forked from tdewolff/canvas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath_stroke.go
591 lines (526 loc) · 18.1 KB
/
path_stroke.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
package canvas
import (
"math"
)
// NOTE: implementation inspired from github.com/golang/freetype/raster/stroke.go
// Capper implements Cap, with rhs the path to append to, halfWidth the half width of the stroke, pivot the pivot point around which to construct a cap, and n0 the normal at the start of the path. The length of n0 is equal to the halfWidth.
type Capper interface {
Cap(*Path, float64, Point, Point)
}
// RoundCap caps the start or end of a path by a round cap.
var RoundCap Capper = RoundCapper{}
// RoundCapper is a round capper.
type RoundCapper struct{}
// Cap adds a cap to path p of width 2*halfWidth, at a pivot point and initial normal direction of n0.
func (RoundCapper) Cap(p *Path, halfWidth float64, pivot, n0 Point) {
end := pivot.Sub(n0)
p.ArcTo(halfWidth, halfWidth, 0, false, true, end.X, end.Y)
}
func (RoundCapper) String() string {
return "Round"
}
// ButtCap caps the start or end of a path by a butt cap.
var ButtCap Capper = ButtCapper{}
// ButtCapper is a butt capper.
type ButtCapper struct{}
// Cap adds a cap to path p of width 2*halfWidth, at a pivot point and initial normal direction of n0.
func (ButtCapper) Cap(p *Path, halfWidth float64, pivot, n0 Point) {
end := pivot.Sub(n0)
p.LineTo(end.X, end.Y)
}
func (ButtCapper) String() string {
return "Butt"
}
// SquareCap caps the start or end of a path by a square cap.
var SquareCap Capper = SquareCapper{}
// SquareCapper is a square capper.
type SquareCapper struct{}
// Cap adds a cap to path p of width 2*halfWidth, at a pivot point and initial normal direction of n0.
func (SquareCapper) Cap(p *Path, halfWidth float64, pivot, n0 Point) {
e := n0.Rot90CCW()
corner1 := pivot.Add(e).Add(n0)
corner2 := pivot.Add(e).Sub(n0)
end := pivot.Sub(n0)
p.LineTo(corner1.X, corner1.Y)
p.LineTo(corner2.X, corner2.Y)
p.LineTo(end.X, end.Y)
}
func (SquareCapper) String() string {
return "Square"
}
////////////////
// Joiner implements Join, with rhs the right path and lhs the left path to append to, pivot the intersection of both path elements, n0 and n1 the normals at the start and end of the path respectively. The length of n0 and n1 are equal to the halfWidth.
type Joiner interface {
Join(*Path, *Path, float64, Point, Point, Point, float64, float64)
}
// BevelJoin connects two path elements by a linear join.
var BevelJoin Joiner = BevelJoiner{}
// BevelJoiner is a bevel joiner.
type BevelJoiner struct{}
// Join adds a join to a right-hand-side and left-hand-side path, of width 2*halfWidth, around a pivot point with starting and ending normals of n0 and n1, and radius of curvatures of the previous and next segments.
func (BevelJoiner) Join(rhs, lhs *Path, halfWidth float64, pivot, n0, n1 Point, r0, r1 float64) {
rEnd := pivot.Add(n1)
lEnd := pivot.Sub(n1)
rhs.LineTo(rEnd.X, rEnd.Y)
lhs.LineTo(lEnd.X, lEnd.Y)
}
func (BevelJoiner) String() string {
return "Bevel"
}
// RoundJoin connects two path elements by a round join.
var RoundJoin Joiner = RoundJoiner{}
// RoundJoiner is a round joiner.
type RoundJoiner struct{}
// Join adds a join to a right-hand-side and left-hand-side path, of width 2*halfWidth, around a pivot point with starting and ending normals of n0 and n1, and radius of curvatures of the previous and next segments.
