-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathgolden_search_extrema.cpp
151 lines (122 loc) · 4.01 KB
/
golden_search_extrema.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/**
* \file
* \brief Find extrema of a univariate real function in a given interval using
* [golden section search
* algorithm](https://en.wikipedia.org/wiki/Golden-section_search).
*
* \see brent_method_extrema.cpp
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#define _USE_MATH_DEFINES //< required for MS Visual C++
#include <cassert>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#define EPSILON 1e-7 ///< solution accuracy limit
/**
* @brief Get the minima of a function in the given interval. To get the maxima,
* simply negate the function. The golden ratio used here is:\f[
* k=\frac{3-\sqrt{5}}{2} \approx 0.381966\ldots\f]
*
* @param f function to get minima for
* @param lim_a lower limit of search window
* @param lim_b upper limit of search window
* @return local minima found in the interval
*/
double get_minima(const std::function<double(double)> &f, double lim_a,
double lim_b) {
uint32_t iters = 0;
double c, d;
double prev_mean, mean = std::numeric_limits<double>::infinity();
// golden ratio value
const double M_GOLDEN_RATIO = (1.f + std::sqrt(5.f)) / 2.f;
// ensure that lim_a < lim_b
if (lim_a > lim_b) {
std::swap(lim_a, lim_b);
} else if (std::abs(lim_a - lim_b) <= EPSILON) {
std::cerr << "Search range must be greater than " << EPSILON << "\n";
return lim_a;
}
do {
prev_mean = mean;
// compute the section ratio width
double ratio = (lim_b - lim_a) / M_GOLDEN_RATIO;
c = lim_b - ratio; // right-side section start
d = lim_a + ratio; // left-side section end
if (f(c) < f(d)) {
// select left section
lim_b = d;
} else {
// selct right section
lim_a = c;
}
mean = (lim_a + lim_b) / 2.f;
iters++;
// continue till the interval width is greater than sqrt(system epsilon)
} while (std::abs(lim_a - lim_b) > EPSILON);
std::cout << " (iters: " << iters << ") ";
return prev_mean;
}
/**
* @brief Test function to find minima for the function
* \f$f(x)= (x-2)^2\f$
* in the interval \f$[1,5]\f$
* \n Expected result = 2
*/
void test1() {
// define the function to minimize as a lambda function
std::function<double(double)> f1 = [](double x) {
return (x - 2) * (x - 2);
};
std::cout << "Test 1.... ";
double minima = get_minima(f1, 1, 5);
std::cout << minima << "...";
assert(std::abs(minima - 2) < EPSILON);
std::cout << "passed\n";
}
/**
* @brief Test function to find *maxima* for the function
* \f$f(x)= x^{\frac{1}{x}}\f$
* in the interval \f$[-2,10]\f$
* \n Expected result: \f$e\approx 2.71828182845904509\f$
*/
void test2() {
// define the function to maximize as a lambda function
// since we are maximixing, we negated the function return value
std::function<double(double)> func = [](double x) {
return -std::pow(x, 1.f / x);
};
std::cout << "Test 2.... ";
double minima = get_minima(func, -2, 10);
std::cout << minima << " (" << M_E << ")...";
assert(std::abs(minima - M_E) < EPSILON);
std::cout << "passed\n";
}
/**
* @brief Test function to find *maxima* for the function
* \f$f(x)= \cos x\f$
* in the interval \f$[0,12]\f$
* \n Expected result: \f$\pi\approx 3.14159265358979312\f$
*/
void test3() {
// define the function to maximize as a lambda function
// since we are maximixing, we negated the function return value
std::function<double(double)> func = [](double x) { return std::cos(x); };
std::cout << "Test 3.... ";
double minima = get_minima(func, -4, 12);
std::cout << minima << " (" << M_PI << ")...";
assert(std::abs(minima - M_PI) < EPSILON);
std::cout << "passed\n";
}
/** Main function */
int main() {
std::cout.precision(9);
std::cout << "Computations performed with machine epsilon: " << EPSILON
<< "\n";
test1();
test2();
test3();
return 0;
}