/STP 2-pass copy (from framebuffer) : 12820.6 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 0.0 ns / 0.0 ns
131072 : 2.8 ns / 4.1 ns
262144 : 4.2 ns / 5.3 ns
524288 : 4.9 ns / 5.7 ns
1048576 : 5.3 ns / 5.9 ns
2097152 : 5.6 ns / 5.9 ns
4194304 : 18.0 ns / 27.5 ns
8388608 : 63.9 ns / 95.0 ns
16777216 : 91.8 ns / 121.0 ns
33554432 : 114.4 ns / 138.7 ns
67108864 : 129.6 ns / 147.9 ns
Executing benchmark on cpu2:
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 24635.1 MB/s
C copy backwards (32 byte blocks) : 24611.3 MB/s
C copy backwards (64 byte blocks) : 24610.9 MB/s
C copy : 24719.4 MB/s
C copy prefetched (32 bytes step) : 24773.4 MB/s
C copy prefetched (64 bytes step) : 24772.9 MB/s
C 2-pass copy : 19913.4 MB/s
C 2-pass copy prefetched (32 bytes step) : 20417.2 MB/s
C 2-pass copy prefetched (64 bytes step) : 20765.9 MB/s
C fill : 41526.4 MB/s
C fill (shuffle within 16 byte blocks) : 41563.4 MB/s
C fill (shuffle within 32 byte blocks) : 39785.2 MB/s
C fill (shuffle within 64 byte blocks) : 38575.2 MB/s
---
standard memcpy : 27023.2 MB/s
standard memset : 70275.3 MB/s (8.2%)
---
NEON LDP/STP copy : 27359.2 MB/s (0.2%)
NEON LDP/STP copy pldl2strm (32 bytes step) : 28399.8 MB/s (0.1%)
NEON LDP/STP copy pldl2strm (64 bytes step) : 27953.0 MB/s (0.1%)
NEON LDP/STP copy pldl1keep (32 bytes step) : 27013.0 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 27105.3 MB/s (0.1%)
NEON LD1/ST1 copy : 27344.0 MB/s
NEON STP fill : 70208.6 MB/s (8.3%)
NEON STNP fill : 70565.6 MB/s (1.2%)
ARM LDP/STP copy : 27304.9 MB/s (0.1%)
ARM STP fill : 69792.4 MB/s (8.7%)
ARM STNP fill : 69813.5 MB/s (0.8%)
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON LDP/STP copy (from framebuffer) : 24945.3 MB/s
NEON LDP/STP 2-pass copy (from framebuffer) : 24747.4 MB/s
NEON LD1/ST1 copy (from framebuffer) : 24939.8 MB/s
NEON LD1/ST1 2-pass copy (from framebuffer) : 24746.7 MB/s
ARM LDP/STP copy (from framebuffer) : 24932.5 MB/s
ARM LDP/STP 2-pass copy (from framebuffer) : 24750.0 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 0.0 ns / 0.0 ns
131072 : 0.0 ns / 0.0 ns
262144 : 2.3 ns / 3.5 ns
524288 : 3.5 ns / 4.5 ns
1048576 : 4.1 ns / 4.9 ns
2097152 : 4.3 ns / 5.0 ns
4194304 : 5.2 ns / 5.9 ns
8388608 : 8.2 ns / 10.4 ns
16777216 : 34.4 ns / 56.4 ns
33554432 : 72.4 ns / 103.6 ns
67108864 : 99.8 ns / 126.1 ns
Executing benchmark on cpu6:
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 24653.5 MB/s
C copy backwards (32 byte blocks) : 24636.3 MB/s
C copy backwards (64 byte blocks) : 24637.5 MB/s
C copy : 24725.8 MB/s
C copy prefetched (32 bytes step) : 24781.1 MB/s
C copy prefetched (64 bytes step) : 24782.5 MB/s
C 2-pass copy : 19884.7 MB/s
C 2-pass copy prefetched (32 bytes step) : 20430.1 MB/s (0.1%)
C 2-pass copy prefetched (64 bytes step) : 20776.5 MB/s (0.1%)
C fill : 41726.0 MB/s
C fill (shuffle within 16 byte blocks) : 41762.7 MB/s (0.2%)
C fill (shuffle within 32 byte blocks) : 39845.3 MB/s
C fill (shuffle within 64 byte blocks) : 38584.0 MB/s
---
standard memcpy : 27112.0 MB/s (0.2%)
standard memset : 71913.6 MB/s (8.9%)
---
NEON LDP/STP copy : 27376.4 MB/s (0.2%)
NEON LDP/STP copy pldl2strm (32 bytes step) : 28211.4 MB/s (0.1%)
NEON LDP/STP copy pldl2strm (64 bytes step) : 28072.1 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 27097.2 MB/s (0.1%)
NEON LDP/STP copy pldl1keep (64 bytes step) : 27130.6 MB/s
NEON LD1/ST1 copy : 27294.9 MB/s
