-
Notifications
You must be signed in to change notification settings - Fork 19.5k
/
LongestCommonSubsequence.java
98 lines (87 loc) · 3.63 KB
/
LongestCommonSubsequence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
package com.thealgorithms.dynamicprogramming;
/**
* This class implements the Longest Common Subsequence (LCS) problem.
* The LCS of two sequences is the longest sequence that appears in both
* sequences
* in the same order, but not necessarily consecutively.
*
* This implementation uses dynamic programming to find the LCS of two strings.
*/
final class LongestCommonSubsequence {
private LongestCommonSubsequence() {
}
/**
* Returns the Longest Common Subsequence (LCS) of two given strings.
*
* @param str1 The first string.
* @param str2 The second string.
* @return The LCS of the two strings, or null if one of the strings is null.
*/
public static String getLCS(String str1, String str2) {
// If either string is null, return null as LCS can't be computed.
if (str1 == null || str2 == null) {
return null;
}
// If either string is empty, return an empty string as LCS.
if (str1.length() == 0 || str2.length() == 0) {
return "";
}
// Convert the strings into arrays of characters
String[] arr1 = str1.split("");
String[] arr2 = str2.split("");
// lcsMatrix[i][j] = LCS(first i characters of str1, first j characters of str2)
int[][] lcsMatrix = new int[arr1.length + 1][arr2.length + 1];
// Base Case: Fill the LCS matrix 0th row & 0th column with 0s
// as LCS of any string with an empty string is 0.
for (int i = 0; i < arr1.length + 1; i++) {
lcsMatrix[i][0] = 0;
}
for (int j = 1; j < arr2.length + 1; j++) {
lcsMatrix[0][j] = 0;
}
// Build the LCS matrix by comparing characters of str1 & str2
for (int i = 1; i < arr1.length + 1; i++) {
for (int j = 1; j < arr2.length + 1; j++) {
// If characters match, the LCS increases by 1
if (arr1[i - 1].equals(arr2[j - 1])) {
lcsMatrix[i][j] = lcsMatrix[i - 1][j - 1] + 1;
} else {
// Otherwise, take the maximum of the left or above values
lcsMatrix[i][j] = Math.max(lcsMatrix[i - 1][j], lcsMatrix[i][j - 1]);
}
}
}
// Call helper function to reconstruct the LCS from the matrix
return lcsString(str1, str2, lcsMatrix);
}
/**
* Reconstructs the LCS string from the LCS matrix.
*
* @param str1 The first string.
* @param str2 The second string.
* @param lcsMatrix The matrix storing the lengths of LCSs
* of substrings of str1 and str2.
* @return The LCS string.
*/
public static String lcsString(String str1, String str2, int[][] lcsMatrix) {
StringBuilder lcs = new StringBuilder(); // Hold the LCS characters.
int i = str1.length(); // Start from the end of str1.
int j = str2.length(); // Start from the end of str2.
// Trace back through the LCS matrix to reconstruct the LCS
while (i > 0 && j > 0) {
// If characters match, add to the LCS and move diagonally in the matrix
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
lcs.append(str1.charAt(i - 1));
i--;
j--;
} else if (lcsMatrix[i - 1][j] > lcsMatrix[i][j - 1]) {
// If the value above is larger, move up
i--;
} else {
// If the value to the left is larger, move left
j--;
}
}
return lcs.reverse().toString(); // LCS built in reverse, so reverse it back
}
}