-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathbrent_method_extrema.cpp
216 lines (182 loc) · 5.58 KB
/
brent_method_extrema.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/**
* \file
* \brief Find real extrema of a univariate real function in a given interval
* using [Brent's method](https://en.wikipedia.org/wiki/Brent%27s_method).
*
* Refer the algorithm discoverer's publication
* [online](https://maths-people.anu.edu.au/~brent/pd/rpb011i.pdf) and also
* associated book:
* > R. P. Brent, Algorithms for Minimization without
* > Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey, 1973
*
* \see golden_search_extrema.cpp
*
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#define _USE_MATH_DEFINES ///< required for MS Visual C++
#include <cassert>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <limits>
#define EPSILON \
std::sqrt( \
std::numeric_limits<double>::epsilon()) ///< system accuracy limit
/**
* @brief Get the real root of a function in the given interval.
*
* @param f function to get root for
* @param lim_a lower limit of search window
* @param lim_b upper limit of search window
* @return root found in the interval
*/
double get_minima(const std::function<double(double)> &f, double lim_a,
double lim_b) {
uint32_t iters = 0;
if (lim_a > lim_b) {
std::swap(lim_a, lim_b);
} else if (std::abs(lim_a - lim_b) <= EPSILON) {
std::cerr << "Search range must be greater than " << EPSILON << "\n";
return lim_a;
}
// golden ratio value
const double M_GOLDEN_RATIO = (3.f - std::sqrt(5.f)) / 2.f;
double v = lim_a + M_GOLDEN_RATIO * (lim_b - lim_a);
double u, w = v, x = v;
double fu, fv = f(v);
double fw = fv, fx = fv;
double mid_point = (lim_a + lim_b) / 2.f;
double p = 0, q = 0, r = 0;
double d, e = 0;
double tolerance, tolerance2;
do {
mid_point = (lim_a + lim_b) / 2.f;
tolerance = EPSILON * std::abs(x);
tolerance2 = 2 * tolerance;
if (std::abs(e) > tolerance2) {
// fit parabola
r = (x - w) * (fx - fv);
q = (x - v) * (fx - fw);
p = (x - v) * q - (x - w) * r;
q = 2.f * (q - r);
if (q > 0)
p = -p;
else
q = -q;
r = e;
e = d;
}
if (std::abs(p) < std::abs(0.5 * q * r) && p < q * (lim_b - x)) {
// parabolic interpolation step
d = p / q;
u = x + d;
if (u - lim_a < tolerance2 || lim_b - u < tolerance2)
d = x < mid_point ? tolerance : -tolerance;
} else {
// golden section interpolation step
e = (x < mid_point ? lim_b : lim_a) - x;
d = M_GOLDEN_RATIO * e;
}
// evaluate not too close to x
if (std::abs(d) >= tolerance)
u = d;
else if (d > 0)
u = tolerance;
else
u = -tolerance;
u += x;
fu = f(u);
// update variables
if (fu <= fx) {
if (u < x)
lim_b = x;
else
lim_a = x;
v = w;
fv = fw;
w = x;
fw = fx;
x = u;
fx = fu;
} else {
if (u < x)
lim_a = u;
else
lim_b = u;
if (fu <= fw || x == w) {
v = w;
fv = fw;
w = u;
fw = fu;
} else if (fu <= fv || v == x || v == w) {
v = u;
fv = fu;
}
}
iters++;
} while (std::abs(x - mid_point) > (tolerance - (lim_b - lim_a) / 2.f));
std::cout << " (iters: " << iters << ") ";
return x;
}
/**
* @brief Test function to find root for the function
* \f$f(x)= (x-2)^2\f$
* in the interval \f$[1,5]\f$
* \n Expected result = 2
*/
void test1() {
// define the function to minimize as a lambda function
std::function<double(double)> f1 = [](double x) {
return (x - 2) * (x - 2);
};
std::cout << "Test 1.... ";
double minima = get_minima(f1, -1, 5);
std::cout << minima << "...";
assert(std::abs(minima - 2) < EPSILON);
std::cout << "passed\n";
}
/**
* @brief Test function to find root for the function
* \f$f(x)= x^{\frac{1}{x}}\f$
* in the interval \f$[-2,10]\f$
* \n Expected result: \f$e\approx 2.71828182845904509\f$
*/
void test2() {
// define the function to maximize as a lambda function
// since we are maximixing, we negated the function return value
std::function<double(double)> func = [](double x) {
return -std::pow(x, 1.f / x);
};
std::cout << "Test 2.... ";
double minima = get_minima(func, -2, 5);
std::cout << minima << " (" << M_E << ")...";
assert(std::abs(minima - M_E) < EPSILON);
std::cout << "passed\n";
}
/**
* @brief Test function to find *maxima* for the function
* \f$f(x)= \cos x\f$
* in the interval \f$[0,12]\f$
* \n Expected result: \f$\pi\approx 3.14159265358979312\f$
*/
void test3() {
// define the function to maximize as a lambda function
// since we are maximixing, we negated the function return value
std::function<double(double)> func = [](double x) { return std::cos(x); };
std::cout << "Test 3.... ";
double minima = get_minima(func, -4, 12);
std::cout << minima << " (" << M_PI << ")...";
assert(std::abs(minima - M_PI) < EPSILON);
std::cout << "passed\n";
}
/** Main function */
int main() {
std::cout.precision(18);
std::cout << "Computations performed with machine epsilon: " << EPSILON
<< "\n";
test1();
test2();
test3();
return 0;
}