NEON STP fill : 71683.1 MB/s (9.0%)
NEON STNP fill : 71815.8 MB/s (1.5%)
ARM LDP/STP copy : 27375.4 MB/s (0.2%)
ARM STP fill : 71974.1 MB/s (9.0%)
ARM STNP fill : 71920.8 MB/s (1.1%)
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON LDP/STP copy (from framebuffer) : 24933.4 MB/s
NEON LDP/STP 2-pass copy (from framebuffer) : 24741.6 MB/s
NEON LD1/ST1 copy (from framebuffer) : 24951.2 MB/s
NEON LD1/ST1 2-pass copy (from framebuffer) : 24740.0 MB/s
ARM LDP/STP copy (from framebuffer) : 24947.0 MB/s
ARM LDP/STP 2-pass copy (from framebuffer) : 24738.0 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 0.0 ns / 0.0 ns
131072 : 0.0 ns / 0.0 ns
262144 : 2.3 ns / 3.5 ns
524288 : 3.5 ns / 4.5 ns
1048576 : 4.1 ns / 4.9 ns
2097152 : 4.4 ns / 5.0 ns
4194304 : 5.2 ns / 5.9 ns
8388608 : 6.5 ns / 7.6 ns
16777216 : 34.0 ns / 55.5 ns
33554432 : 72.3 ns / 102.4 ns
67108864 : 99.7 ns / 125.1 ns
##########################################################################
Executing ramlat on cpu0, results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 1.941 1.942 1.941 1.941 1.456 1.456 2.360 4.849
8k: 1.941 1.941 1.941 1.941 1.456 1.456 2.443 5.185
16k: 1.941 1.941 1.941 1.941 1.456 1.456 2.439 5.165
32k: 1.941 1.941 1.942 1.941 1.456 1.457 2.434 5.212
64k: 1.951 1.947 1.951 1.947 1.464 1.464 2.440 5.220
128k: 7.523 7.916 7.523 7.913 7.038 7.449 9.415 13.63
256k: 7.525 8.096 7.523 8.075 7.039 7.487 9.528 13.69
512k: 7.523 8.085 7.523 8.072 7.038 7.501 9.564 13.68
1024k: 7.525 8.104 7.525 8.100 7.038 7.509 9.543 13.69
2048k: 7.609 8.263 7.609 8.268 7.127 7.561 9.562 13.77
4096k: 71.05 56.64 71.09 56.56 70.71 71.85 73.98 80.72
8192k: 120.6 119.2 120.7 120.9 120.3 121.6 123.7 128.9
16384k: 121.8 122.2 121.7 122.0 121.4 122.2 124.4 129.8
Executing ramlat on cpu2, results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 1.319 1.318 1.319 1.319 0.989 0.989 1.257 2.270
8k: 1.319 1.319 1.319 1.319 0.989 0.989 1.293 2.369
16k: 1.319 1.319 1.319 1.319 0.989 0.989 1.303 2.412
32k: 1.318 1.319 1.318 1.320 0.989 0.989 1.300 2.417
64k: 1.319 1.319 1.318 1.319 0.989 0.989 1.292 2.420
128k: 1.327 1.323 1.327 1.322 0.996 0.994 1.310 2.456
256k: 5.934 5.991 5.933 5.990 5.933 5.960 6.109 6.864
512k: 5.935 6.028 5.934 6.029 5.934 5.988 6.210 6.989
1024k: 5.948 6.039 5.934 6.040 5.934 6.077 6.391 7.075
2048k: 5.949 6.045 5.935 6.043 5.934 6.137 6.585 7.182
4096k: 7.959 8.226 7.930 8.221 7.941 7.621 7.607 9.147
8192k: 22.44 18.14 22.20 18.47 22.17 22.31 22.66 22.79
16384k: 91.48 75.59 91.89 75.00 91.27 92.90 94.44 96.05
Executing ramlat on cpu6, results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR 8xPTR
4k: 1.319 1.319 1.319 1.319 0.992 0.989 1.296 2.270
8k: 1.319 1.319 1.319 1.319 0.992 0.989 1.347 2.369
16k: 1.319 1.319 1.319 1.319 0.992 0.989 1.360 2.412
32k: 1.318 1.319 1.319 1.318 0.993 0.989 1.361 2.418
64k: 1.318 1.319 1.318 1.318 0.992 0.989 1.354 2.420
128k: 1.327 1.322 1.326 1.322 0.998 0.994 1.374 2.456
256k: 5.929 5.994 5.928 5.988 5.932 5.966 6.108 6.862
512k: 5.938 6.025 5.934 6.026 5.934 5.986 6.205 6.989
1024k: 5.945 6.040 5.935 6.039 5.934 6.077 6.391 7.076
2048k: 5.955 6.041 5.936 6.044 5.934 6.137 6.583 7.167
4096k: 7.993 8.153 7.933 8.153 7.953 7.620 7.595 9.117
8192k: 24.89 19.84 24.67 19.67 24.62 24.77 25.09 25.72
16384k: 90.50 76.94 90.78 76.90 90.94 91.57 92.89 95.15
##########################################################################