func (RoundJoiner) Join(rhs, lhs *Path, halfWidth float64, pivot, n0, n1 Point, r0, r1 float64) {
rEnd := pivot.Add(n1)
lEnd := pivot.Sub(n1)
cw := n0.Rot90CW().Dot(n1) >= 0.0
if cw { // bend to the right, ie. CW (or 180 degree turn)
rhs.LineTo(rEnd.X, rEnd.Y)
lhs.ArcTo(halfWidth, halfWidth, 0.0, false, false, lEnd.X, lEnd.Y)
} else { // bend to the left, ie. CCW
rhs.ArcTo(halfWidth, halfWidth, 0.0, false, true, rEnd.X, rEnd.Y)
lhs.LineTo(lEnd.X, lEnd.Y)
}
}
func (RoundJoiner) String() string {
return "Round"
}
// MiterJoin connects two path elements by extending the ends of the paths as lines until they meet. If this point is further than 2 mm * (strokeWidth / 2.0) away, this will result in a bevel join.
var MiterJoin Joiner = MiterJoiner{BevelJoin, 2.0}
// MiterClipJoin returns a MiterJoiner with given limit*strokeWidth/2.0 in mm upon which the gapJoiner function will be used. Limit can be NaN so that the gapJoiner is never used.
func MiterClipJoin(gapJoiner Joiner, limit float64) Joiner {
return MiterJoiner{gapJoiner, limit}
}
// MiterJoiner is a miter joiner.
type MiterJoiner struct {
GapJoiner Joiner
Limit float64
}
// Join adds a join to a right-hand-side and left-hand-side path, of width 2*halfWidth, around a pivot point with starting and ending normals of n0 and n1, and radius of curvatures of the previous and next segments.
func (j MiterJoiner) Join(rhs, lhs *Path, halfWidth float64, pivot, n0, n1 Point, r0, r1 float64) {
if n0.Equals(n1.Neg()) {
BevelJoin.Join(rhs, lhs, halfWidth, pivot, n0, n1, r0, r1)
return
}
limit := math.Max(j.Limit, 1.001) // otherwise nearly linear joins will also get clipped
cw := n0.Rot90CW().Dot(n1) >= 0.0
hw := halfWidth
if cw {
hw = -hw // used to calculate |R|, when running CW then n0 and n1 point the other way, so the sign of r0 and r1 is negated
}
theta := n0.AngleBetween(n1) / 2.0
d := hw / math.Cos(theta)
if !math.IsNaN(limit) && limit*halfWidth < math.Abs(d) {
j.GapJoiner.Join(rhs, lhs, halfWidth, pivot, n0, n1, r0, r1)
return
}
mid := pivot.Add(n0.Add(n1).Norm(d))
rEnd := pivot.Add(n1)
lEnd := pivot.Sub(n1)
if cw { // bend to the right, ie. CW
lhs.LineTo(mid.X, mid.Y)
} else {
rhs.LineTo(mid.X, mid.Y)
}
rhs.LineTo(rEnd.X, rEnd.Y)
lhs.LineTo(lEnd.X, lEnd.Y)
}
func (j MiterJoiner) String() string {
if math.IsNaN(j.Limit) {
return "Miter"
}
return "MiterClip"
}
// ArcsJoin connects two path elements by extending the ends of the paths as circle arcs until they meet. If this point is further than 10 mm * (strokeWidth / 2.0) away, this will result in a bevel join.
var ArcsJoin Joiner = ArcsJoiner{BevelJoin, 10.0}
// ArcsClipJoin returns an ArcsJoiner with given limit in mm*strokeWidth/2.0 upon which the gapJoiner function will be used. Limit can be NaN so that the gapJoiner is never used.
func ArcsClipJoin(gapJoiner Joiner, limit float64) Joiner {
return ArcsJoiner{gapJoiner, limit}
}
// ArcsJoiner is an arcs joiner.
type ArcsJoiner struct {
GapJoiner Joiner
Limit float64
}
// Join adds a join to a right-hand-side and left-hand-side path, of width 2*halfWidth, around a pivot point with starting and ending normals of n0 and n1, and radius of curvatures of the previous and next segments.
