-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathLevenshteinDistance.js
43 lines (37 loc) · 1.32 KB
/
LevenshteinDistance.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/* The Levenshtein distance (a.k.a edit distance) is a
measure of similarity between two strings. It is
defined as the minimum number of changes required to
convert string a into string b (this is done by
inserting, deleting or replacing a character in
string a).
The smaller the Levenshtein distance,
the more similar the strings are. This is a very
common problem in the application of Dynamic Programming.
*/
const levenshteinDistance = (a, b) => {
// Declaring array 'D' with rows = len(a) + 1 and columns = len(b) + 1:
const distanceMatrix = Array(b.length + 1)
.fill(null)
.map(() => Array(a.length + 1).fill(null))
// Initializing first column:
for (let i = 0; i <= a.length; i += 1) {
distanceMatrix[0][i] = i
}
// Initializing first row:
for (let j = 0; j <= b.length; j += 1) {
distanceMatrix[j][0] = j
}
for (let j = 1; j <= b.length; j += 1) {
for (let i = 1; i <= a.length; i += 1) {
const indicator = a[i - 1] === b[j - 1] ? 0 : 1
// choosing the minimum of all three, vis-a-vis:
distanceMatrix[j][i] = Math.min(
distanceMatrix[j][i - 1] + 1, // deletion
distanceMatrix[j - 1][i] + 1, // insertion
distanceMatrix[j - 1][i - 1] + indicator // substitution
)
}
}
return distanceMatrix[b.length][a.length]
}
export { levenshteinDistance }