Executing benchmark on each cluster individually
OpenSSL 1.1.1q, built on 5 Jul 2022
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 16384 bytes
aes-128-cbc 540464.50k 873160.49k 1032379.22k 1081641.98k 1096777.73k 1097979.22k
aes-128-cbc 620896.23k 1352977.37k 1444702.04k 1480279.72k 1486708.74k 1489092.61k
aes-128-cbc 620959.11k 1353109.57k 1444754.26k 1480206.68k 1486651.39k 1488988.84k
aes-192-cbc 484797.02k 751469.01k 868421.29k 903336.96k 914246.31k 915128.32k
aes-192-cbc 577763.48k 1121748.78k 1219234.56k 1234825.56k 1241492.14k 1241770.67k
aes-192-cbc 577740.05k 1121719.27k 1219303.59k 1234923.86k 1241432.06k 1241787.05k
aes-256-cbc 451658.89k 660938.86k 749823.57k 775807.66k 783881.56k 784427.69k
aes-256-gcm 956229.68k 2615922.79k 3801541.03k 3607696.73k 3742670.85k 3608657.92k
aes-256-cbc 847456.52k 994584.28k 1043034.71k 1053404.84k 1063583.74k 1064397.48k
aes-256-gcm 956377.11k 2616099.93k 3801410.56k 3607726.76k 3717485.91k 3608679.77k
aes-256-cbc 847728.67k 994629.25k 1042905.34k 1053417.47k 1063586.47k 1064446.63k
aes-256-gcm 956306.63k 2615562.88k 3801547.35k 3607904.94k 3740775.77k 3608870.91k
aes-256-cbc 847234.75k 994783.19k 1042915.58k 1053261.48k 1063425.37k 1064108.03k (fully parallel)
aes-256-cbc 847078.17k 994347.24k 1042353.07k 1053007.87k 1062969.34k 1063469.06k (fully parallel)
aes-256-cbc 846995.82k 994310.98k 1041948.84k 1052874.75k 1062966.61k 1063671.13k (fully parallel)
aes-256-cbc 846534.84k 993922.26k 1042288.04k 1052640.94k 1062316.71k 1063922.35k (fully parallel)
aes-256-cbc 846497.90k 994313.22k 1041708.54k 1052858.03k 1062608.90k 1063627.43k (fully parallel)
aes-256-cbc 846343.15k 994669.70k 1042842.62k 1053250.56k 1063324.33k 1063976.96k (fully parallel)
aes-256-cbc 846332.35k 994072.55k 1042773.08k 1053116.07k 1062524.25k 1064053.42k (fully parallel)
aes-256-cbc 845864.62k 994294.78k 1042493.27k 1053012.65k 1063034.88k 1063567.36k (fully parallel)
aes-256-cbc 451217.64k 660908.78k 749154.90k 775640.41k 783409.15k 784171.01k (fully parallel)
aes-256-cbc 448026.10k 660994.28k 748935.25k 776011.43k 783420.07k 784384.00k (fully parallel)
aes-256-gcm 956281.06k 2615456.49k 3801256.79k 3608015.19k 3749259.95k 3608139.09k (fully parallel)
aes-256-gcm 956234.26k 2613919.87k 3800511.32k 3606585.69k 3720587.95k 3607407.27k (fully parallel)
aes-256-gcm 955885.90k 2615586.28k 3799812.69k 3608017.58k 3714304.68k 3608565.08k (fully parallel)
aes-256-gcm 955877.13k 2614514.79k 3799443.03k 3606488.41k 3737406.12k 3607194.28k (fully parallel)
aes-256-gcm 955790.87k 2614727.40k 3799107.93k 3606440.28k 3725595.99k 3606129.32k (fully parallel)
aes-256-gcm 955541.09k 2614284.50k 3799737.43k 3606483.63k 3748801.19k 3606855.68k (fully parallel)
aes-256-gcm 955406.90k 2614084.44k 3798016.51k 3605712.90k 3716797.78k 3605605.03k (fully parallel)
aes-256-gcm 955397.63k 2613446.63k 3798945.45k 3605647.02k 3712655.36k 3605998.25k (fully parallel)
aes-256-gcm 265697.21k 753023.21k 1225196.03k 1444177.24k 1522649.77k 1527496.70k (fully parallel)
aes-256-gcm 265498.79k 752799.10k 1224597.33k 1443773.44k 1522346.67k 1527458.47k (fully parallel)
##########################################################################
Executing benchmark single-threaded on cpu0
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,10 CPUs LE)
LE
CPU Freq: 2056 2060 2060 2060 2060 2060 2060 2060 2060
RAM size: 15658 MB, # CPU hardware threads: 10