func (j ArcsJoiner) Join(rhs, lhs *Path, halfWidth float64, pivot, n0, n1 Point, r0, r1 float64) {
if n0.Equals(n1.Neg()) {
BevelJoin.Join(rhs, lhs, halfWidth, pivot, n0, n1, r0, r1)
return
} else if math.IsNaN(r0) && math.IsNaN(r1) {
MiterJoiner(j).Join(rhs, lhs, halfWidth, pivot, n0, n1, r0, r1)
return
}
limit := math.Max(j.Limit, 1.001) // 1.001 so that nearly linear joins will not get clipped
cw := n0.Rot90CW().Dot(n1) >= 0.0
hw := halfWidth
if cw {
hw = -hw // used to calculate |R|, when running CW then n0 and n1 point the other way, so the sign of r0 and r1 is negated
}
// r is the radius of the original curve, R the radius of the stroke curve, c are the centers of the circles
c0 := pivot.Add(n0.Norm(-r0))
c1 := pivot.Add(n1.Norm(-r1))
R0, R1 := math.Abs(r0+hw), math.Abs(r1+hw)
// TODO: can simplify if intersection returns angles too?
var i0, i1 Point
var ok bool
if math.IsNaN(r0) {
line := pivot.Add(n0)
if cw {
line = pivot.Sub(n0)
}
i0, i1, ok = intersectionRayCircle(line, line.Add(n0.Rot90CCW()), c1, R1)
} else if math.IsNaN(r1) {
line := pivot.Add(n1)
if cw {
line = pivot.Sub(n1)
}
i0, i1, ok = intersectionRayCircle(line, line.Add(n1.Rot90CCW()), c0, R0)
} else {
i0, i1, ok = intersectionCircleCircle(c0, R0, c1, R1)
}
if !ok {
// no intersection
j.GapJoiner.Join(rhs, lhs, halfWidth, pivot, n0, n1, r0, r1)
return
}
// find the closest intersection when following the arc (using either arc r0 or r1 with center c0 or c1 respectively)
c, rcw := c0, r0 < 0.0
if math.IsNaN(r0) {
c, rcw = c1, r1 >= 0.0
}
thetaPivot := pivot.Sub(c).Angle()
dtheta0 := i0.Sub(c).Angle() - thetaPivot
dtheta1 := i1.Sub(c).Angle() - thetaPivot
if rcw { // r runs clockwise, so look the other way around
dtheta0 = -dtheta0
dtheta1 = -dtheta1
}
mid := i0
if angleNorm(dtheta1) < angleNorm(dtheta0) {
mid = i1
}
if !math.IsNaN(limit) && limit*halfWidth < mid.Sub(pivot).Length() {
j.GapJoiner.Join(rhs, lhs, halfWidth, pivot, n0, n1, r0, r1)
return
}
rEnd := pivot.Add(n1)
lEnd := pivot.Sub(n1)
if cw { // bend to the right, ie. CW
rhs.LineTo(rEnd.X, rEnd.Y)
if math.IsNaN(r0) {
lhs.LineTo(mid.X, mid.Y)
} else {
lhs.ArcTo(R0, R0, 0.0, false, r0 > 0.0, mid.X, mid.Y)
}
if math.IsNaN(r1) {
lhs.LineTo(lEnd.X, lEnd.Y)
} else {
lhs.ArcTo(R1, R1, 0.0, false, r1 > 0.0, lEnd.X, lEnd.Y)
}
} else { // bend to the left, ie. CCW
if math.IsNaN(r0) {
rhs.LineTo(mid.X, mid.Y)
} else {
rhs.ArcTo(R0, R0, 0.0, false, r0 > 0.0, mid.X, mid.Y)
}
if math.IsNaN(r1) {
rhs.LineTo(rEnd.X, rEnd.Y)
} else {
rhs.ArcTo(R1, R1, 0.0, false, r1 > 0.0, rEnd.X, rEnd.Y)
}
lhs.LineTo(lEnd.X, lEnd.Y)
}
}
func (j ArcsJoiner) String() string {
if math.IsNaN(j.Limit) {
return "Arcs"
}
return "ArcsClip"
}
type pathStrokeState struct {
cmd float64
p0, p1 Point // position of start and end
n0, n1 Point // normal of start and end
r0, r1 float64 // radius of start and end
cp1, cp2 Point // Béziers
rx, ry, rot, theta0, theta1 float64 // arcs
large, sweep bool // arcs
}
// offsetSegment returns the rhs and lhs paths from offsetting a path segment. It closes rhs and lhs when p is closed as well.
