-
Notifications
You must be signed in to change notification settings - Fork 19.7k
/
Copy pathPreOrderTraversal.java
67 lines (61 loc) · 1.85 KB
/
PreOrderTraversal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
package com.thealgorithms.datastructures.trees;
import java.util.ArrayList;
import java.util.Deque;
import java.util.LinkedList;
import java.util.List;
/**
* Given tree is traversed in a 'pre-order' way: ROOT -> LEFT -> RIGHT.
* Below are given the recursive and iterative implementations.
*
* Complexities:
* Recursive: O(n) - time, O(n) - space, where 'n' is the number of nodes in a tree.
*
* Iterative: O(n) - time, O(h) - space, where 'n' is the number of nodes in a tree
* and 'h' is the height of a binary tree.
* In the worst case 'h' can be O(n) if tree is completely unbalanced, for instance:
* 5
* \
* 6
* \
* 7
* \
* 8
*
* @author Albina Gimaletdinova on 17/02/2023
*/
public final class PreOrderTraversal {
private PreOrderTraversal() {
}
public static List<Integer> recursivePreOrder(BinaryTree.Node root) {
List<Integer> result = new ArrayList<>();
recursivePreOrder(root, result);
return result;
}
public static List<Integer> iterativePreOrder(BinaryTree.Node root) {
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
}
Deque<BinaryTree.Node> stack = new LinkedList<>();
stack.push(root);
while (!stack.isEmpty()) {
BinaryTree.Node node = stack.pop();
result.add(node.data);
if (node.right != null) {
stack.push(node.right);
}
if (node.left != null) {
stack.push(node.left);
}
}
return result;
}
private static void recursivePreOrder(BinaryTree.Node root, List<Integer> result) {
if (root == null) {
return;
}
result.add(root.data);
recursivePreOrder(root.left, result);
recursivePreOrder(root.right, result);
}
}