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2843 100 2771 2766 | 32619 100 2790 2785
23: 2665 100 2721 2715 | 32074 100 2781 2776
24: 2540 100 2737 2732 | 31391 100 2761 2756
25: 2459 100 2814 2808 | 30581 100 2727 2722
---------------------------------- | ------------------------------
Avr: 100 2761 2755 | 100 2765 2760
Tot: 100 2763 2758
Executing benchmark single-threaded on cpu2
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,10 CPUs LE)
LE
CPU Freq: 3032 3032 3033 3033 3033 3033 3033 3032 3033
RAM size: 15658 MB, # CPU hardware threads: 10
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 6272 100 6107 6101 | 53993 100 4614 4610
23: 5314 100 5420 5414 | 53608 100 4644 4640
24: 4720 100 5080 5075 | 52820 100 4641 4637
25: 4376 100 5002 4997 | 51700 100 4605 4602
---------------------------------- | ------------------------------
Avr: 100 5402 5397 | 100 4626 4622
Tot: 100 5014 5010
Executing benchmark single-threaded on cpu6
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,10 CPUs LE)
LE
CPU Freq: 3032 3033 3032 3033 3033 3033 3033 3033 3033
RAM size: 15658 MB, # CPU hardware threads: 10
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 6235 100 6071 6066 | 53978 100 4613 4609
23: 5318 100 5424 5419 | 53565 100 4641 4637
24: 4729 100 5090 5085 | 52775 100 4637 4633
25: 4380 100 5007 5001 | 51742 100 4610 4605
---------------------------------- | ------------------------------
Avr: 100 5398 5393 | 100 4625 4621
Tot: 100 5011 5007
##########################################################################
Executing benchmark 3 times multi-threaded on CPUs 0-9
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,10 CPUs LE)
LE
CPU Freq: 3028 3032 3033 3033 3033 3033 3033 3033 3033
RAM size: 15658 MB, # CPU hardware threads: 10
RAM usage: 2206 MB, # Benchmark threads: 10
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 56531 917 5995 54994 | 385073 774 4241 32844
23: 53316 914 5942 54323 | 379527 776 4234 32842
24: 52146 935 5999 56068 | 372082 776 4209 32654
25: 47719 865 6298 54485 | 364500 777 4175 32441
---------------------------------- | ------------------------------
Avr: 908 6058 54967 | 776 4215 32695
Tot: 842 5136 43831
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,10 CPUs LE)
LE
CPU Freq: 3030 3032 3033 3033 3033 3033 3033 3032 3032
RAM size: 15658 MB, # CPU hardware threads: 10
RAM usage: 2206 MB, # Benchmark threads: 10
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 56550 916 6009 55012 | 383105 771 4240 32676
23: 52693 904 5937 53689 | 379650 776 4235 32852
24: 49668 889 6006 53403 | 372165 776 4209 32661
25: 49653 898 6311 56693 | 364574 777 4177 32448
---------------------------------- | ------------------------------
Avr: 902 6066 54699 | 775 4215 32659
Tot: 838 5140 43679
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,10 CPUs LE)
LE
CPU Freq: 3030 3033 3028 3033 3033 3033 3032 3033 3033
RAM size: 15658 MB, # CPU hardware threads: 10
RAM usage: 2206 MB, # Benchmark threads: 10
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 54395 852 6209 52916 | 384881 774 4240 32828
23: 52929 903 5971 53929 | 378606 774 4232 32762
24: 50394 896 6047 54184 | 372025 776 4208 32649
25: 51911 944 6278 59270 | 365853 779 4182 32561
---------------------------------- | ------------------------------
Avr: 899 6126 55075 | 776 4216 32700
Tot: 837 5171 43887