func offsetSegment(p *Path, halfWidth float64, cr Capper, jr Joiner) (*Path, *Path) {
// only non-empty paths are evaluated
closed := false
states := []pathStrokeState{}
var start, end Point
for i := 0; i < len(p.d); {
cmd := p.d[i]
switch cmd {
case MoveToCmd:
end = Point{p.d[i+1], p.d[i+2]}
case LineToCmd:
end = Point{p.d[i+1], p.d[i+2]}
n := end.Sub(start).Rot90CW().Norm(halfWidth)
states = append(states, pathStrokeState{
cmd: LineToCmd,
p0: start,
p1: end,
n0: n,
n1: n,
r0: math.NaN(),
r1: math.NaN(),
})
case QuadToCmd, CubeToCmd:
var cp1, cp2 Point
if cmd == QuadToCmd {
cp := Point{p.d[i+1], p.d[i+2]}
end = Point{p.d[i+3], p.d[i+4]}
cp1, cp2 = quadraticToCubicBezier(start, cp, end)
} else {
cp1 = Point{p.d[i+1], p.d[i+2]}
cp2 = Point{p.d[i+3], p.d[i+4]}
end = Point{p.d[i+5], p.d[i+6]}
}
n0 := cubicBezierNormal(start, cp1, cp2, end, 0.0, halfWidth)
n1 := cubicBezierNormal(start, cp1, cp2, end, 1.0, halfWidth)
r0 := cubicBezierCurvatureRadius(start, cp1, cp2, end, 0.0)
r1 := cubicBezierCurvatureRadius(start, cp1, cp2, end, 1.0)
states = append(states, pathStrokeState{
cmd: CubeToCmd,
p0: start,
p1: end,
n0: n0,
n1: n1,
r0: r0,
r1: r1,
cp1: cp1,
cp2: cp2,
})
case ArcToCmd:
rx, ry, phi := p.d[i+1], p.d[i+2], p.d[i+3]
large, sweep := toArcFlags(p.d[i+4])
end = Point{p.d[i+5], p.d[i+6]}
_, _, theta0, theta1 := ellipseToCenter(start.X, start.Y, rx, ry, phi, large, sweep, end.X, end.Y)
n0 := ellipseNormal(rx, ry, phi, sweep, theta0, halfWidth)
n1 := ellipseNormal(rx, ry, phi, sweep, theta1, halfWidth)
r0 := ellipseCurvatureRadius(rx, ry, sweep, theta0)
r1 := ellipseCurvatureRadius(rx, ry, sweep, theta1)
states = append(states, pathStrokeState{
cmd: ArcToCmd,
p0: start,
p1: end,
n0: n0,
n1: n1,
r0: r0,
r1: r1,
rx: rx,
ry: ry,
rot: phi * 180.0 / math.Pi,
theta0: theta0,
theta1: theta1,
large: large,
sweep: sweep,
})
case CloseCmd:
end = Point{p.d[i+1], p.d[i+2]}
if !Equal(start.X, end.X) || !Equal(start.Y, end.Y) {
n := end.Sub(start).Rot90CW().Norm(halfWidth)
states = append(states, pathStrokeState{
cmd: LineToCmd,
p0: start,
p1: end,
n0: n,
n1: n,
r0: math.NaN(),
r1: math.NaN(),
})
}
closed = true
}
start = end
i += cmdLen(cmd)
}
rhs, lhs := &Path{}, &Path{}
rStart := states[0].p0.Add(states[0].n0)
lStart := states[0].p0.Sub(states[0].n0)
rhs.MoveTo(rStart.X, rStart.Y)
lhs.MoveTo(lStart.X, lStart.Y)
rhsInnerBends := []int{}
lhsInnerBends := []int{}
for i, cur := range states {
switch cur.cmd {
case LineToCmd:
rEnd := cur.p1.Add(cur.n1)