Compression: 54967,54699,55075
Decompression: 32695,32659,32700
Total: 43831,43679,43887
##########################################################################
##########################################################################
** cpuminer-multi 1.3.7 by tpruvot@github **
BTC donation address: 1FhDPLPpw18X4srecguG3MxJYe4a1JsZnd (tpruvot)
[2022-07-11 21:10:45] 10 miner threads started, using 'scrypt' algorithm.
[2022-07-11 21:10:45] CPU #2: 5.34 kH/s
[2022-07-11 21:10:45] CPU #4: 5.35 kH/s
[2022-07-11 21:10:45] CPU #5: 5.35 kH/s
[2022-07-11 21:10:45] CPU #7: 5.35 kH/s
[2022-07-11 21:10:45] CPU #6: 5.34 kH/s
[2022-07-11 21:10:45] CPU #9: 5.33 kH/s
[2022-07-11 21:10:45] CPU #3: 5.25 kH/s
[2022-07-11 21:10:45] CPU #8: 5.35 kH/s
[2022-07-11 21:10:45] CPU #1: 2.73 kH/s
[2022-07-11 21:10:45] CPU #0: 2.72 kH/s
[2022-07-11 21:10:50] Total: 48.23 kH/s
[2022-07-11 21:10:55] CPU #3: 5.35 kH/s
[2022-07-11 21:10:55] CPU #9: 5.35 kH/s
[2022-07-11 21:10:55] Total: 48.28 kH/s
[2022-07-11 21:10:55] CPU #2: 5.35 kH/s
[2022-07-11 21:10:55] CPU #6: 5.35 kH/s
[2022-07-11 21:10:55] CPU #5: 5.35 kH/s
[2022-07-11 21:10:55] CPU #7: 5.35 kH/s
[2022-07-11 21:10:55] CPU #4: 5.35 kH/s
[2022-07-11 21:10:55] CPU #8: 5.35 kH/s
[2022-07-11 21:10:55] CPU #0: 2.73 kH/s
[2022-07-11 21:10:55] CPU #1: 2.73 kH/s
[2022-07-11 21:11:00] Total: 48.29 kH/s
[2022-07-11 21:11:05] CPU #3: 5.36 kH/s
[2022-07-11 21:11:05] CPU #9: 5.35 kH/s
[2022-07-11 21:11:05] Total: 48.29 kH/s
[2022-07-11 21:11:05] CPU #2: 5.35 kH/s
[2022-07-11 21:11:05] CPU #6: 5.35 kH/s
[2022-07-11 21:11:05] CPU #5: 5.35 kH/s
[2022-07-11 21:11:05] CPU #7: 5.35 kH/s
[2022-07-11 21:11:05] CPU #4: 5.35 kH/s
[2022-07-11 21:11:05] CPU #8: 5.35 kH/s
[2022-07-11 21:11:05] CPU #0: 2.73 kH/s
[2022-07-11 21:11:05] CPU #1: 2.73 kH/s
[2022-07-11 21:11:10] Total: 48.29 kH/s
[2022-07-11 21:11:15] CPU #3: 5.36 kH/s
[2022-07-11 21:11:15] CPU #9: 5.35 kH/s
[2022-07-11 21:11:15] Total: 48.29 kH/s
[2022-07-11 21:11:15] CPU #2: 5.36 kH/s
[2022-07-11 21:11:15] CPU #6: 5.35 kH/s
[2022-07-11 21:11:15] CPU #5: 5.35 kH/s
[2022-07-11 21:11:15] CPU #7: 5.35 kH/s
[2022-07-11 21:11:15] CPU #4: 5.35 kH/s
[2022-07-11 21:11:15] CPU #8: 5.35 kH/s
[2022-07-11 21:11:15] CPU #0: 2.73 kH/s
[2022-07-11 21:11:15] CPU #1: 2.73 kH/s
[2022-07-11 21:11:20] Total: 48.29 kH/s
[2022-07-11 21:11:25] CPU #3: 5.36 kH/s
[2022-07-11 21:11:25] CPU #9: 5.35 kH/s
[2022-07-11 21:11:25] Total: 48.29 kH/s
[2022-07-11 21:11:25] CPU #2: 5.35 kH/s
[2022-07-11 21:11:25] CPU #6: 5.35 kH/s
[2022-07-11 21:11:25] CPU #5: 5.35 kH/s
[2022-07-11 21:11:25] CPU #7: 5.35 kH/s
[2022-07-11 21:11:25] CPU #4: 5.35 kH/s
[2022-07-11 21:11:25] CPU #8: 5.35 kH/s
[2022-07-11 21:11:25] CPU #0: 2.73 kH/s
[2022-07-11 21:11:25] CPU #1: 2.73 kH/s
[2022-07-11 21:11:30] Total: 48.29 kH/s
[2022-07-11 21:11:35] CPU #3: 5.35 kH/s
[2022-07-11 21:11:35] CPU #9: 5.35 kH/s
[2022-07-11 21:11:35] Total: 48.28 kH/s
[2022-07-11 21:11:35] CPU #2: 5.35 kH/s
[2022-07-11 21:11:35] CPU #6: 5.35 kH/s
[2022-07-11 21:11:35] CPU #5: 5.35 kH/s
[2022-07-11 21:11:35] CPU #7: 5.35 kH/s
[2022-07-11 21:11:35] CPU #4: 5.35 kH/s
[2022-07-11 21:11:35] CPU #8: 5.35 kH/s
[2022-07-11 21:11:35] CPU #0: 2.73 kH/s
[2022-07-11 21:11:35] CPU #1: 2.73 kH/s
[2022-07-11 21:11:40] Total: 48.28 kH/s
[2022-07-11 21:11:45] CPU #3: 5.36 kH/s
[2022-07-11 21:11:45] CPU #9: 5.35 kH/s
[2022-07-11 21:11:45] Total: 48.29 kH/s
[2022-07-11 21:11:45] CPU #2: 5.35 kH/s
[2022-07-11 21:11:45] CPU #6: 5.35 kH/s
[2022-07-11 21:11:45] CPU #5: 5.35 kH/s
[2022-07-11 21:11:45] CPU #7: 5.35 kH/s
[2022-07-11 21:11:45] CPU #4: 5.35 kH/s
[2022-07-11 21:11:45] CPU #8: 5.35 kH/s
[2022-07-11 21:11:45] CPU #0: 2.73 kH/s
[2022-07-11 21:11:45] CPU #1: 2.73 kH/s
[2022-07-11 21:11:50] Total: 48.29 kH/s
[2022-07-11 21:11:55] CPU #3: 5.36 kH/s
[2022-07-11 21:11:55] CPU #2: 5.36 kH/s
[2022-07-11 21:11:55] CPU #6: 5.35 kH/s
[2022-07-11 21:11:55] CPU #9: 5.35 kH/s
[2022-07-11 21:11:55] Total: 48.29 kH/s
[2022-07-11 21:11:55] CPU #5: 5.35 kH/s
[2022-07-11 21:11:55] CPU #7: 5.35 kH/s
[2022-07-11 21:11:55] CPU #4: 5.35 kH/s
[2022-07-11 21:11:55] CPU #8: 5.35 kH/s
[2022-07-11 21:11:55] CPU #0: 2.73 kH/s
[2022-07-11 21:11:55] CPU #1: 2.73 kH/s
[2022-07-11 21:12:00] Total: 48.29 kH/s
[2022-07-11 21:12:05] CPU #3: 5.36 kH/s
[2022-07-11 21:12:05] CPU #2: 5.35 kH/s
[2022-07-11 21:12:05] CPU #9: 5.35 kH/s
[2022-07-11 21:12:05] Total: 48.29 kH/s
[2022-07-11 21:12:05] CPU #6: 5.35 kH/s
[2022-07-11 21:12:05] CPU #5: 5.35 kH/s
[2022-07-11 21:12:05] CPU #7: 5.35 kH/s
[2022-07-11 21:12:05] CPU #4: 5.35 kH/s
[2022-07-11 21:12:05] CPU #8: 5.35 kH/s
[2022-07-11 21:12:05] CPU #0: 2.73 kH/s
[2022-07-11 21:12:05] CPU #1: 2.73 kH/s
[2022-07-11 21:12:10] Total: 48.28 kH/s
[2022-07-11 21:12:15] CPU #3: 5.36 kH/s
[2022-07-11 21:12:15] CPU #2: 5.35 kH/s
[2022-07-11 21:12:15] CPU #6: 5.35 kH/s
[2022-07-11 21:12:15] CPU #9: 5.35 kH/s
[2022-07-11 21:12:15] Total: 48.29 kH/s
[2022-07-11 21:12:15] CPU #5: 5.35 kH/s
[2022-07-11 21:12:15] CPU #7: 5.35 kH/s
[2022-07-11 21:12:15] CPU #4: 5.35 kH/s
[2022-07-11 21:12:15] CPU #8: 5.35 kH/s
[2022-07-11 21:12:15] CPU #0: 2.73 kH/s
[2022-07-11 21:12:15] CPU #1: 2.73 kH/s
[2022-07-11 21:12:20] Total: 48.28 kH/s
[2022-07-11 21:12:25] CPU #3: 5.36 kH/s
[2022-07-11 21:12:25] CPU #2: 5.35 kH/s
[2022-07-11 21:12:25] CPU #6: 5.35 kH/s
[2022-07-11 21:12:25] CPU #9: 5.35 kH/s
[2022-07-11 21:12:25] Total: 48.28 kH/s
[2022-07-11 21:12:25] CPU #5: 5.35 kH/s
[2022-07-11 21:12:25] CPU #7: 5.35 kH/s
[2022-07-11 21:12:25] CPU #4: 5.35 kH/s
[2022-07-11 21:12:25] CPU #8: 5.35 kH/s
[2022-07-11 21:12:25] CPU #0: 2.73 kH/s
[2022-07-11 21:12:25] CPU #1: 2.73 kH/s
[2022-07-11 21:12:30] Total: 48.29 kH/s
[2022-07-11 21:12:35] CPU #3: 5.36 kH/s
[2022-07-11 21:12:35] CPU #2: 5.35 kH/s
[2022-07-11 21:12:35] CPU #6: 5.35 kH/s
[2022-07-11 21:12:35] CPU #9: 5.35 kH/s
[2022-07-11 21:12:35] Total: 48.28 kH/s
[2022-07-11 21:12:35] CPU #5: 5.35 kH/s
[2022-07-11 21:12:35] CPU #7: 5.35 kH/s
[2022-07-11 21:12:35] CPU #4: 5.36 kH/s
[2022-07-11 21:12:35] CPU #8: 5.35 kH/s
[2022-07-11 21:12:35] CPU #0: 2.73 kH/s
[2022-07-11 21:12:35] CPU #1: 2.73 kH/s
[2022-07-11 21:12:40] Total: 48.29 kH/s
[2022-07-11 21:12:45] CPU #3: 5.36 kH/s
[2022-07-11 21:12:45] CPU #2: 5.36 kH/s
[2022-07-11 21:12:45] CPU #6: 5.35 kH/s
[2022-07-11 21:12:45] CPU #9: 5.35 kH/s
[2022-07-11 21:12:45] Total: 48.29 kH/s
[2022-07-11 21:12:45] CPU #5: 5.35 kH/s
[2022-07-11 21:12:45] CPU #7: 5.35 kH/s
[2022-07-11 21:12:45] CPU #4: 5.35 kH/s
[2022-07-11 21:12:45] CPU #8: 5.35 kH/s
[2022-07-11 21:12:45] CPU #0: 2.73 kH/s
[2022-07-11 21:12:45] CPU #1: 2.73 kH/s
[2022-07-11 21:12:50] Total: 48.29 kH/s
[2022-07-11 21:12:55] CPU #3: 5.36 kH/s
[2022-07-11 21:12:55] CPU #2: 5.36 kH/s
[2022-07-11 21:12:55] CPU #6: 5.35 kH/s
[2022-07-11 21:12:55] CPU #9: 5.35 kH/s
[2022-07-11 21:12:55] Total: 48.29 kH/s