lEnd := cur.p1.Sub(cur.n1)
rhs.LineTo(rEnd.X, rEnd.Y)
lhs.LineTo(lEnd.X, lEnd.Y)
case CubeToCmd:
rhs = rhs.Join(strokeCubicBezier(cur.p0, cur.cp1, cur.cp2, cur.p1, halfWidth, Tolerance))
lhs = lhs.Join(strokeCubicBezier(cur.p0, cur.cp1, cur.cp2, cur.p1, -halfWidth, Tolerance))
case ArcToCmd:
rStart := cur.p0.Add(cur.n0)
lStart := cur.p0.Sub(cur.n0)
rEnd := cur.p1.Add(cur.n1)
lEnd := cur.p1.Sub(cur.n1)
dr := halfWidth
if !cur.sweep { // bend to the right, ie. CW
dr = -dr
}
rLambda := ellipseRadiiCorrection(rStart, cur.rx+dr, cur.ry+dr, cur.rot*math.Pi/180.0, rEnd)
lLambda := ellipseRadiiCorrection(lStart, cur.rx-dr, cur.ry-dr, cur.rot*math.Pi/180.0, lEnd)
if rLambda <= 1.0 && lLambda <= 1.0 {
rLambda, lLambda = 1.0, 1.0
}
rhs.ArcTo(rLambda*(cur.rx+dr), rLambda*(cur.ry+dr), cur.rot, cur.large, cur.sweep, rEnd.X, rEnd.Y)
lhs.ArcTo(lLambda*(cur.rx-dr), lLambda*(cur.ry-dr), cur.rot, cur.large, cur.sweep, lEnd.X, lEnd.Y)
}
// join the cur and next path segments
if i+1 < len(states) || closed {
var next pathStrokeState
if i+1 < len(states) {
next = states[i+1]
} else {
next = states[0]
}
if !cur.n1.Equals(next.n0) {
jr.Join(rhs, lhs, halfWidth, cur.p1, cur.n1, next.n0, cur.r1, next.r0)
if !cur.n1.Equals(next.n0.Neg()) {
// all turns except 0 degrees and 180 degrees are added
cw := cur.n1.Rot90CW().Dot(next.n0) >= 0.0
if cw {
rhsInnerBends = append(rhsInnerBends, len(rhs.d)-cmdLen(LineToCmd))
} else {
lhsInnerBends = append(lhsInnerBends, len(lhs.d)-cmdLen(LineToCmd))
}
}
}
}
}
closeInnerBends(rhs, rhsInnerBends, closed)
closeInnerBends(lhs, lhsInnerBends, closed)
if closed {
rhs.Close()
lhs.Close()
optimizeMoveTo(rhs)
optimizeMoveTo(lhs)
return rhs, lhs
}
// default to CCW direction
lhs = lhs.Reverse()
cr.Cap(rhs, halfWidth, states[len(states)-1].p1, states[len(states)-1].n1)
rhs = rhs.Join(lhs)
cr.Cap(rhs, halfWidth, states[0].p0, states[0].n0.Neg())
rhs.Close()
optimizeMoveTo(rhs)
return rhs, nil
}
func closeInnerBends(p *Path, indices []int, closed bool) {
// closed paths end with a LineTo to the original MoveTo but are not (yet) closed
di := 0
for _, i := range indices {
i -= di
cmd := p.d[i]
iPrev := i - cmdLen(p.d[i-1])
iNext := i + cmdLen(cmd)
if closed && iNext == len(p.d) {
iNext = cmdLen(MoveToCmd)
}
if 0 < iPrev && iNext < len(p.d) {
// TODO: (stroke) implement inner bend optimization for all combinations
// TODO: (stroke) if segments do not cross keep looking, what if while looking we pass another index in indices? Remove all?
prevStart := Point{p.d[iPrev-3], p.d[iPrev-2]}
prevEnd := Point{p.d[i-3], p.d[i-2]}
nextStart := Point{p.d[i+1], p.d[i+2]}
nextEnd := Point{p.d[iNext+1], p.d[iNext+2]}
if p.d[iPrev] == LineToCmd && p.d[iNext] == LineToCmd {
zs := intersections{}
zs = zs.LineLine(prevStart, prevEnd, nextStart, nextEnd)
if zs.HasSecant() {
p.d[i-3] = zs[0].X
p.d[i-2] = zs[0].Y
p.d = append(p.d[:i:i], p.d[i+cmdLen(cmd):]...)
di += cmdLen(cmd)
}
} else if p.d[iPrev] == LineToCmd && p.d[iNext] == ArcToCmd {
} else if p.d[iPrev] == ArcToCmd && p.d[iNext] == LineToCmd {
} else if p.d[iPrev] == ArcToCmd && p.d[iNext] == ArcToCmd {
}
}
}
if closed {
// update MoveTo to match the last LineTo (which will be a Close)
p.d[1] = p.d[len(p.d)-3]
p.d[2] = p.d[len(p.d)-2]
}
}
func optimizeMoveTo(p *Path) {
// move MoveTo to the initial position of the Close if they are colinear
if p.d[cmdLen(MoveToCmd)] == LineToCmd && p.d[len(p.d)-cmdLen(CloseCmd)-1] == LineToCmd {
start := Point{p.d[len(p.d)-cmdLen(CloseCmd)-3], p.d[len(p.d)-cmdLen(CloseCmd)-2]}
mid := Point{p.d[1], p.d[2]}
end := Point{p.d[cmdLen(MoveToCmd)+1], p.d[cmdLen(MoveToCmd)+2]}
if Equal(end.Sub(mid).AngleBetween(mid.Sub(start)), 0.0) {
p.d[1] = p.d[len(p.d)-cmdLen(CloseCmd)-3]
p.d[2] = p.d[len(p.d)-cmdLen(CloseCmd)-2]
p.d[len(p.d)-cmdLen(CloseCmd)-4] = CloseCmd
p.d[len(p.d)-cmdLen(CloseCmd)-1] = CloseCmd
p.d = p.d[:len(p.d)-cmdLen(CloseCmd)]
}
}
}
// Offset offsets the path to expand by w and returns a new path. If w is negative it will contract. Path must be closed.
func (p *Path) Offset(w float64, fillRule FillRule) *Path {
if Equal(w, 0.0) {
return p
}
q := &Path{}
filling := p.Filling(fillRule)
for i, ps := range p.Split() {
if !ps.Closed() {
continue
}
useRHS := false
if ps.CCW() {
useRHS = !useRHS
}
if w > 0.0 {
useRHS = !useRHS
}
if filling[i] {
useRHS = !useRHS
}
rhs, lhs := offsetSegment(ps, math.Abs(w), ButtCap, RoundJoin)
if useRHS {
q = q.Append(rhs)
} else {
q = q.Append(lhs)
}
}
return q
}
// Stroke converts a path into a stroke of width w and returns a new path. It uses cr to cap the start and end of the path, and jr to join all path elements. If the path closes itself, it will use a join between the start and end instead of capping them. The tolerance is the maximum deviation from the original path when flattening Béziers and optimizing the stroke.
func (p *Path) Stroke(w float64, cr Capper, jr Joiner) *Path {
// TODO: start first point at intersection between last and first segment. This allows a rectangle to have a stroke with twice 1xM, 3xL and one z command, just like a rectangle itself.
q := &Path{}
halfWidth := w / 2.0
for _, ps := range p.Split() {
rhs, lhs := offsetSegment(ps, halfWidth, cr, jr)
if lhs != nil { // closed path
// inner path should go opposite direction to cancel the outer path
if ps.CCW() {
lhs = lhs.Reverse()
q = q.Append(rhs)
q = q.Append(lhs)
} else {
rhs = rhs.Reverse()
q = q.Append(lhs)
q = q.Append(rhs)
}
} else {
q = q.Append(rhs)
}
}
return q
}