[2022-07-11 21:12:55] CPU #5: 5.35 kH/s
[2022-07-11 21:12:55] CPU #7: 5.35 kH/s
[2022-07-11 21:12:55] CPU #4: 5.35 kH/s
[2022-07-11 21:12:55] CPU #8: 5.35 kH/s
[2022-07-11 21:12:55] CPU #0: 2.73 kH/s
[2022-07-11 21:12:55] CPU #1: 2.73 kH/s
[2022-07-11 21:13:00] Total: 48.29 kH/s
[2022-07-11 21:13:05] CPU #3: 5.35 kH/s
[2022-07-11 21:13:05] CPU #2: 5.35 kH/s
[2022-07-11 21:13:05] CPU #6: 5.35 kH/s
[2022-07-11 21:13:05] CPU #9: 5.35 kH/s
[2022-07-11 21:13:05] Total: 48.28 kH/s
[2022-07-11 21:13:05] CPU #5: 5.35 kH/s
[2022-07-11 21:13:05] CPU #7: 5.35 kH/s
[2022-07-11 21:13:05] CPU #4: 5.35 kH/s
[2022-07-11 21:13:05] CPU #8: 5.35 kH/s
[2022-07-11 21:13:05] CPU #0: 2.73 kH/s
[2022-07-11 21:13:05] CPU #1: 2.73 kH/s
[2022-07-11 21:13:10] Total: 48.28 kH/s
[2022-07-11 21:13:15] CPU #3: 5.36 kH/s
[2022-07-11 21:13:15] CPU #2: 5.35 kH/s
[2022-07-11 21:13:15] CPU #6: 5.35 kH/s
[2022-07-11 21:13:15] CPU #9: 5.35 kH/s
[2022-07-11 21:13:15] Total: 48.29 kH/s
[2022-07-11 21:13:15] CPU #5: 5.35 kH/s
[2022-07-11 21:13:15] CPU #7: 5.35 kH/s
[2022-07-11 21:13:15] CPU #4: 5.35 kH/s
[2022-07-11 21:13:15] CPU #8: 5.35 kH/s
[2022-07-11 21:13:15] CPU #0: 2.73 kH/s
[2022-07-11 21:13:15] CPU #1: 2.73 kH/s
[2022-07-11 21:13:20] Total: 48.29 kH/s
[2022-07-11 21:13:25] CPU #3: 5.35 kH/s
[2022-07-11 21:13:25] CPU #2: 5.36 kH/s
[2022-07-11 21:13:25] CPU #6: 5.35 kH/s
[2022-07-11 21:13:25] CPU #9: 5.35 kH/s
[2022-07-11 21:13:25] Total: 48.29 kH/s
[2022-07-11 21:13:25] CPU #5: 5.35 kH/s
[2022-07-11 21:13:25] CPU #7: 5.35 kH/s
[2022-07-11 21:13:25] CPU #4: 5.35 kH/s
[2022-07-11 21:13:25] CPU #8: 5.35 kH/s
[2022-07-11 21:13:25] CPU #0: 2.73 kH/s
[2022-07-11 21:13:25] CPU #1: 2.73 kH/s
[2022-07-11 21:13:30] Total: 48.29 kH/s
[2022-07-11 21:13:35] CPU #3: 5.36 kH/s
[2022-07-11 21:13:35] CPU #2: 5.35 kH/s
[2022-07-11 21:13:35] CPU #6: 5.35 kH/s
[2022-07-11 21:13:35] CPU #9: 5.35 kH/s
[2022-07-11 21:13:35] Total: 48.29 kH/s
[2022-07-11 21:13:35] CPU #5: 5.35 kH/s
[2022-07-11 21:13:35] CPU #7: 5.35 kH/s
[2022-07-11 21:13:35] CPU #4: 5.35 kH/s
[2022-07-11 21:13:35] CPU #8: 5.35 kH/s
[2022-07-11 21:13:35] CPU #0: 2.73 kH/s
[2022-07-11 21:13:35] CPU #1: 2.73 kH/s
[2022-07-11 21:13:40] Total: 48.29 kH/s
[2022-07-11 21:13:45] CPU #3: 5.35 kH/s
[2022-07-11 21:13:45] CPU #2: 5.35 kH/s
[2022-07-11 21:13:45] CPU #6: 5.35 kH/s
[2022-07-11 21:13:45] CPU #9: 5.35 kH/s
[2022-07-11 21:13:45] Total: 48.29 kH/s
[2022-07-11 21:13:45] CPU #5: 5.35 kH/s
[2022-07-11 21:13:45] CPU #7: 5.35 kH/s
[2022-07-11 21:13:45] CPU #4: 5.35 kH/s
[2022-07-11 21:13:45] CPU #8: 5.35 kH/s
[2022-07-11 21:13:45] CPU #0: 2.73 kH/s
[2022-07-11 21:13:45] CPU #1: 2.73 kH/s
[2022-07-11 21:13:50] Total: 48.28 kH/s
[2022-07-11 21:13:55] CPU #3: 5.36 kH/s
[2022-07-11 21:13:55] CPU #2: 5.35 kH/s
[2022-07-11 21:13:55] CPU #6: 5.35 kH/s
[2022-07-11 21:13:55] CPU #9: 5.35 kH/s
[2022-07-11 21:13:55] Total: 48.28 kH/s
[2022-07-11 21:13:55] CPU #5: 5.35 kH/s
[2022-07-11 21:13:55] CPU #7: 5.35 kH/s
[2022-07-11 21:13:55] CPU #4: 5.35 kH/s
[2022-07-11 21:13:55] CPU #8: 5.35 kH/s
[2022-07-11 21:13:55] CPU #0: 2.73 kH/s
[2022-07-11 21:13:55] CPU #1: 2.73 kH/s
[2022-07-11 21:14:00] Total: 48.29 kH/s
[2022-07-11 21:14:05] CPU #3: 5.36 kH/s
[2022-07-11 21:14:05] CPU #2: 5.35 kH/s
[2022-07-11 21:14:05] CPU #6: 5.35 kH/s
[2022-07-11 21:14:05] CPU #9: 5.35 kH/s
[2022-07-11 21:14:05] Total: 48.29 kH/s
[2022-07-11 21:14:05] CPU #5: 5.35 kH/s
[2022-07-11 21:14:05] CPU #7: 5.35 kH/s
[2022-07-11 21:14:05] CPU #4: 5.35 kH/s
[2022-07-11 21:14:05] CPU #8: 5.35 kH/s
[2022-07-11 21:14:05] CPU #0: 2.73 kH/s
[2022-07-11 21:14:05] CPU #1: 2.73 kH/s
[2022-07-11 21:14:10] Total: 48.29 kH/s
[2022-07-11 21:14:15] CPU #3: 5.36 kH/s
[2022-07-11 21:14:15] CPU #2: 5.35 kH/s
[2022-07-11 21:14:15] CPU #6: 5.35 kH/s
[2022-07-11 21:14:15] CPU #9: 5.35 kH/s
[2022-07-11 21:14:15] Total: 48.29 kH/s
[2022-07-11 21:14:15] CPU #5: 5.35 kH/s
[2022-07-11 21:14:15] CPU #7: 5.35 kH/s
[2022-07-11 21:14:15] CPU #4: 5.35 kH/s
[2022-07-11 21:14:15] CPU #8: 5.35 kH/s
[2022-07-11 21:14:15] CPU #0: 2.73 kH/s
[2022-07-11 21:14:15] CPU #1: 2.73 kH/s
[2022-07-11 21:14:20] Total: 48.29 kH/s
[2022-07-11 21:14:25] CPU #3: 5.36 kH/s
[2022-07-11 21:14:25] CPU #2: 5.36 kH/s
[2022-07-11 21:14:25] CPU #6: 5.35 kH/s
[2022-07-11 21:14:25] CPU #9: 5.35 kH/s
[2022-07-11 21:14:25] Total: 48.29 kH/s
[2022-07-11 21:14:25] CPU #5: 5.35 kH/s
[2022-07-11 21:14:25] CPU #7: 5.35 kH/s
[2022-07-11 21:14:25] CPU #4: 5.35 kH/s
[2022-07-11 21:14:25] CPU #8: 5.35 kH/s
[2022-07-11 21:14:25] CPU #0: 2.73 kH/s
[2022-07-11 21:14:25] CPU #1: 2.73 kH/s
[2022-07-11 21:14:30] Total: 48.28 kH/s
[2022-07-11 21:14:35] CPU #3: 5.35 kH/s
[2022-07-11 21:14:35] CPU #2: 5.35 kH/s
[2022-07-11 21:14:35] CPU #6: 5.35 kH/s
[2022-07-11 21:14:35] CPU #9: 5.35 kH/s
[2022-07-11 21:14:35] Total: 48.28 kH/s
[2022-07-11 21:14:35] CPU #7: 5.35 kH/s
[2022-07-11 21:14:35] CPU #5: 5.35 kH/s
[2022-07-11 21:14:35] CPU #4: 5.35 kH/s
[2022-07-11 21:14:35] CPU #8: 5.35 kH/s
[2022-07-11 21:14:35] CPU #0: 2.73 kH/s
[2022-07-11 21:14:35] CPU #1: 2.73 kH/s
[2022-07-11 21:14:40] Total: 48.28 kH/s
[2022-07-11 21:14:45] CPU #3: 5.36 kH/s
[2022-07-11 21:14:45] CPU #2: 5.35 kH/s
[2022-07-11 21:14:45] CPU #6: 5.35 kH/s
[2022-07-11 21:14:45] CPU #9: 5.35 kH/s
[2022-07-11 21:14:45] Total: 48.29 kH/s
[2022-07-11 21:14:45] CPU #5: 5.35 kH/s
[2022-07-11 21:14:45] CPU #7: 5.35 kH/s
[2022-07-11 21:14:45] CPU #4: 5.35 kH/s
[2022-07-11 21:14:45] CPU #8: 5.35 kH/s
[2022-07-11 21:14:45] CPU #0: 2.73 kH/s
[2022-07-11 21:14:45] CPU #1: 2.73 kH/s
[2022-07-11 21:14:50] Total: 48.28 kH/s
[2022-07-11 21:14:55] CPU #3: 5.35 kH/s
[2022-07-11 21:14:55] CPU #2: 5.36 kH/s
[2022-07-11 21:14:55] CPU #6: 5.35 kH/s
[2022-07-11 21:14:55] CPU #9: 5.35 kH/s
[2022-07-11 21:14:55] Total: 48.29 kH/s
[2022-07-11 21:14:55] CPU #5: 5.35 kH/s
[2022-07-11 21:14:55] CPU #7: 5.35 kH/s
[2022-07-11 21:14:55] CPU #4: 5.35 kH/s
[2022-07-11 21:14:55] CPU #8: 5.35 kH/s
[2022-07-11 21:14:55] CPU #0: 2.73 kH/s
[2022-07-11 21:14:55] CPU #1: 2.73 kH/s
[2022-07-11 21:15:00] Total: 48.29 kH/s
[2022-07-11 21:15:05] CPU #3: 5.36 kH/s
[2022-07-11 21:15:05] CPU #2: 5.36 kH/s
[2022-07-11 21:15:05] CPU #6: 5.35 kH/s
[2022-07-11 21:15:05] CPU #9: 5.35 kH/s
[2022-07-11 21:15:05] Total: 48.29 kH/s
[2022-07-11 21:15:05] CPU #7: 5.35 kH/s
[2022-07-11 21:15:05] CPU #5: 5.35 kH/s
[2022-07-11 21:15:05] CPU #4: 5.35 kH/s
[2022-07-11 21:15:05] CPU #8: 5.35 kH/s
[2022-07-11 21:15:05] CPU #0: 2.73 kH/s
[2022-07-11 21:15:05] CPU #1: 2.73 kH/s
[2022-07-11 21:15:10] Total: 48.29 kH/s
[2022-07-11 21:15:15] CPU #3: 5.35 kH/s
[2022-07-11 21:15:15] CPU #2: 5.35 kH/s
[2022-07-11 21:15:15] CPU #6: 5.35 kH/s
[2022-07-11 21:15:15] CPU #9: 5.35 kH/s
[2022-07-11 21:15:15] Total: 48.28 kH/s
[2022-07-11 21:15:15] CPU #5: 5.35 kH/s
[2022-07-11 21:15:15] CPU #7: 5.35 kH/s